
 
 

 

 

 

Predicting player churn using game-design-

independent features across casual free-to-play 

games 

 

 
Master thesis for Data Science: Business and Governance 

 

Academic year 2016–2017 

 

 

 
 

 
 

 

 

 

 

 

Name: Bastiaan van der Palen 

ANR: 818913 

Supervisor Tilburg University: Sander Bakkes 

Supervisor Wooga: Julian Runge 

Second reader: Pieter Spronck 

Date: 3 July, 2017 

Faculty: Tilburg School of Humanities   



 
 

Preface 

 

This thesis finalizes my education for the MSc specialization Data Science: Business and Governance 

at Tilburg University. With this preface I would like to thank the people involved during this project and 

Wooga for providing the datasets. 

 

During the Data Science in Action thesis fair, the possibility of game analytics as a thesis topic 

immediately drew my attention. After consulting with Dr. Pieter Spronck, I was introduced to Dr. 

Anders Drachen who helped me by formalizing my research topic and introduced me to other 

researchers in the field of game analytics. Rafet Sifa, a PhD candidate focussing on in-game user 

behaviour using data science models, helped me during Skype calls with suggestions and input. Julian 

Runge, a former data scientist at Wooga who is also pursuing a PhD in predictive analytics, helped me 

to obtain the datasets from Wooga, when the plan of the initial datasets did not go through. This group 

of scientists helped me throughout this project. It would not have been possible to complete this thesis 

without these regular Skype meetings and feedback moments. 

 

Finally, I would like to thank my thesis supervisor Dr. Sander Bakkes who supported me throughout the 

project. The quick e-mail responses, planned meetings and the mental support were essential for this 

thesis. 

 

Bastiaan van der Palen 

Eindhoven, June 2017 

 

 

 

 

 

 

 

 

 

 

 

  



 
 

Summary 

 

With the growth of the mobile casual game market, game developers have become more reliant on game 

analytics to stay ahead of competition. Predicting in-game churn behaviour has become essential for 

game developers to incentivize players who are predicted to leave the game. 

While predicting churn has been the topic of several research studies, less research has been conducted 

on churn prediction across games. Developing a churn-predicting model that can be used across games 

is especially interesting for game developers who have recently launched a new game that has not yet 

generated enough data itself to train a prediction model. This thesis addresses this knowledge gap by 

predicting player churn across multiple free-to-play casual games using game-design-independent 

features and evaluating the model on out-of-sample data. The datasets provided by Wooga for this thesis 

contained player telemetry for three popular casual mobile games with different game designs. 

The experiments conducted tested the performance differences between various models, namely, k-

nearest neighbours, decision tree, random forest and logistic regression. The results indicate that random 

forest is overall the best classifier for predicting churn across games; however, the difference between 

its predication capability and that of the other classifiers was not substantial. Subsequently, the random 

forest model indicated current absence time is the most important feature, which is in accordance with 

the literature. Finally, the experiments with data covering a single-day feature window resulted in 

substantially lower prediction accuracies with little improvement compared to the majority baseline. 

From the results, we can conclude that we can predict player churn across casual games with decent 

accuracy using game-design-independent features and data covering the first seven days of play 

behaviour. Moreover, the model generalizes excellently to out-of-sample data, allowing game 

developers to initiate churn prediction for recently launched games. 

 

 

 

 

  



 
 

Contents 

 

1. Introduction ....................................................................................................................................1 

1.1 Casual gaming:..........................................................................................................................1 

1.2 Player churn for F2P social games .............................................................................................2 

1.3 Research questions ....................................................................................................................3 

1.4 Structure ...................................................................................................................................4 

2. Related work ...................................................................................................................................5 

2.1 Customer retention ....................................................................................................................5 

2.2 Game specific retention: ............................................................................................................6 

2.3 Customer churn .........................................................................................................................6 

2.4 Churn prediction in the game industry: ......................................................................................8 

2.5 Applicable machine-learning algorithms: ...................................................................................8 

2.6 Input features .......................................................................................................................... 10 

2.6.1 Installation measures ........................................................................................................ 10 

2.6.2 Gameplay measures .......................................................................................................... 10 

2.6.3 Intersession measures ....................................................................................................... 10 

2.6.4 Round-specific measures: ................................................................................................. 10 

2.7 Churn-prediction time windows ............................................................................................... 11 

2.8 Balancing classes .................................................................................................................... 12 

2.9 Thesis contributions: ............................................................................................................... 13 

2.9.1 Academic contribution ...................................................................................................... 13 

2.9.2 Practical contribution ........................................................................................................ 13 

3. Method ......................................................................................................................................... 14 

3.1 Description of the datasets ....................................................................................................... 14 

3.1.1 Raw datasets ..................................................................................................................... 14 

3.1.2 Metrics: ............................................................................................................................ 14 

3.1.3 Sample selection ............................................................................................................... 15 

3.2 Pre-processing ......................................................................................................................... 16 

3.2.1 Data cleaning:................................................................................................................... 16 

3.2.2 Time windows .................................................................................................................. 17 

3.2.3 Features ............................................................................................................................ 18 

3.2.4 Player churn ..................................................................................................................... 19 

3.2.5 Missing values .................................................................................................................. 20 

3.3 Data visualization: ................................................................................................................... 21 

3.3.1 Descriptive statistics ......................................................................................................... 21 



 
 

3.1.2 Churn visualization ........................................................................................................... 22 

3.4 Experimental procedure:.......................................................................................................... 25 

3.4.1 Cross-game churn prediction: ........................................................................................... 25 

3.5. Classification algorithms ........................................................................................................ 25 

3.5.1 Decision tree .................................................................................................................... 26 

3.5.2 Random forest .................................................................................................................. 26 

3.5.3 K-nearest neighbours ........................................................................................................ 26 

3.5.4 Logistic regression............................................................................................................ 27 

3.6 Implementation of experiments ............................................................................................... 28 

3.6.1 Programming language ..................................................................................................... 28 

3.6.2 Python libraries ................................................................................................................ 28 

3.7 Evaluation criteria ................................................................................................................... 29 

4. Results .......................................................................................................................................... 30 

4.1 RQ1: Predicting cross-game player churn ................................................................................ 30 

4.1.1 K-nearest neighbours ........................................................................................................ 30 

4.1.2 Decision tree .................................................................................................................... 31 

4.1.3 Random forest .................................................................................................................. 32 

4.1.4 Logistic regression............................................................................................................ 33 

4.1.5 Model comparison ............................................................................................................ 35 

4.2 RQ2: Feature importance ......................................................................................................... 38 

4.2.1 Random forest feature importance: ................................................................................... 38 

4.3 RQ3: Time windows ............................................................................................................... 40 

4.3.1 Comparing feature windows: ............................................................................................ 40 

5. Discussion .................................................................................................................................... 42 

5.1 Results per research question ................................................................................................... 42 

5.2 Limitations .............................................................................................................................. 44 

5.3 Contribution and future research .............................................................................................. 44 

6. Conclusion .................................................................................................................................... 45 

References ........................................................................................................................................ 46 

Appendices and supplementary materials .......................................................................................... 48 

Appendix A .................................................................................................................................. 48 

Appendix B: Feature importance per dataset and feature window. ................................................. 50 

Appendix C: ROC & PR curves. ................................................................................................... 52 

Appendix D: Executive summary .................................................................................................. 57 

 



1 
 

1. Introduction 

 

1.1 Casual gaming: 

The global market for casual games is estimated to grow from 75.5 billion dollars in 2013 to 102.9 

billion dollars in 2017 (Casual Games Association, 2014). Revenues generated from casual games 

played on smartphones (22%) and tablets (14%) have seen the biggest growth in recent years, with an 

estimated 1.82 billion mobile players; mobile game spending will exceed $35 billion in 2017. With this 

growth in revenue and in the number of games, the industry has become more saturated and game 

developers have started to compete more heavily. To stay ahead of competition and keep players 

engaged longer, game developers have started learning from player data by analysing it (El-Nasr, 

Drachen, & Canossa, 2013). 

Using player data analysis, game developers have succeeded in developing games for a broad audience 

and have learned what keeps casual gamers playing. This, in combination with the rise of global social 

network site Facebook, provided the industry with a new game segment, social networking games 

(SNGs) (Lewis, Wardrip-Fruin, & Whitehead, 2012). 

Definition 1:  Social networking games (SNGs) are distributed and played on social networks 

such as Facebook. 

SNGs use the data infrastructure of the social networking site to implement social functionalities (Alsén, 

Runge, Drachen, & Klapper, 2016). SNGs are able to spread fast and gain a substantial player base 

through viral acquisition techniques, for instance by friend recommendations and alerts. Surprisingly, 

the gameplay is often not social in terms of player interaction within the game. The social aspect of these 

games is mostly contributed by friend recommendations (Alsén et al., 2016). 

The popularity of casual games and the emergence of the social games has led to the introduction of a 

new term in the literature: casual social games (CSGs) (Alsén et al., 2016). 

Definition 2: Casual social games (CSGs) are part of the social games industry and they 

require the user to engage socially while gaming. 

A game is considered a CSG when five predefined elements are present in the game design. These 

elements are high accessibility and engagement, inclusion of viral/social features, free-to-play, strong 

sociability and genre agnosticism (Alsén et al., 2016). As the success of SNGs and CSGs spread through 

the industry, more game developers started developing free-to-play casual games. 

Definition 3: Free-to-play (F2P) games, also referred to as freemium games, can be 

downloaded and played free of charge. The revenue generated by F2P games is comprised of 

advertisement sales and/or in-game purchases. 

 



2 
 

The ability to develop games for a platform with a large user base gave birth to new companies, 

focussing on social networking games. Some of the biggest developers are Zynga, King, Rovio and 

Wooga (Lunden, 2012). The success of Candy Crush for social game developer King led to millions of 

dollars in revenue, and even today it is one of the most played games on Facebook’s gaming platform 

(GameHunters, 2017). 

 

1.2 Player churn for F2P social games 

With the increase of competitors in the casual game industry, game developers have begun to compete 

heavily to keep players loyal to their games. Predicting player churn, in the F2P casual game industry, 

has become of increasing importance to game developers. 

 

Definition 4: Player churn is a metric, calculated as a function of time, that measures whether 

a player stops playing the game and is therefore considered a churner. 

 

Churn rate is considered a key performance indicator in the field of online games and is one of the most 

important metrics in the F2P business model (El-Nasr et al., 2013). Being able to detect when and where 

players lose their interest in the game is very important. Predicted churners can be targeted with in-game 

rewards in order to keep them playing. This is often achieved by predicting future churners and offering 

tailored incentives to keep players loyal. 

Investing in churn predicting can be profitable for companies. The cost of attracting new customers is 

five times higher than the cost of retaining current customers. Furthermore, long-term customers tend 

to generate more income (Verbeke, Martens, Mues, & Baesens, 2011). Therefore, improving retention 

increases revenues. Decision makers, concerned with customer retention, are interested in identifying 

future churners to use incentivization to prevent players from churning. Churn-prediction models have 

a certain degree of classification accuracy. False positives – i.e. players incorrectly classified as future 

churners – will be targeted in the retention campaign along with the actual future churners. This 

misclassification is a risk that companies are willing to take because the cost of attracting new customers 

is up to five times higher than the cost of retaining customers (Verbeke et al., 2011). The false negatives 

– i.e., actual future churners not predicted as such by the model – have a more negative financial impact 

on the company. 

 

 

 



3 
 

1.3 Research questions 

In the area of game analysis for F2P games, churn prediction is a key challenge for game developers in 

order to succeed (Hadiji et al., 2014). Although, a sufficient amount of research has already been 

conducted on game-specific datasets, less is known about predicting churn across games. In Hadiji et al. 

(2014), the researchers addressed this knowledge gap for the first time. They were able to achieve high 

prediction accuracy by training and testing a decision tree, with universal input features. The researchers 

address this new area of cross-game analytics and recommend that future research investigate how cross-

game data can make churn predictions for a game that has been recently launched and has not yet 

generated enough data itself. These early predictions can help game developers make data-driven 

decisions in an early stage in game development. This study will address this recommendation by 

analysing cross-game telemetry data to predict churn behaviour across games. This is of interest for the 

industry, which can use the insights of this project to analyse player churn across games. This objective 

is addressed in the first research question. 

 

Research question 1 (RQ1):  To what extent can we predict player churn across multiple 

F2P games with game-independent input features? 

To train the prediction models to answer RQ1, input features will be selected that contribute to the 

correct classification of the future churners. These input features need to be independent of game-design 

and easily generalizable to similar games from other developers. Research question 2 aims to address 

this issue and give insight into the most important features. 

 

Research question 2 (RQ2):  What are the most important input features for predicting 

player churn across F2P games? 

Apart from the input features, the churn time window significantly influences the results. An observation 

time window, which captures the game activities to check if the player churned, should accurately 

measure real churning behaviour. A short observation window could lead to misclassifying non-churners 

as churners and a long observation window could miss actual churners that open the game after a long 

period of inactivity. A feature window captures the game activities of players within a certain time-

period. For this project we want to use different feature time- windows and compare the results. The last 

research question addresses this issue and aims to investigate the relation of different time windows per 

game on the churn-prediction performance. 

 



4 
 

Research question 3 (RQ3):  What is the effect of different time windows on churn  

    prediction across F2P games? 

1.4 Structure 

This thesis will be outlined according to the following structure. In Chapter 2 we will delve deeper into 

the literature on churn prediction and game-specific churn prediction. Chapter 3, the experimental set-

up chapter, describes the dataset and the experiments in detail. Subsequently, Chapter 4 will present the 

results of these experiments. In Chapter 5, we discuss these results and in Chapter 6 we answer the 

research questions and present our recommendations for future research. The references used and the 

appendixes can be found on the last pages. 

  



5 
 

2. Related work 

 

This chapter discusses the relevant literature in this field which will provide the foundation of this thesis. 

First, research into customer retention is explored in section 2.1. Second, in section 2.2 retention in the 

game industry is discussed. Subsequently, the literature on churn prediction is presented in section 2.3, 

followed by the literature on game-specific retention in section 2.4. This chapter is completed with a 

discussion of the literature on machine-learning algorithms as well as feature selection and time window 

selection. 

 

2.1 Customer retention 

In customer relationship management (CRM), the most important step after customer acquisition is 

customer retention (Kumar & Petersen, 2012). As discussed in section 1.2, retaining a customer is up to 

five times less costly than acquiring a new customer (Verbeke et al., 2011). Retaining the customer is 

dependent on several factors. How these factors relate to each other is illustrated in Figure 1. The dashed 

line in the lower right corner illustrates customer retention. It can be observed that customer satisfaction 

and product and service quality are the main influencing factors for customer retention. 

In the literature, we can distinguish two approaches to investigate customer retention. One approach 

focuses on the effects of marketing efforts on customer retention and the second on researching 

statistical models that aim to predict customer retention (Kumar & Petersen, 2012). The main question 

in customer retention is “Will a customer stay or leave a company or service?” This question is often 

modelled with a logistic regression and as a binary classification problem. Retained customers are 

labelled with 1 and churners with 0. 

 

Figure 1. Relationships influencing customer retention (Kumar & Petersen, 2012). 



6 
 

2.2 Game-specific retention 

When a game is being played, data is generated and sent to a collection server. These telemetry data are 

being analysed to obtain, for instance, insight into gaming patterns and to find bugs and drop out points. 

Metrics measuring revenue, gaming behaviour and game performance are important for determining the 

attention points and the direction of a company (El-Nasr et al., 2013). 

In the industry, retention is measured using different methods. One method that is frequently used by 

developers in the industry is the DAU/MAU ratio (Hui, 2013). Dividing the Daily Active Users by the 

Monthly Active Users provides a broad idea of the number of players who are retained for a relatively 

long period. This ratio is also referred to as Retention Rate (El-Nasr et al., 2013). A retention rate 

between 0.2 and 0.3 for a relatively long period of time is considered necessary in order to be successful. 

During the last decade, this method of measuring player retention has been increasingly critiqued. The 

method does not measure retention on the individual level, but only on the entire player base. This 

measure does not provide insight into what proportion of players who played the game on day one 

actually returned later that month. 

Why gamers, at some point during the game, decide to stop playing the game is of interest to game 

developers. A metric called XED (Exit Event Distribution) captures the last activity of the player before 

churning out of the game; this metric is increasingly being used by game developers (El-Nasr et al., 

2013). It might be that a certain in-game event leads to churning behaviour. Analysing these so-called 

choke points will give game developers the opportunity to fix them. Using telemetry data of an online 

F2P strategy game, researchers were able to find these choke points by analysing player pathways 

(Gagné, Seif El-Nasr, & Shaw, 2012). Not only do choke points cause players to churn, all kinds of 

circumstances, not gathered within the datasets, lead to churning behaviour. Researchers were able to 

predict future churners based on data gathered in the first two levels of a game (Mahlman, Drachen, 

Canossa, Togelius, & Yannakakis, 2010). 

Game developers started to share their data with computer scientists to predict why players lose interest 

in the game, and this resulted in several published papers. Researchers trained models that enable a game 

developer to predict how long a player remained interested in the game (Bauckhage et al., 2012). 

Subsequently, the researchers established that the distribution of player churn follows a power law 

distribution. This study, based on the data of five AAA games, showed that a majority of players play a 

game for a short period of time and a fraction of players maintain interest in the game for a considerably 

longer period. Players who are more engaged with the game, and thus are playing for a longer time 

period, are more willing to spend money on it. 

2.3 Customer churn 

While the widespread availability of data in the industry is put to use to increase the customer lifetime 

value, at some point, the customer will decide to leave the company and “churn”. Besides the retention 



7 
 

efforts of a company, attrition of customers is inevitable. Customer churn can be highly expensive for 

companies if they do not know when and why their customers churn; therefore companies can benefit 

financially by investing in churn prediction (Kumar & Petersen, 2012). 

Customer churn, at the individual level, is the probability that the customer leaves the game in a given 

time period. At the company level, churn represents the percentage of customers who leave within a 

certain time period (Blattberg, Kim, & Neslin, 2008). Therefore, churn can be calculated as 1 – Retention 

Rate. 

 

Blattberg et al. (2008) defines two types of customer churn, namely voluntary and involuntary churn. 

Involuntary churn occurs if the company decides to stop the relationship with the customer. When 

there is voluntary churn, the customer is either dissatisfied and considered a deliberate churner or the 

customer no longer needs the product and is an incidental churner. Predicting future churners is very 

interesting for companies, and with the revolution in data collection companies have started feeding 

customer data into models to predict churn rate with a certain level of accuracy. Because of the 

absence of data on what causes customers to churn directly, surrogate data is used which in itself does 

not measure churn. Computer models can find underlying patterns in this surrogate data to predict 

future churners. 

 

Companies are interested in keeping the customer churn as low as possible. A high level of customer 

churn is especially threatening for companies that need to invest highly in acquisition in order to acquire 

a new customer. This is the case, for example, for telephone service providers. Researchers analysed 

data of telecom networks to determine if churning behaviour is related to social ties within the same 

network (Dasgupta et al., 2008). A social tie between two persons was found by analysing call frequency 

and call duration. The results of this study show that social ties influence churning behaviour. If someone 

in your network stops using the service, you are more likely to stop using the service. In the literature, 

a broad variety of papers have been published on predicting customer churn in the telecommunications. 

A study comparing prediction results for customer churn in telecommunication data found the highest 

accuracies for the SVM algorithm (Xia & Jin, 2008). Especially when the data is not linearly separable 

and the missing values in the dataset are not present excessively, the SVM is favourable above the other 

tested algorithms. 

A meta-study, which compared the algorithms and results of multiple studies, concluded that the models 

need to be more comprehensive and justifiable (Verbeke et al., 2011). Two new techniques were 

introduced to tackle these shortcomings and compare the results with more classical data-mining 

approaches. While decision tree (C4.5) as a rule-based system is comprehensible, the comprehensibility 

decreases with each new rule. The justifiability of a model is related to the underlying rules the model 

makes. If domain knowledge dictates that the higher the difficulty of the game the higher the churn rate 



8 
 

and your model violates this knowledge by predicting the opposite, the justifiably of your model 

decreases. The authors therefore suggest that the data mining model should have the possibility to 

impose constraints to safeguard the domain knowledge and the reliability of the model (Verbeke et al., 

2011). 

2.4 Churn prediction in the game industry 

This approach of predicting player churn is a growing field in scientific research. There is, however, no 

predefined method of predicting customer churn. Researchers use different methods and data-mining 

algorithms to achieve the highest prediction accuracy scores on unseen data. Research into two casual 

F2P games showed the highest churn-prediction performance for a single hidden layer neural network 

(Runge, Gao, Garcin, & Faltings, 2014). Furthermore, the authors designed an A/B test to incentivize 

future churners by providing free in-game currency. This, however, did not yield lower churn rates. 

Where churn prediction often was associated with game specific features, the need for a game-

independent churn prediction model surfaced in the industry. 

A study on data containing five F2P games played on web-based and mobile platforms resulted in a 

game-independent churn prediction model with high prediction accuracy (Hadiji et al., 2014). This 

prediction model, however, predicts with mid-length observation and prediction data. A new 

contribution to the field of churn prediction for F2P games investigated the short-term prediction 

window as most players stop playing the game within a few days after installing the game (Drachen et 

al., 2016). The study also introduced a heuristic model with a prediction performance comparable to 

those of well-known traditional data-mining models. Additionally, the results indicated that prediction 

accuracies increase when the time window is increased. 

Accurately predicting when a player becomes a churner does not necessarily mean that you get insight 

into what causes people to churn (Nozhnin, 2012). Researchers working on building models to predict 

player churn for the game Aion, for example, successfully tackled predicting player churn. However, 

why players stop playing was not discovered. Because this paper was not published, the results should 

be interpreted with caution; however, it gives an indication that accurately predicting churn does not 

necessarily mean one knows on what grounds an algorithm identifies that churn. 

2.5 Applicable machine-learning algorithms 

To answer the first research question – To what extent can we predict player churn across multiple F2P 

games with game-independent input features? – prediction algorithms used in similar studies are 

investigated. As discussed in section 1.2, player churn measures whether a player left the game and is 

calculated as a function of time. A player is either considered as a churner or a non-churner and therefore 

the prediction class is binary. A situation like this is best predicted using a classification algorithm 

instead of a regression model (Daumé, 2012). Another requirement that this classification model needs 

to address is the generalizability of the model, as this thesis aims to test the models using out-of-sample 



9 
 

data. Finally, the logic behind the prediction models needs to be easily understandable for people without 

a background in machine learning. In this section we cover these requirements for these machine-

learning algorithms by exploring the literature. How these models operate will be dealt with in the 

method chapter. 

Before feeding data into a machine-learning algorithm, it is common practice to explore the data. 

Laursen (2011) strongly recommends using decision tree during this process. Within the early parts of 

data exploration and model development, decision tree can give insight into the decisions of a machine-

learning algorithm. Additionally, decision tree help detect logical errors. In Drachen et al. (2016), a 

decision tree is used as a benchmark. The performance of other models is compared with this simple 

heuristic model. The authors also mention another benefit of using decision trees. The set of rules it 

generates can be easily understood by decision makers without a background in machine learning. 

Throughout the literature on churn prediction for mobile games, different machine-learning models are 

used; however, one model was found in nearly all papers: logistic regression (Drachen et al., 2016; 

Hadiji et al., 2014; Runge et al., 2014). For all these papers, logistic regression is found to have one of 

the highest accuracies of all the models tested. In Drachen et al. (2016), logistic regression does 

especially well on data with a small feature window but the differences are minimal. Kumar and Petersen 

(2012) found logistic regression used in several domains of industry. Churning customers were predicted 

in the retail industry, telecommunication industry and financial services industry using logistic 

regression algorithm. 

Support vector machine (SVM) is used by Runge et al. (2014) and Drachen et al. (2016). In Runge et 

al. (2014), the authors reflect on the performance of the SVM algorithm. Compared with the decision 

tree, the performance of the SVM is better for low false-positive rates. As discussed in section 1.2, a 

low rate of incorrectly classified churners is preferred and less harmful than incorrectly classifying real 

churners. Therefore, the authors prefer using the SVM to the decision tree. 

In Hadiji et al. (2014), the neural networks model is used to predict player churn. In the literature, neural 

networks often yield high accuracies in classification tasks. In contrast to the results of Runge et al. 

(2014), the trained neural networks algorithm did not outperform the decision tree. These results might 

relate to the different datasets and input features. First, a dataset with telemetry data on five casual games 

instead of player data on one game is used. Subsequently, cross-game features instead of game-specific 

features are used. For this thesis, the data we use share more characteristics with the research done by 

Hadiji et al. (2014). Hence, neural networks is not likely to produce the best prediction accuracies for 

this thesis. Among the previously mentioned algorithms, the Naive Bayes algorithm (Hadiji et al., 2014) 

and the random forest algorithm (Drachen et al., 2016) were used in the literature with decent prediction 

results. 



10 
 

In conclusion, earlier research tested multiple machine-learning algorithms to address the classification 

task of predicting player churn. Logistic regression is used throughout different research industries. It is 

one of the most used algorithms for predicting player churn because it does especially well on binary 

classification problems. The decision tree is often used to get insight into the most important features. 

It is also put to use to check for logical errors. The rules it generates can easily be understood by decision 

makers without prior knowledge of machine learning. The SVM algorithm did well on predicting churn 

with low levels of misclassified churners. The neural networks algorithm performs above average on 

churn-prediction problems for datasets with player data on one game. As this thesis aims to build models 

based on data from multiple games, neural networks will be excluded from this research. The mentioned 

algorithms will be further explained in the classification algorithms section of the method chapter. 

2.6 Input features 

To answer RQ2 – What are the most important features for predicting player churn across F2P games? 

– we discuss the relevant literature on churn prediction for mobile games. The selection of input features 

is of the upmost importance for classification tasks. It is important that these features capture user 

behaviour across the game as well as user characteristics (Drachen et al., 2016). 

2.6.1 Installation measures 

In the literature, the installation metrics are almost always present as input features to the model. Some 

installation metrics are: device type, geographic location and whether or not the player was acquired by 

a marketing effort (Drachen et al., 2016). 

2.6.2 Gameplay measures 

The gameplay features used in the literature record players activities during playing sessions. Features 

such as total days, total sessions, total rounds, average session duration, average round duration, and 

total elapsed play time all contain information on how the game is being played (Drachen et al., 2016). 

These data, when analysed by the algorithms, reveal more information on what kind of player is playing 

the game. This information is highly useful for predicting future churners. 

2.6.3 Intersession measures 

Data on game activity is not the only data used for prediction purposes; data on non-activity can also be 

used as an input feature. In Hadiji et al. (2014), researchers used current absence time, which indicates 

the elapsed time since the last session of the user. Subsequently, Drachen et al. (2016) also used the 

current absence time and added average time between sessions to it as well. These two features were 

determined to be the strongest predictors of player churn. These features reveal how dedicated the gamer 

is to the game. 

2.6.4 Round-specific measures 

Much like the gameplay measures, the round-specific measures contain information on how the game 

is being played. This metric, however, contains information per round. This type of data is not captured 

by all mobile games, so this has to be taken into account when adding them into the model. The measures 



11 
 

contain metrics such as average moves, average stars, and maximum level (Drachen et al., 2016). As 

our aim is to develop a cross-game churn-prediction model with game-design-independent features, 

these round-specific measures will not be used for this thesis. 

2.7 Churn-prediction time windows 

As discussed in the introduction, churn is a metric that is calculated as a function of time. To be able to 

answer the third research question – What is the effect of different time windows on churn prediction 

across F2P games? – it is important to investigate the literature on the time windows used for data 

collection and the evaluation period. The time window used to gather data about the player is called the 

feature window. The time window used to evaluate the predicted churn is called the observation window. 

 

We can distinguish two types of churn-prediction models: single future period and time series. In single 

future period churn-prediction models, data is fed into the model for one or more time periods. When 

the churn period is reached, the customer is either observed as a churner or is not. For time series churn-

prediction models, the data is gathered in combination with observing whether the customer has churned. 

The difference is that churn is continuously observed rather than a single point in the future. For the 

prediction models, you still use data from predefined periods to train the prediction model (Blattberg et 

al., 2008). 

 

In the literature on F2P casual games, different time windows are used to measure player churn. 

Researchers, interested in predicting churn for high-value players found the highest prediction 

accuracies by using data gathered within 14 days before the churn event (Runge et al., 2014). In other 

literature, the researchers tested different feature windows and evaluation windows with the aim to 

predict churn on relatively short time periods. By comparing feature windows of one session, one day, 

1-3 days and 1-7 days, the researchers found that data capturing one day of game activity can predict 

player behaviour up to one week into the future with acceptable accuracy (Drachen et al., 2016). 

 

In Hadiji et al. (2014) the researchers distinguish two methods of churn data generation illustrated in 

Figure 2. In the classical approach one generates training examples by looking at all churned players 

and marking them as churners. Non-churners are selected from players who play more than one session 

and randomly pick a cut-off point in their recorded sessions. They are considered non-churners because 

the last session in the data that is selected is not the last session of the player. The second approach that 

the researchers tested better reflects real-world situations and therefore is more commonly used by game 

developers to predict future churners. For this approach, the data is generated by selecting sessions that 

fall in between a predefined range of time. Non-churners are labelled as such if they logged-in during 

the feature window and still played the game during the evaluation period. The churners are labelled as 

such if the players did not log-in during the evaluation period (Hadiji et al., 2014). 



12 
 

 

To conclude, there is no predefined method when it comes to deciding upon a time window to record 

churn behaviour. The choice depends on the aim of your research and the type of game. In the literature 

it is not uncommon to compare multiple time windows and reflect on the performance. This will be 

taken into account for this thesis. 

 

2.8 Balancing classes 

The literature on researching churn behaviour for F2P casual games takes notice of the imbalance of 

examples. All the published papers mention the over-representation of churners in the dataset. The over-

representation of immediate churn after the first playing session of the game can lead to highly 

imbalanced datasets. Predicting player churn with imbalanced class labels could lead to misclassifying 

a minority class (Daumé, 2012). In Hadiji et al. (2014), this issue is addressed by defining a sliding-

window to record churn behaviour. They use the feature current absence time and limit it to a particular 

number of days. The number is randomly chosen and represents the days before the test date. By 

implementing churn prediction this way, the model gets updated as new data come in. This is especially 

useful in a live system. For this thesis, it is something to investigate but because of the offline learning 

nature of this research, it is not necessary to implement. 

Other techniques can be used to handle class imbalance, for instance sub-sampling. By sub-sampling 

the data, you omit part of the majority class until your classes are balanced. This is not preferable because 

if data is omitted, you have a less accurate representation of examples in your dataset (Daumé, 2012). 

Another method is to assign higher weights to the minority class. Unlike sub-sampling, weighing keeps 

the variance in the dataset and thus is preferred when handling class imbalance within the dataset. 

 

  

Figure 2: On the left the classical approach to churn data generation, on the right the real-world method. 

The + examples are players who churned, while the examples are the non-churners (Hadiji et al., 2014). 



13 
 

2.9 Thesis contributions 

2.9.1 Academic contribution 

While a decent amount is known about predicting churn for individual F2P games, less is known about 

cross-game player churn. This thesis aims to target this knowledge gap by building prediction models 

that are applicable across games and only use input features that are game independent. To test the 

generalization performance of the prediction models, this thesis will use out-of-sample data as a test set. 

The prediction algorithms, time windows and features discussed in this section are the foundations upon 

which the experiments for this thesis are built. 

2.9.2 Practical contribution 

Predicting player churn in the game industry is every day’s business. Retaining a player is up to five 

times less expensive than acquiring a new player. Thus, predicting future churners is very interesting 

for game developers in order to be successful. The ability to predict churn across games enables game 

developers to make predictions on newly launched games that have not yet generated enough data 

themselves. In the next chapters, the dataset and the experiments are described, followed by the results 

and the discussion of those results. 

  



14 
 

3. Method 

This chapter describes the datasets, experiments and model evaluation of this thesis in detail. In section 

3.1, the raw datasets provided by Wooga are discussed. The data pre-processing steps are presented in 

section 3.2 and the creation of the final datasets is described. In the data visualization section, the 

descriptive statistics of the final datasets are explored. Subsequently, in section 3.4 the experiments are 

described in detail. The classification algorithms used for these experiments are discussed in section 3.5. 

The software packages and programming languages are discussed in section 3.6. Finally, we conclude 

with the evaluation criteria for the classification algorithms. 

 

3.1 Description of the datasets  

In this section, we discuss the datasets and the metrics provided by Wooga for this research project.  

 

 

 

 

 

 

 

3.1.1 Raw datasets 

The raw datasets provide by Wooga contained player data for about 2.6 million players. The datasets 

comprised data on three popular mobile casual games, namely, Jelly Splash, Diamond Dash and Pearl's 

Peril. The data of each game was represented in three datasets. The datasets contained data on 

installation, sessions and rounds per user. The numbers of players per dataset are displayed in Table 1. 

For all datasets, the data was recorded in a period of 274 observation days. 

 

3.1.2 Metrics 

The metrics of the raw datasets were divided over three datasets and belong to three categories of game 

telemetry data, namely installation measures, gameplay measures and round-specific measures (El-Nasr, 

2013). The installation datasets cover data on each installation of the game on a device. The sessions 

datasets cover data on each time the game was opened on a device. The rounds contained data on the 

rounds a player played including the game-specific metrics. Table 2 displays all the metrics that were 

present in the raw dataset. 

  

 IOS Android 

Pearl’s Peril 419,539  
Jelly Splash 634,085 968,326 
Diamond Dash 538,443  
Total number of players 1,592,067 968,326 

Table 1. The number of players per game in the raw datasets 



15 
 

Table 2. Metrics of the raw datasets for Jelly Splash, Diamond Dash and Pearl’s Peril 

Dataset Number of metrics Metrics 

Installation 

datasets 

6 Device id, observation day, timestamp, country, device type 

and acquired by marketing effort. 

Sessions 

datasets 

8 Device id, Facebook id, observation day, timestamp, 

country, device type, operating system and language. 

Diamond Dash 

rounds dataset 

22 Device id, Facebook id, observation day, timestamp, 

country, device type, operating system, version, online, coin 

balance, gold balance, lives, xp, accuracy, crashed gems, 

final score, level number, time boost, bomb boost, colour 

boost, fireball and fire mode. 

Jelly Splash 

rounds dataset 

30 Device id, Facebook id, observation day, timestamp, 

country, device type, operating system, version, online, 

playing friends, coins, lives, stars, max level number, 

average snake length, max snake length, basic score, final 

score, game duration, level number, level outcome, mastery 

level, max merged supergems, moves count, objective 

details, objective done, objective name, difficulty level, 

splashed jellies. 

Pearl’s Peril 23 Device id, Facebook id, observation day, timestamp, 

country, device type, operating system, version, age in 

game, apptime, session count, badge count, energy, coins 

earned, score earned, scene, scene mastery and time to finish 

scene.  

 

In Table 2, one can observe that each game shares the same metrics on installation and sessions data but 

the round metrics are game dependent. For this thesis, we aim to develop a cross-game churn-prediction 

model that can be generalized easily and therefore only a small selection of metrics will be used to 

compute the final features. This process of feature creation will be discussed in subsection 3.2.3. 

 

3.1.3 Sample selection 

In order to keep the data processing and classification tasks time efficient, it is recommended to reduce 

the number of players in the datasets. With sample reduction, you select users to form a new dataset 

containing a subsample of the original dataset. In Hadiji et al. (2014), where five F2P games were 

analysed to develop a game-design-independent churn-prediction model, the sample size per game was 

set to 50,000 randomly selected players. For this current research, we sample 100,000 randomly selected 

device ID numbers per game from the installation datasets that have more than one registered play 



16 
 

session. This random selection was made with the knowledge that, after data cleaning and processing, 

the sample size will still contain a decent number of players to perform the research. By using a 

randomized technique of sample selection, we eliminate bias by giving all users an equal chance to be 

chosen for the sub-sample (Rashka, 2015). 

3.2 Pre-processing 

The pre-processing of the dataset entails cleaning the dataset, deriving features of the metrics and 

selecting feature windows. These processes will be described in the following subsections. 

3.2.1 Data cleaning 

Within the raw dataset, there were examples found of players who did not play a session after the initial 

installation of the game. To control for players who only installed the game but never played a session, 

players were only considered if they had played more than one session within the game. This step was 

necessary to make sure that the created features would not result in missing values. 

As our aim is to train models on game-design-independent features, specific metrics were selected that 

could be used to calculate the features. Because the round metrics differ for each game, we selected the 

game-design-independent metrics for all games. For some games, the metric names were different but 

they were measuring the same activity. In Table 3 the metrics selected per dataset can be observed. 

Table 3. Selected game-design-independent metrics per game dataset 

Dataset Number of 

Features 

Metrics 

Installation datasets 6 Device ID, observation day, timestamp, country, device 

type and acquired by marketing effort. 

Sessions datasets 3 Device ID, observation day, timestamp. 

Rounds for Diamond Dash  5 Device id, observation day, timestamp, coin balance and 

gold balance. 

Rounds for Jelly Splash   5 Device ID, observation day, timestamp, coins and game 

duration. 

Rounds for Pearl’s Peril 6 Device ID, observation day, timestamp, apptime, coins 

earned, time to finish scene.  

 

The selected metrics in Table 3 represent activities that are present in any casual F2P game. The metrics 

cover basic in-game activities that are not related to the game-design, thus ensuring the generalizability 

of the classification task. 

Wooga indicated that duplicate rows in the data could be present. Because of a known issue in the 

database, duplicate rows could be present in the datasets for all games. These rows are identical on all 



17 
 

values of the metrics and therefore could be easily spotted within the datasets. These rows were omitted 

from the sample datasets. 

As can be observed in Table 3, the timestamp metrics in the datasets are sub-divided into timestamp and 

observation day. To be able to calculate new features and time windows from these timestamps, the data 

was converted to meaningful date time objects. From these date time objects, we could calculate useful 

metrics. For each row in the session and rounds data, a metric was added which indicated the date and 

time the game was installed. From this metric we could calculate the time in game metric. This metric 

indicates the time that has elapsed since the player played the game up till the current time of the 

session/round. This time in game metric is especially useful when we selecting data within a certain 

time range, for example the feature window or observation window. 

3.2.2 Time windows 

As described in definition 4 in the introduction, churn is calculated as a function of time. Choosing the 

time window that accurately measures churn is very important for research on churn prediction. 

Feature window: 

A feature window in churn prediction determines the amount of data captured to calculate the features. 

In the literature, a 7-day feature window is used because it captures a full week of playing behaviour 

(Drachen et al., 2016). Thus, a 7-day feature window captures data which is not exposed to day-by-day 

changes. As discussed in section 2.7, most churn happens within a short period after installation of the 

game. Drachen et al. (2016) trained models on a dataset capturing one full day of playing behaviour to 

compare prediction performance. For this thesis, we develop datasets using two different feature 

windows. We have chosen a dataset which captures the activity of a full week of playing behaviour (t-

7) because this controls for day-to-day differences in playing behaviour. In addition, we have chosen 

datasets which capture a full day of playing behaviour (t-1). This decision was made to test whether the 

first day of game-activity can predict churning behaviour during the second week. The starting point for 

both feature windows is the moment when the game is installed on the player's device. 

Observation window 

An observation window in churn prediction observes if a player remains playing (no churn) or stops 

playing (churns). In section 2.7, different observation windows were discussed across the literature. For 

our current study, one approach was used to measure what observation window accurately captures 

churning behaviour. The approach by (Runge et al., 2014) generates examples of inactivity days between 

sessions. These examples are combined and plotted in a histogram with a cumulative distribution line 

indicating the percentage of players who are inactive. This method revealed that about 2% of the players 

exceed seven days of inactivity before playing a new session. A churn observation window of seven 

days captures 98% percent of actual churning behaviour. The plotted histogram with relative frequency 



18 
 

of days of inactivity is presented in Figure 3. The cumulative percentages per game are displayed in 

Table 4. 

 

Table 4. Percentage of intersession times 

within 7-day time window 

 

 

 

 

 

 

3.2.3 Features 

After the sample selection, data cleaning and metric selection/transformation, we could start building 

the final datasets. These selected game metrics, as described in 3.1.2, can now be used to create features. 

For datamining purposes, the final datasets used for prediction contain a row for each player. We used 

the installation dataset for this. The sample of one hundred thousand players per game was reduced by 

only looking at unique device IDs. Apparently, some users reinstalled the game after playing it in the 

past and this resulted in duplicate device IDs. 

With the installation dataset for each game as the foundation the final dataset, we kept the acquired 

metric as feature. This because it might hold information that can be used by the prediction algorithm 

for classifying churners. 

The first computed features for the final datasets were Number of Sessions and Number of Rounds. 

They were easily computed by grouping the data by the device IDs of the players and counting the 

number of entries per device ID in the sessions dataset and rounds dataset. After calculating the feature 

for all games, a new feature was calculated by dividing the Number of Rounds by the Number of 

Sessions. This new Average Rounds per Session feature gives an indication of the player’s 

commitment to the game. 

As discussed in section 2.6, the Intersession Time is mentioned as a very predictive feature for player 

churn in the literature. The feature measures the average time between sessions per player. If a player 

has a high Intersession Time value, the player is not committed to the game and will be more likely to 

churn. For the final dataset, we first transposed the timestamps of the sessions datasets to meaningful 

date time objects. Subsequently, we calculated the difference between the time stamps and average these 

results per player. This time delta object was transposed into float values by extracting the hours between 

Game  Cumulative percent 

Diamond Dash 98.3% 
Jelly Splash 97.9% 

Pearl’s Peril 99.2% 

Figure 3. Histogram of Days of Inactivity for Diamond Dash 



19 
 

sessions. For example, a time delta value of 0 days 03:59:39.268 was transposed into 3.994241. The 

final Intersession Time feature measured the time between sessions on average, displayed in hours. 

This transposing of time objects into floats was done to be able to easily use the feature in a prediction 

algorithm. 

As observed in Table 3, the rounds datasets differed per game. Pearl’s Peril recorded the time to finish 

scene, Jelly Splash the game duration and Diamond Dash did not record such data. To calculate the 

average round time per player, thus required a different approach per game. The fact that Diamond Dash 

does not record a round time is not surprising, as the aim of the game is to get the highest score in each 

round of 60 seconds. Each registered round took 60 seconds to complete which could be easily computed 

in the Round Time metric. This metric was used to compute the Total Round Time feature. The Total 

Round Time feature summed all the rounds per player within the feature window to reveal each player’s 

time investment into the game. 

The approach for Jelly Splash and Pearl’s Peril slightly differed. For Jelly Splash the game duration 

metric was gathered for all rounds. The average per player was computed into the Round Time metric 

and the sum was computed into the Total Round Time feature. For Pearl’s Peril the same algorithm 

was used but instead of using the game duration metric, the time to finish scene metric was used. 

For all game datasets, the Total Round Time feature was used to calculate the Average Playtime per 

Session. This feature was easily computed by dividing the Total Round Time for each player by the 

Number of Sessions feature. This feature indicates on average how much time a player spends on each 

playing session. 

The last computed feature of the final dataset is Current Absence Time. This feature is also mentioned 

in the literature as being highly predictive of player churn. This feature was computed by subtracting 

the length of the feature window by the date time object in the sessions dataset. This resulted in a time 

delta object which indicated the time period between the current session and the end of the feature 

window. Subsequently, the data was sorted and the last session of each player was extracted. The 

player’s last session within the feature window was the start pointing of the Current Absence Time 

feature. Finally, this date time object was divided into hours. The same technique was used as with the 

Intersession Time to output a meaningful float type feature that is easily interpretable by a prediction 

algorithm. 

3.2.4 Player churn 

The aim of this thesis is to predict churn across games and thereby identify players who will leave the 

game in the future. Because of the structure of the datasets provided by Wooga, it was not possible to 

link session and rounds data to individual players. Because of this situation, the approach of this thesis 

is to measure all the activities by unique device IDs. Instead of predicting player churn, we predict the 

churn of devices. For most players this new approach does not differ from predicting churn based on 



20 
 

unique players. However, some devices will be used by more than one player and thus player behaviour 

on the individual level is not measured. 

As defined in the introduction section, player churn is often calculated as a binary classification problem. 

For this thesis, the same approach was taken. A player was considered a churner if there was no session 

recorded during the observation window. As discussed in subsection 3.2.2, by plotting the average 

absence time, we capture 98% of real churn behaviour with an observation window of seven days. 

For each player the feature window started with the installation timestamp of the game. The feature 

window ended seven full days after the initial installation timestamp. After the 7-day feature window, 

the observation window started until the 14th day after installation of the game. This can be observed in 

Figure 4. 

 

Figure 4. An example of player activity within the feature and observation window. The positive (+) 

examples are churned players, the negative example (-) is a non-churning player. 

This approach of determining churning behaviour resulted in the assignment of class labels to the 

instances in the dataset. 

3.2.5 Missing values 

The data cleaning and feature creating resulted in some missing values in the data. The intersession time 

feature generated the most missing data points. This can be explained by players who did not have a 

second session within the feature window. Without this second session, there is no interval with which 

to compute the time between sessions. For these examples, missing values appeared in the intersession 

time feature. For the datasets with feature window t-7, this meant that 3.9% of instances contained 

missing values and were omitted from the dataset. For the datasets t-1, on average 8.0% of the data 

contained missing values and were omitted from the further calculations. 

 
 



21 
 

3.3 Data visualization: 

With the creation of the features, the creation of the class labels and the omitting of the missing values, 

the final datasets were created. To get insight into the data, this section explores the datasets on which 

the algorithms will be trained for predicting player churn. 

3.3.1 Descriptive statistics 

In Tables 5 and 6 the dataset descriptive statistics are shown for the Diamond Dash datasets. For each 

feature in the dataset, the mean, standard deviation, minimum and maximum values are displayed. The 

acquired feature is a binary feature. Value 1 means that the player was acquired using a marketing effort. 

Table 5. Diamond Dash dataset descriptive statistics for t-7 

Features Mean Std. Min Max 

Acquired 0.013 0.114 0 1 

Number of Sessions 17.710 66.756 2 6691 

Number of Rounds 34.304 149.083 1 18217 

Average Rounds per Sessions 1.790 1.524 0.07 51.25 

Intersession Time (hours) 6.375 10.897 0 167.791 

Total Round Time (seconds) 2058.225 8944.982 60 109300 

Current Absence Time (hours) 109.545 63.985 0 168 

Average Playtime per Session (seconds) 107.255 91.449 0.444 3075 

 

On average, a Diamond Dash player starts about 18 sessions in the first week after installation. The 

number of rounds per player is higher because one session can contain multiple rounds. The average 

rounds per session ratio is therefore 1.790. On average, players of Diamond Dash wait 6 hours before 

starting a new session. The total playtime is about 34 minutes on average within a 7-day feature window. 

The high standard deviation of current absence time can be explained by the fact that some players churn 

almost immediately after the first sessions and some players stay engaged with the game almost the 

entire week. The max value of current absence is 168, which is equal to 7 full days, which indicates the 

players who immediately churn. 

Table 6. Diamond Dash dataset descriptive statistics for t-1 

Features Mean Std. Min Max 

Acquired 
0.013 0.115 0 1 

Number of Sessions 
8.412 22.686 2 1808 

Number of Rounds 
14.738 46.198 1 3094 



22 
 

Average Rounds per Sessions 
1.810 1.667 0.09 51.250 

Intersession Time (hours) 
1.180 2.103 0.044 23.999 

Total Round Time (seconds) 
884.270 2771.897 60 18564 

Current Absence Time (hours) 
17.293 8.872 0 24 

Average Playtime per Session (seconds) 
108.585 100.036 0.444 3075 

 

The descriptive statistics in Table 6 indicate the values for Diamond Dash, which we recorded during 

the first 24 hours after installing the game (t-1). In these 24 hours, players play on average of 8 sessions 

with 14 rounds. The average playtime per session within the first 24 hours does not differ much with the 

average playtime per session within a week. The same count for the descriptive statistics of Jelly Splash 

which can be found in Appendix A. For Pearl’s Peril, the average playtime per session increases with 

time. 

3.1.2 Churn visualization 

In Table 7 the distribution of player churn for the training datasets for t-7 can be observed. The numbers 

of instances per training set are comparable. As mentioned in section 3.2, the initial sample size of 

100,000 instances per game was reduced after computing the features. 

Table 7. Training sets distribution of churn and non-churn for t-7 

 

Diamond Dash 

training set 

Jelly Splash 

training set 

Pearl’s Peril 

training set 

Churners 0.652 0.559 0.484 

Non-churners 0.348 0.441 0.516 

Number of instances 87,069 90,084 87,979 

 

When observing the distributions for class imbalance in the datasets, one can notice that the distribution 

of churners and non-churners is quite balanced. Especially compared to the distributions mentioned in 

the literature. 

The distribution of the training sets for t-1 can be observed in Table 8. The number of instances per 

dataset is less than those for t-7. This can be explained by the fact that the feature window of t-1 yielded 

more missing values that were omitted from the final datasets. 

Table 8. Training set distribution of churn and non-churn for t-1 

 

Diamond Dash 

training set 

Jelly Splash 

training set 

Pearl’s Peril 

training set 

Churners 0.658 0.490 0.474 

Non-churners 0.342 0.510 0.526 

Number of instances 83.666 88.061 71.310 



23 
 

In Tables 9 and Table 10, the test set distributions can be observed. These datasets will be used for 

evaluating the model on unseen data. The data is comprised of data from the other two games and 

therefore is considered out-of-sample data. The distribution of churners and non-churners is decently 

balanced, although there is a slightly imbalanced test dataset for Pearl’s Peril. 

Table 9. Test set distribution of churn and non-churn for t-7 

 

Diamond Dash 

test set 

Jelly Splash 

test set 

Pearl’s Peril 

test set 

Churners 0.522 0.568 0.605 

Non-churners 0.478 0.432 0.395 

Number of instances 180.737 175.048 179.827 

 

For the Diamond Dash test set with a one-day feature window, the test set consists of more non-churners 

than churners. This could yield worse prediction performance because the algorithm will be trained on 

a dataset with more examples of churners, as can be observed in Table 7. 

Table 10. Test set distribution of churn and non-churn for t-1 

 

Diamond Dash 

training set 

Jelly Splash 

training set 

Pearl’s Peril 

training set 

Churners 0.483 0.574 0.572 

Non-churners 0.517 0.426 0.428 

Number of instances 159.371 154.976 171.727 

 

The difference in playing behaviour for churning and non-churning players can be observed in the 

following figures. Figure 5 plots the total number of sessions by churning and non-churning player 

within the first week of playing the game. One can notice that the number of sessions decreases after the 

first day of the installation of the game 

 

 



24 
 

 
Figure 5: Comparing the total number of sessions played per day for Diamond Dash for churners (True) 

and non-churners (False) t-7. 

This difference between the numbers of sessions can be observed in Figure 6, where the average number 

of sessions is plotted per group. 

 

Figure 6. Average number of sessions for churners (True) and non-churners (False) t-7. 

 

Both plots indicate that players who churn have different in-game behaviour than players who remain 

in the game. The experiments, designed in the next section, aim to separate both groups by analysing 

these behaviour differences in the datasets and thereby predict player churn. 

  



25 
 

3.4 Experimental procedure 

This section will further elaborate on the design of the experiments conducted for this thesis. With the 

omitting of missing values and the creation of the class labels, four final datasets were created. For Jelly 

Splash two datasets were available, the dataset with data on Android devices and the dataset with data 

on IOS devices. In accordance with the data owners, the decision was made to leave the Android dataset 

out of the experiments. By excluding the Android dataset, the final datasets hold data solely on IOS 

devices for the games Jelly Splash, Diamond Dash and Pearl’s Peril. 

The experiments described in this section aim to answer the proposed research questions. 

RQ1:  To what extent can we predict player churn across multiple F2P games with game-

  independent input features? 

RQ2:  What are the most important features for predicting player churn across F2P games? 

RQ3:  What is the effect of different time windows on churn prediction across F2P games? 

 

3.4.1 Cross-game Churn prediction: 

The aim of this study is to develop a cross-game churn-prediction model with game-design-independent 

features. For prediction purposes, this means that the trained model needs to generalize to out-of-sample 

data with decent prediction performance. This will be tested in the proposed experiments. 

The datasets of all games will be used individually to train prediction algorithms. Each dataset will be 

split into 10 different subsets for cross-validation. The model will be trained on 9 subsets and validated 

on 1 subset. This results in 10 validation scores, which are averaged into one cross-validated score. With 

the use of grid search, different sets of parameters are tested to develop a model that scores the highest 

on classification accuracy. 

The model with the highest accuracy will be used to predict out-of-sample data of the test set. In cross-

game churn prediction, one can use out-of-sample data to test the performance of the prediction model. 

This means that a trained model on data of Jelly Splash will be tested on the data of Diamond Dash and 

Pearl’s Peril. This testing data does not originate from the trainings dataset, but can be used to test the 

model because of the game-design-independent features that were used across all datasets. 

 

3.5. Classification algorithms 

In order to predict whether a player will churn, the prediction algorithm needs to assign each new unseen 

instance to a class label True or False. “True” means that the player has a higher probability to churn 

during the observation window and “False” means the opposite. Algorithms used in the literature to 

classify churners are discussed in section 2.5. For this thesis, the following algorithms will be tested: 



26 
 

decision tree, random forest, k-nearest neighbours and logistic regression. Grid search is used for 

parameter optimization which results in the highest 10-fold cross-validated accuracy score. The best-

performing model will be used for the out-of-sample test set. The area under the ROC curve (AUC-

ROC) and the area under the precision and recall curve (AUC-PR) are also observed and reported. 

3.5.1 Decision tree 

The decision tree algorithm is a classical natural model of learning (Daumé, 2012). Similar to other 

algorithms, it uses past data to predict unseen data. Decision tree is suited for binary classification 

problems. It builds a model on binary questions, splitting the answers into two different outcomes, e.g. 

yes or no, true or false. When training the model, these questions form one rule-based tree which forms 

the trained model. To predict the class label of unseen data, the algorithm traverses the tree, using the 

questions and the features of the instances. Each instance ends up in a leaf, determining its class label. 

The order in which the questions are asked is the most important aspect of the decision tree. A question 

that separates the most instances into classes is asked first. These questions (features) are the features 

with the highest prediction power in the dataset. 

The max depth parameter of a decision tree allows one to simplify the decision tree. When the depth 

parameter is set to a certain number, the model is limited to the number of features it can query. The 

shallow decision tree created makes class label guesses when the max depth parameter is exhausted 

(Daumé, 2012). This simplified tree tends to improve the generalizability of the model, and therefore 

will be useful for the experiments of this thesis. 

3.5.2 Random forest 

The random forest algorithm uses a set number of independently created decision trees with a certain 

depth (Daumé, 2012). The features used in the tree are chosen at random and can be used multiple times 

in the same branch. As with the decision tree, the leaves of individual trees are filled with training data. 

The random forest algorithm works best when individual features are similar regarding their importance. 

This can be explained by the fact that the trees built are only using a small set of features. 

As with the decision tree, the random forest algorithm can be simplified with the use of the max depth 

parameter (Daumé, 2012). For this thesis, grid search will be implemented to train the parameters to 

optimal values. The aim is to build a model that will be generalizable to out-of-sample data. 

3.5.3 K-nearest neighbours 

The k-nearest neighbours algorithm converts feature values to feature vectors. Each feature represents 

its own dimension in the feature space. This results in a multidimensional array of feature vectors on 

which one can apply geometric concepts for machine-learning purposes (Daumé, 2012). A 

straightforward way is to compute the distances between each vector in the multidimensional array. 

When the trained model gets tested on the validation set, the new unseen data is plotted in the same 

dimensional space without a known-class label attached to it. This vector gets the class label from its 



27 
 

nearest neighbour. The k parameter tells the model what number of nearest neighbours to consider when 

determining the class label for the unseen data point. The class label, provided by the majority of the 

neighbours, gets assigned to the data point. These distances between data points can be computed with 

the use of different distance functions. For the k-nearest neighbours algorithm, Euclidean distance is 

used most often (Daumé, 2012). 

The determination of the k-value is important because it allows to overfit (low k-value) and underfit 

(high k-value) the data. For this thesis, we will test the model on out-of-sample data. This means that 

the model needs to be generalizable to out-of-sample data. For this reason, a high value of k is preferred. 

With a high k-value, the model will be less sensitive for overfitting the training examples. 

 

3.5.4 Logistic regression 

As discussed in section 5 of the related work chapter, logistic regression is used in most churn-prediction 

literature. This simple, but powerful, algorithm can be applied to binary and linear classification 

problems (Rashka, 2015). The model uses the odds ratio to determine the probability of a certain event. 

For predicting the binary class label ‘churn’, the odds ratio determines for example the probability that 

a player will churn (y = True). The logit function of a logistic regression is the logarithm of the odds 

ratio. This logit function is displayed in equation 1. 

Equation 1. The logit function of a logistic regression (Rashka, 2015). 

 

After this logit transformation, the logit values are fitted using linear regression analysis. These predicted 

values are converted back to odds using the inverse natural logarithm. The class label with the highest 

odds ratio is selected as class label (Rashka, 2015). 

The λ parameter of the logistic regression is called the regularization parameter and it controls how well 

the model fits the training data (Rashka, 2015). For this thesis, it is important to keep this in mind. 

Overfitting the training data means worse performance on the out-of-sample test set. 

 

  



28 
 

3.6 Implementation of experiments 

This section describes the packages used for data cleaning, sampling, visualization, and classification. 

3.6.1 Programming language 

All steps in the data analysis were carried out using programming language Python (Python Software 

Foundation, 2017). The language was developed by Guido van Rossum in 1991. The current version 

used for this thesis is 3.6.1, which was introduced on the 21st of March 2017. The programming language 

is free to use, as are the Python interpreters that are available for many operating systems. For this thesis, 

all steps were carried out in Jupyter, an open source, free to use environment for multiple programming 

languages for data science. 

3.6.2 Python libraries 

Programming language python allows for several libraries to be used in association with the python 

language. All the libraries used in this thesis are commonly used by data scientists for data mining 

purposes. Table 11 presents the used libraries for all steps in the data analysis. 

Table 11. Used python libraries for the experiments with the corresponding version numbers 

Python library Used for Version 

Pandas Data cleaning, manipulation, computing new features, 

random sampling 

0.19.2 

NumPy Working with arrays, data manipulation  1.12.1 

Datetime Converting data into meaningful date time objects 2.7 

Scikit-learn 

 

Machine-learning algorithms, training and testing of 

the models, Grid Search cross-validation, classification 

report  

0.18.1 

Matplotlib Plotting data to figures 2.0.2 

 

 



29 
 

3.7 Evaluation criteria 

The evaluation methods used in the literature on churn prediction for F2P games differ per paper. In 

Drachen et al. (2016), models are evaluated on classification accuracy, precision, recall and F1 scores, 

whereas in Runge et al. (2014), models are evaluated on area under the ROC curve (AUC). 

Where classification accuracy is a straightforward measure of what proportion of examples are 

accurately predicted, the AUC-ROC is used to calculate the area under the receiver operating 

characteristic curve (ROC) (Daumé, 2012). The AUC-ROC metric can be used to measure model 

performance. The AUC scores tend to be higher values compared to classification accuracy scores. This 

can be explained by the fact that an AUC of 0.5 indicates complete random chance and AUC of 1.0 the 

best possible performance. An alternative to the AUC-ROC is the AUC-PR (Davis & Goadrich, 2006). 

The area under the precession and recall curve can be used complimentary to the ROC curve for datasets 

with imbalanced classes. Davis and Goadrich (2006) indicate that a curve only dominates in ROC space 

if it dominates in PR space. For this thesis, we therefore report both. 

For this thesis we will follow earlier papers in this field and report and evaluate the best-performing 

models both on cross-validated accuracy and F1 values as of AUC-ROC performance. With this 

approach, we will be able to evaluate not only the trained models, but also compare the results with the 

results from earlier research in this field. The area under the precision and recall curve will also be 

evaluated for each model (also known as average precision). This will give a broad sense of the trade-

off for each model as precision will be plotted as a function of recall (Rashka, 2015). 

 

 

  



30 
 

4. Results 

 

To answer the research questions proposed in the introduction of this thesis, this chapter provides the 

results of the experiments explained in Chapter 3. Each section of this results chapter presents the results 

for one of the research questions. Section 4.1 presents the results of the different prediction models used 

for cross-game prediction of player churn. Section 4.2 presents the results of feature importance analysis. 

Finally, we present the results for the time windows used for predicting player churn. 

4.1 RQ1: Predicting cross-game player churn 

As described in Chapter 3, the final datasets were created with the removal of the missing values, 

duplicate rows and duplicate device IDs. Each game was represented in two datasets, one with data on 

the first 24 hours of playing data (t-1) and one dataset containing the first seven days of playing the 

game (t-7). Each dataset was trained and optimized separately, yielding different optimal parameters. 

PCA was not performed because of the low number of features in the dataset. Because of the lack of 

class-imbalanced datasets, the decision was made not to use class imbalance techniques. The majority 

baseline scores for each dataset are displayed in Table 12. The majority baseline indicates the accuracy 

score a classifier produces when it assigns the majority class to each instance (Daumé, 2012). 

Table 12. Majority baseline scores for training and testing set per game and feature window 

Feature window Dataset MB training set MB test set 

t-1 Diamond Dash 0.658 0.517 

 Jelly Splash 0.510 0.574 

 Pearl’s Peril 0.526 0.572 

t-7 Diamond Dash 0.652 0.522 

 Jelly Splash 0.559 0.568 

 Pearl’s Peril 0.516 0.605 

 

4.1.1 K-nearest neighbour 

As explained in subsection 3.5.3, K-NN is trained and tested on all datasets. The k parameter, which can 

be adjusted to adjust the level of overfitting and underfitting of the training dataset, was optimized using 

grid search. The k-parameter that yielded the highest 10-fold cross-validated accuracy score was chosen. 

An extra check was performed to check for other optimization points with a higher k-value. This was 

done to make the model more generalizable to unseen data. 

The results for the KNN classifier on the training set can be observed in Table 13. The Pearl’s Peril 

dataset yields the best performance on accuracy and area under the ROC and precision and recall curve 

for both feature windows. 

  



31 
 

Table 13. 10-fold cross-validated accuracy and AUC scores for KNN classifier on training data 

Feature window Dataset Accuracy AUC-ROC / AUC-PR 

t-1 Diamond Dash 0.703 0.708 / 0.543 

 Jelly Splash 0.637 0.682 / 0.676 

 Pearl’s Peril 0.705 0.765 / 0.765 

t-7 Diamond Dash 0.799 0.844 / 0.765 

 Jelly Splash 0.761 0.821 / 0.791 

 Pearl’s Peril 0.824 0.893 / 0.907 

 

Subsequently, the trained models were tested on the out-of-sample dataset containing data of the other 

two games. The results are reported in terms of accuracy/F1-Scores and AUC and are presented in Table 

14. 

Table 14. Accuracy and AUC scores for KNN classifier on testing dataset 

Feature window Dataset Accuracy / F1-score AUC-ROC / AUC-PR 

t-1 Diamond Dash 0.620 / 0.574 0.678 / 0.669 

 Jelly Splash 0.676 / 0.594 0.720 / 0.638 

 Pearl’s Peril 0.658 / 0.616 0.703 / 0.620 

t-7 Diamond Dash 0.783 / 0.767 0.848 / 0.836 

 Jelly Splash 0.801 / 0.741 0.865 / 0.842 

 Pearl’s Peril 0.773 / 0.713 0.829 / 0.766 

 

The KNN classifier performs quite well on the data capturing the first seven days of playing behaviour. 

The performance of datasets containing one day of playing behaviour is not as good but it does 

outperform the results of the majority baseline. It can be observed that the performance on the testing 

set for Jelly Splash for both time windows exceeds the performance on the training set. 

4.1.2 Decision tree 

As described in subsection 3.5.1, the decision tree classifier is useful for data exploration and class 

prediction purposes. As parameters for grid search, max features and max depth were analysed to find 

the highest-scoring parameter combination in terms of accuracy. The produced decision tree rules 

yielded important information about the feature importance and decision rules of the model. These 

results will be analysed in section 4.2. 

The performance of the decision tree classifier on the training data can be observed in Table 15. 



32 
 

Table 15. 10-fold cross-validated accuracy and AUC scores for decision tree on training data 

Feature window Dataset Accuracy AUC-ROC / AUC-PR 

t-1 Diamond Dash 0.715 0.723 / 0.588 

 Jelly Splash 0.648 0.696 / 0.694 

 Pearl’s Peril 0.713 0.777 / 0.753 

t-7 Diamond Dash 0.805 0.852 / 0.759 

 Jelly Splash 0.770 0.837 / 0.783 

 Pearl’s Peril 0.831 0.903 / 0.834 

 

The data of Pearl’s Peril again yields the best accuracies and AUC-ROC scores. The difference with 

other classifiers is the biggest for t-7. The AUC-ROC score is with 0.903 optimal which means the 

classifier was able to accurately separate the classes. 

Table 16. Accuracy / F1-scores and AUC scores for decision tree on testing dataset 

Feature window Dataset Accuracy / F1-score AUC-ROC / AUC-PR 

t-1 Diamond Dash 0.660 / 0.642 0.699 / 0.692 

 Jelly Splash 0.697 / 0.633 0.748 / 0.670 

 Pearl’s Peril 0.661/ 0.574 0.695 / 0.577 

t-7 Diamond Dash 0.798 / 0.777 0.867 / 0.769 

 Jelly Splash 0.810 / 0.759 0.874 / 0.825 

 Pearl’s Peril 0.780 / 0.690 0.842 / 0.805 

 

Table 16 contains the performance of the test set. Similar to the results of the KNN classifier, the 

decision tree yields better testing performance of Jelly Splash compared to the training performance.  

Feature windows t-7 yields decent prediction performance and t-1 does not perform as well. 

4.1.3 Random forest 

In subsection 3.5.2 the random forest classifier was discussed. Similar to the decision tree, random forest 

takes parameters max depth and max features to optimize the trained model. The depth of the individual 

trees determines the number of questions to ask before the decision for the class label is made. Simple 

trees with low depth values tend to generalize better to unseen data. 

Table 17 displays the 10-fold cross-validated accuracy and AUC scores. The scores are decent for both 

time windows. The training performance for Jelly Splash yields worse accuracies and AUC-ROC scores. 

 



33 
 

Table 17. 10-fold cross-validated accuracy and AUC scores for random forest on training data 

Feature window Dataset Accuracy AUC-ROC / AUC-PR 

t-1 Diamond Dash 0.717 0.727 / 0.577 

 Jelly Splash 0.651 0.699 / 0.700 

 Pearl’s Peril 0.716 0.783 / 0.784 

t-7 Diamond Dash 0.805 0.855 / 0.794 

 Jelly Splash 0.772 0.839 / 0.825 

 Pearl’s Peril 0.833 0.906 / 0.924 

 

The testing scores in Table 18 are overall the best seen so far. It seems random forest yields the best 

classification performance. With Jelly Splash, t-7 was the best performer in terms of accuracy and AUC-

ROC. These results, however, to not differ much from the decision tree in 4.1.3. 

Table 18. Accuracy / F1-scores and AUC scores for random forest on testing dataset 

Feature window Dataset Accuracy / F1-score AUC-ROC / AUC-PR 

t-1 Diamond Dash 0.644 / 0.597 0.702 / 0.706 

 Jelly Splash 0.701 / 0.644 0.753 / 0.686 

 Pearl’s Peril 0.676 / 0.597 0.714 / 0.645 

t-7 Diamond Dash 0.799 / 0.781 0.870 / 0.876 

 Jelly Splash 0.816 / 0.764 0.878 / 0.872 

 Pearl’s Peril 0.808 / 0.761 0.845 / 0.807 

 

4.1.4 Logistic Regression 

 

Logistic regression, as discussed in subsection 3.5.4, is the most frequently used model for classifying 

churn. Logistic regression can be optimized by changing the parameter value λ. Using different values 

of this regularization parameter, grid search was implemented to find the best scores in terms of 10-fold 

cross-validated accuracy. 

The training set scores can be observed in Table 19. As seen with the other classifiers, the results of t-7 

are decent; the model can separate the classes with acceptable scores. For t-1 the scores are worse but 

still outperform the majority baseline. 

  



34 
 

Table 19. 10-fold cross-validated accuracy and AUC scores for Logistic Regression on training data 

Feature window Dataset Accuracy AUC-ROC / AUC-PR 

t-1 Diamond Dash 0.711 0.711 / 0.566 

 Jelly Splash 0.641 0.693 / 0.691 

 Pearl’s Peril 0.712 0.777 / 0.777 

t-7 Diamond Dash 0.804 0.849 / 0.788 

 Jelly Splash 0.766 0.831 / 0.806 

 Pearl’s Peril 0.825 0.897 / 0.909 

 

The test set scores of logistic regression, presented in Table 20, are consistent over the datasets. 

However, as with the training performance, the results of the test set are not improved compared to the 

results of random forest. 

Table 20. Accuracy / F1-scores and AUC scores for logistic regression on testing dataset 

Feature window Dataset Accuracy / F1-score AUC-ROC / AUC-PR 

t-1 Diamond Dash 0.652 / 0.618 0.712 / 0.713 

 Jelly Splash 0.705 / 0.645 0.754 / 0.663 

 Pearl’s Peril 0.672 / 0.578 0.710 / 0.634 

t-7 Diamond Dash 0.798 / 0.784 0.865 / 0.871 

 Jelly Splash 0.808 / 0.761 0.874 / 0.847 

 Pearl’s Peril 0.778 / 0.696 0.825 / 0.774 

 

 

  



35 
 

4.1.5 Model comparison 

The results from k-nearest neighbours, decision tree, random forest and logistic regression are combined 

in Table 21. This table allows us to compare the results per model in terms of accuracy and F1-scores. 

Table 21. Cross-validated accuracy / F1-scores of different algorithms on the test set t-7 

Classifier Diamond Dash Jelly Splash Pearl’s Peril 

KNN 0.783 / 0.767 

0.798 / 0.777 

0.799 / 0.781 

0.798 / 0.784 

0.801 / 0.741 0.773 / 0.713 

Decision tree 0.810 / 0.759 0.780 / 0.690 

Random forest 0.816 / 0.764 0.787 / 0.706 

Logistic regression 0.808 / 0.761 0.778 / 0.696 

 

Table 21 presents random forest as the best overall performing model for classifying player churn on 

out-of-sample data. The performance of the algorithms is consistent. Surprisingly, the difference 

between the best-performing classifier (random forest) and the worst-performing classifier (KNN) is not 

substantial. 

Also in terms of area under the curve, as Table 22 illustrates, random forest outperforms other classifiers. 

The AUC-PR scores also indicate that we can safely accept the results of the AUC. As discussed in 

section 3.7, Davis and Goadrich (2006) indicate that we can only appoint value to high AUC-ROC 

scores if the AUC-PR scores are high as well. 

Table 22. AUC-ROC / AUC-PR performance of different algorithms on the test set t-7 

Classifier Diamond Dash Jelly Splash Pearl’s Peril 

KNN 0.848 / 0.836 0.865 / 0.842 0.829 / 0.766 

Decision tree 0.867 / 0.769 0.874 / 0.825 0.842 / 0.805 

Random forest 0.870 / 0.876 0.878 / 0.872 0.845 / 0.807 

Logistic regression 0.865 / 0.871 0.874 / 0.847 0.825 / 0.774 

 

These results indicate that random forest can separate the class labels of the unknown instances the 

best. 

 

 

 

 

 

 

 

 



36 
 

 

In Figures 7 and 8 the corresponding ROC curves for the Pearl’s Peril dataset are compared. A ROC 

curve plots the true positive rate against the false positive rate. A straight diagonal ROC line indicates 

complete randomness in prediction performance. A line close to the 1.0 point of true positive rate at low 

levels of false positive rate indicates a nearly perfect classifier. Figure 7 indicates the steepest curve for 

random forest, meaning the model is the best at predicting the actual churners. The figure also visualizes 

the minor differences between the different models. The ROC curve in Figure 8 represents the ROC 

curves for Pearl’s Peril with a 1-day feature window. The curve is less steep, indicating lower prediction 

performances. The corresponding ROC and PR curves for the remaining games can be observed in 

Appendix C. 

When we observe the difference in training performance compared to testing performance, we can use 

a ratio which divides the AUC-ROC test set scores by the AUC-ROC validation set performance. These 

ratios are displayed in Tables 23 to 26. Table 23 displays the AUC-ROC ratios for the 7-day feature 

windows datasets. Values higher than 1.0 indicate that the test set outperformed the validation set. This 

is the case for Diamond Dash and Jelly Splash, but not for Pearl’s Peril. 

Table 23. Out-of-sample AUC-ROC divided by sample AUC-ROC ratio (CV-10) t-7 

Classifier Diamond Dash Jelly Splash Pearl’s Peril 

KNN 1.005 1.054 0.928 

Decision Tree 1.018 1.044 0.932 

Random Forest 1.018 1.046 0.933 

Logistic Regression 1.019 1.052 0.920 

 

Figure 8. ROC Comparison for Pearl’s Peril on test 

set t-1. 

Figure 7. ROC Comparison for Pearl’s Peril on test set 

t-7. 



37 
 

For feature window t-1, the ratios differ, as can be observed in Table 24. Only Jelly Splash outperforms 

the validation scores. 

Table 24. Out-of-sample AUC-ROC divided by sample AUC-ROC ratio (CV-10) t-1 

Classifier Diamond Dash Jelly Splash Pearl’s Peril 

KNN 0.958 1.056 0.913 

Decision tree 0.967 1.075 0.894 

Random forest 0.966 1.077 0.912 

Logistic regression 1.001 1.088 0.914 

 

Table 25 displays the results for the area under the precision and recall curve. These show similar results 

compared to Table 23 but the differences are increased. For Pearl’s Peril, the test set performance is 

worse than the validation performance. 

Table 25. Out-of-sample AUC-PR divided by sample AUC-PR ratio (CV-10) t-7 

Classifier Diamond Dash Jelly Splash Pearl’s Peril 

KNN 1.093 1.064 0.845 

Decision tree 1.013 1.054 0.965 

Random forest 1.103 1.057 0.873 

Logistic regression 1.105 1.051 0.851 

 

This difference in performance is even greater when analysing the results for the 1-day feature window. 

While the model trained on the Diamond Dash dataset seems to generalize well to unseen data, the 

models for Jelly Splash and Pearl’s Peril do not. This difference can be observed in Table 26. 

Table 26. Out-of-sample AUC-PR divided by sample AUC-PR ratio (CV-10) t-1 

Classifier Diamond Dash Jelly Splash Pearl’s Peril 

KNN 1.232 0.944 0.810 

Decision tree 1.177 0.965 0.766 

Random forest 1.224 0.980 0.823 

Logistic regression 1.260 0.959 0.816 

 

 

 

  



38 
 

4.2 RQ2: Feature importance 

This section reports the results for feature importance analysis. This will form the basis upon which the 

second research question – What are the most important features for predicting player churn across 

F2P games? – can be answered. 

4.2.1 Random forest feature importance: 

As discussed in subsection 3.5.1 and subsection 3.5.2, the decision tree and random forest models can 

be used to visualize important information about the dataset. The decision trees that are constructed 

provide information on logical classification steps and feature importance. A feature that separates the 

highest number of instances into classes is used first until all features are used. 

These models, in the python library sklearn, have the ability to plot the relative feature importance to a 

graph. This visualizes each feature with its relative importance compared to other features. Figures 9 

and 10 show these relative feature importances for two feature windows. 

 

For the dataset with a 7-day feature window, the feature current absence time is the feature with the best 

prediction performance, followed by intersession time, total round time and playtime per session. The 

acquired feature contributes the least amount of classification performance to the model. 

The prediction strength of current absence time is weakened when we observe the results for the 1-day 

feature window dataset in Figure 10. 

 

Figure 9. Feature importance decision tree classifier (Pearl’s Peril dataset t-7) 



39 
 

 

Figure 10. Feature importance decision tree classifier (Pearl’s Peril dataset t-1) 

This graph, showing feature importance for the same game with a different feature window, indicates a 

different feature as best predictor for player churn. For this dataset, the total number of rounds a player 

played is the best predictor, followed by current absence time. 

For Diamond Dash and Jelly Splash, the feature importance results can be found in Appendix B. They 

show similar importance reduction for current absence time when comparing the feature windows. 

Surprisingly, the total number of rounds feature remains a relatively poor predictor in the 1-day feature 

window datasets. This might be related to the difference in game types. Jelly Splash and Diamond Dash 

are casual games compared to Pearl’s Peril, which is a so-called hidden object game. As the way these 

games are played is different, so is the data. 

  



40 
 

4.3 RQ3: Time windows 

In this section, we compare the effects of the feature window on player churn-prediction performance. 

This will contribute to answering the third proposed research question – What is the effect of different 

time windows on churn prediction across F2P games? 

4.3.1 Comparing feature windows 

In sections 4.1 and 4.2, the results for all models and time windows are presented. From these results 

we indicated that random forest yields the best prediction performance for both feature windows and all 

three datasets. This current section will compare the results from random forest by the two used feature 

windows. 

As discussed in the previous sections, the 1-day feature window yields significantly lower prediction 

scores. Figure 11 visualizes this difference in terms of ROC curves and PR curves for the game Diamond 

Dash. The blue lines are the results for the best-performing random forest model trained on data 

capturing 7 days of game behaviour. The green lines indicate the results for the 1-day window. 

 

 

 

 

 

 

 

 

When comparing the results of the ROC curve (left), it can be observed that the curve for the 1-day 

feature window is close to approaching the straight diagonal line, indicating a perfectly random 

classifier. The 7-day feature window, on the other hand, is approaching a perfect classifier. The curves 

of the PR curve indicate similar results and therefore we can accept the results of the ROC curve. 

Figure 12 visualizes the different ROC curves and PR curves for Jelly Splash. Compared to the results 

for Diamond Dash, the 1-day feature window does not approach perfectly random classification 

performance. However, the 7-day feature window is still outperforming the 1-day feature window in 

terms of ROC and PR curves. 

Figure 11. Random forest ROC curve (left) and PR curve (right) for Diamond Dash test set 



41 
 

 

Finally, Figure 13 shows the ROC and PR curves for Pearl’s Peril. Similar performance differences can 

be observed between the ROC curves of the 7-day feature window and the 1-day feature window. The 

ROC curve for the 7-day feature window performs worse compared to the curves of Diamond Dash and 

Jelly Splash. This might be explained by the difference in game genres. Pearl’s Peril curves are trained 

on its own sample data of this hidden object game; however, it is tested on more casual game data of 

Jelly Splash and Diamond Dash. This results in minor performance decreases. 

  

Figure 12. Random forest ROC curve (left) and PR curve (right) for Jelly Splash test set. 

Figure 13. Random forest ROC-curve (left) and PR-curve (right) for Pearl's Peril test set 



42 
 

5. Discussion 

In this chapter, we discuss the results presented in Chapter 4, with regard to the research questions stated 

in the introduction. The aim of this current research was to analyse cross-game telemetry data to predict 

churn behaviour across games using game-design-independent features. The following research 

questions were formulated in order to reach this goal: 

RQ1:  To what extent can we predict player churn across multiple F2P games with game-

  independent input features? 

RQ2:  What are the most important features for predicting player churn across F2P games? 

RQ3:  What is the effect of different time windows on churn prediction across F2P games? 

 

5.1 Results per research question 

RQ1: To what extent can we predict player churn across multiple F2P games with game-independent 

input features? 

To answer this research question, the machine-learning models used in the literature were discussed in 

section 2.5. A selection of these models was put to the task of predicting player churn across games 

using three game datasets provided by Wooga. K-nearest neighbours, decision tree, random forest and 

logistic regression models were trained using game-design-independent features on each game 

separately. The best-performing model, in terms of accuracy, was used on the out-of-sample test set 

containing data of the other two games. Our results indicate that random forest is predicting player churn 

the best in terms of accuracy and AUC scores. These results were found across all games analysed. The 

performance difference between models, however, was not substantial. 

Surprisingly, the performance on the out-of-sample test set yielded comparable performance results to 

the performance of the validation set. This is an indication that the features accurately capture game-

design-independent game behaviour. In addition, the models trained on game A can predict player churn 

based on the data of game B and C. These results are in agreement with those obtained by Hadiji et al. 

(2014) where game-design-independent features were used to predict player churn across F2P games. 

The current research, however, found a different optimal classifier, using different datasets on a different 

player churn data generation method and tested the models on out-of-sample data. 

  



43 
 

RQ2: What are the most important features for predicting player churn across F2P games? 

To answer the second research question, the literature was discussed in section 2.6. Drachen et al. (2016) 

found that current absence time and number of rounds played are the most important features for 

predicting player churn with data capturing 1-day of play behaviour. For a 7-day feature window, current 

absence time becomes more dominating in terms of relative importance. 

For the current study, decision tree was used to plot the relative feature importance per feature window. 

The results are in agreement with those obtained by Drachen et al. (2016). For the data capturing one 

full day of play behaviour, the plots indicate that important features differ per game. For the hidden 

object game Pearl’s Peril, the total number of rounds played and current absence time are considered 

the most important features, as opposed to current absence time and intersession time for the casual 

puzzle games Diamond Dash and Jelly Splash. The results for a 7-day feature window show the 

dominance of current absence time as most important feature, followed by intersession time. This 

dominance of current absence time can be explained by the fact that a large proportion of players churn 

soon after installing the game. These results are consistent with the literature. 

RQ3: What is the effect of different time windows on churn prediction across F2P games? 

In order to answer the third research question, the different time windows used in the literature were 

discussed in section 2.7. For this thesis, churn was measured in the way that best reflects real-world 

churn prediction problems (Hadiji et al., 2014). In subsection 3.2.2, the approach of Runge et al. (2014) 

was used to reveal that about 98% of real churn behaviour is captured using a 7-day observation-

window. For this thesis, two feature windows were used to predict player churn for F2P games. 

The 7-day feature window showed consistently decent performance and good ability to separate the 

different classes. The 1-day feature window showed less accuracy and lower AUC-ROC and AUC-PR 

scores. The latter did not show substantial improvement compared to the majority baseline scores and 

the ROC curves confirmed this by approaching the line of perfectly random classification. Subsequently, 

the results of the 1-day feature window tend to generalize worse to out-of-sample data, as was observed 

in subsection 4.1.5. This can be explained by the feature importance differences discussed in section 

4.2. Current absence time is less dominant in the 1-day feature window datasets. Players who churn right 

after installation of the game do not impact the current absence time as heavily in the 1-day feature 

window datasets. This effect of immediate churn becomes more dominant in the 7-day feature window 

datasets. 

  



44 
 

5.2 Limitations 

The data upon which these findings are based were limited to game data gathered from IOS devices. 

We did not have access to casual game data gathered via other devices or web-based platforms and 

therefore these data were not considered for this project. This means that the player population 

consisted only of players who own an Apple device. We did not find any literature on the in-game 

behaviour differences between users of different operating systems and can therefore not elaborate on 

the implications of this limitation for this thesis. Additionally, the sample consisted of players with 

more than one session. This was included intentionally to prevent creating missing values and to omit 

players who did not play the game. Furthermore, players who only played one session were not 

included in the dataset. A negative implication of this decision is that the datasets lack players who 

immediately churn after playing one session. A positive implication of this decision is that this 

resulted in surprisingly balanced classes. 

 

5.3 Contributions and future research 

The results of this thesis are in agreement with the findings of Hadiji et al. (2014), which showed that 

churn can be predicted using game-design-independent features. This thesis, however, deployed a new 

evaluation method by using out-of-sample data for testing purposes. Furthermore, the experiments 

conducted indicated random forest to be the best-performing algorithm for predicting player churn 

across games. The models, which are trained on datasets covering seven days of playing behaviour, 

show excellent generalization performance to out-of-sample data. 

The practical relevance of these findings is that churn can be predicted across games. A newly launched 

casual game, which did not generate enough data itself to train prediction models, can now be tested on 

a comparable model. This can provide the game developer with useful information during the early 

stages after a game is released. 

Future research could further investigate this relatively new domain of cross-game churn prediction by 

considering other game datasets, churn windows and by reviewing the prediction performance of other 

machine-learning algorithms. Moreover, additional features could be used that capture the in-game 

spending of coins and gold to derive valuable monetization information. Finally, more research can be 

conducted regarding why players churn and what keeps players playing. 

  



45 
 

6. Conclusion 

 

The main goal of the current study was to develop a cross-game churn-prediction model with game-

design-independent features. The following three research questions were formulated in order to 

research the topic. 

RQ1:  To what extent can we predict player churn across multiple F2P games with game-

  independent input features? 

RQ2:  What are the most important features for predicting player churn across F2P games? 

RQ3:  What is the effect of different time windows on churn prediction across F2P games? 

To answer research question 1, predicting player churn across multiple F2P games using game-

independent input features results in decent prediction performance. The best model found for this task 

is random forest. These results are consistent with the findings of Hadiji et al. (2014) on predicting 

player churn across games. Additionally, this study tested the prediction performance of the trained 

models on out-of-sample data. For 7-day feature window datasets, this yielded comparable results, 

indicating excellent generalization performance. 

Regarding the second research question, the results indicated that the most important feature for 

predicting player churn across FTP games is current absence time. For a dataset which captures 7-days 

of playing behaviour, current absence time dominates other features in terms of relative importance. For 

a dataset with a 1-day feature window, the second-most-powerful feature, after current absence time, is 

game genre dependent; intersession time is more important for casual puzzle games, while total number 

of rounds is more important for hidden object games. These results are in line with the results found by 

Hadiji et al. (2014). 

With regard to the third research question, the results indicated that the number of days captured within 

the features of the dataset influences the task of predicting player churn across games. A model trained 

on data capturing one day of game behaviour performs substantially worse than a model trained on a 7-

day feature window. The performance scores of the 1-day feature window are close to the majority 

baseline scores, meaning the models only slightly outperform the results of random classification. These 

results are consistent with the literature. Subsequently, a model trained on one day worth of data 

generalizes worse to out-of-sample data. 

 

  



46 
 

References 

 

Alsén, A., Runge, J., Drachen, A., & Klapper, D. (2016). Play With Me? Understanding and 

 Measuring the Social Aspect of Casual Gaming. 

Bauckhage, C., Kersting, K., Sifa, R., Thurau, C., Drachen, A., & Canossa, A. (2012). How players 

 lose interest in playing a game: An empirical study based on distributions of total playing 

 times. Computational Intelligence and Games, 139–146. 

Blattberg, R. C., Byung-Do Kim, & Scott A. Neslin. (2008). Database Marketing: Analyzing and

 Managing Customers. International Series in Quantitative Marketing. New York, NY: 

 Springer Science. 

Buckinx, W., & Van den Poel, D. (2005). Customer base analysis: Partial defection of behaviourally 

 loyal clients in a non-contractual FMCG retail setting. European Journal of Operational 

 Research, 164, 252–268. 

Casual Games Association. (2014). Towards the global games market in 2017: A broad look at market 

 growth by screen & region. Casual Games Sector Report. Retrieved from 

 https://issuu.com/casualconnect/docs/ccnewzoospringreport-pages 

Dasgupta, K., Singh, R., Viswanathan, B., Chakraborty, D., Mukherjea, S., Nanavati, A. A., & Joshi, 

 A. (2008). Social ties and their relevance to churn in mobile telecom networks. Proceedings of 

 the 11th international conference on Extending database technology: Advances in database 

 technology, 261, 668–677. 

Drachen, A., Lundquist, E.T., Kung, Y., Rao, P.S., Klabjan, D., Sifa, R., & Runge, J. (2016). Rapid  

 Prediction of Player Retention in Free-to-Play Mobile Games. 

El-Nasr, M. S., Drachen, A., & Canossa, A. (2013). Game analytics: Maximizing the value of player 

 data. London, England: Springer. 

Gagné, A., Seif El-Nasr, M., & Shaw, C. (2012). Analysis of telemetry data from a real time strategy  

  game: A case study. Theoretical and Practical Computer Applications in Entertainment, 

 10(3), 1–24. 

GameHunters Club (2017, March 25). Retrieved from https://gamehunters.club/top-games/on-

 Facebook 
 

Hadiji, F., Sifa, R., Drachen, A., Thurau, C., Kersting, K., & Bauckhage, C. (2014). Predicting  

 player churn in the wild. Conference on Computational Intelligence and Games, 1–8. 
 

Hui, S. K. (2013). Understanding Gamer Retention in Social Games using Aggregate DAU and MAU

  data: A Bayesian Data Augmentation Approach. 



47 
 

Kumar, V., & Petersen, J.A. (2012). Statistical Methods in Customer Relationship Management. 

 Hoboken, NJ: John Wiley & Sons. 

Laursen, G.H. (2011). Business analytics for sales and marketing managers: How to compete in the

  information age. Hoboken, NJ: John Wiley & Sons. 

Lewis, C., Wardrip-Fruin, N., & Whitehead, J. (2012). Motivational game design patterns of ’ville 

  games. Foundations of Digital Games, 12, 172–179. 

Lunden, I., (2017, March 11). Retrieved from http://techcrunch.com/2012/08/14/facebook-says-

 itnow-has-235m-monthly-gamers-app-enter-hits-150m-monthlyusers 
 

Mahlman, T., Drachen, A., Canossa, A., Togelius, J., & Yannakakis, G.N. (2010). Predicting player 

 behavior in Tomb Raider: Underworld. Proceedings of the 2010 IEEE conference on 

   computational intelligence in games, 178–185. 

Nozhnin, D. (2017, April 10). Retrieved from http://www.gamasutra.com/view/feature/170472/ 

 predicting_churn_datamining_your_.php 

R-project (2017, February 15). Retrieved from: https://www.r-project.org 

Runge, J., Gao, P., Garcin, F., & Faltings, B. (2014). Churn prediction for high-value players in casual 

  social games. Conference on Computational Intelligence and Games, 1–8. 

Verbeke, W., Martens, D., Mues, C., & Baesens, B. (2011). Building comprehensible customer churn 

 prediction models with advanced rule induction techniques. Expert Systems with Applications, 

 38(3), 2354–2364. 

Weka. (2017, February 15). Retrieved from http://www.cs.waikato.ac.nz/ml/weka/index.html 

Xia, G.E., & Jin, W.D. (2008). Model of customer churn prediction on support vector  

 machine. Systems Engineering-Theory & Practice, 28(1), 71–77. 

 

Daumé, H. (2012). A Course in Machine Learning. Chapter, 5, 69. 

 

Rashka, S. (2015). Python Machine Learning. Birmingham, UK: Packt Publishing Ltd. 

 

Python Software Foundation. Python Language Reference, version 2.7. Available at 

 http://www.python.org 

Davis, J., & Goadrich, M. (2006). The relationship between Precision-Recall and ROC curves. 

 In Proceedings of the 23rd international conference on Machine learning (pp. 233 – 240). 

 ACM. 

 

http://www.python.org/


48 
 

Appendices and supplementary materials 

 

Appendix A 

Table 27. Jelly Splash dataset descriptive statistics for t-7 

Features Mean Std. Min Max 

Acquired 
0.285 0.451 0 1 

Number of Sessions 
18.117 26.346 2 1367 

Number of Rounds 
43.107 61.766 1 1790 

Average Rounds per Sessions 
2.725 2.200 0.026 64.5 

Intersession Time (hours) 
9.640 16.283 0 168 

Total Round Time (minutes) 
5388.831 10865.969 0 203642 

Current Absence Time (hours) 
90.829 62.899 0 168 

Average Playtime per Session (seconds) 
282.237 268.025 0 11618.222 

 

Table 28. Jelly Splash dataset descriptive statistics for t-1 

Features Mean Std. Min Max 

Acquired 
0.269 0.444 0 1 

Number of Sessions 
8.172 9.121 2 266 

Number of Rounds 
20.595 24.242 1 592 

Average Rounds per Sessions 
2.766 2.345 0.018 54 

Intersession Time (hours) 
1.628 2.436 0 23.994 

Total Round Time (minutes) 
1931.063 2766.033 2 18555 

Current Absence Time (hours) 
14.664 9.364 0 24 

Average Playtime per Session (seconds) 
235.324 232.302 0.111 9680.333 

 

  



49 
 

 

Table 29. Pearl’s Peril dataset descriptive statistics for t-7 

Features Mean Std. Min Max 

Acquired 
0.672 0.470 0 1 

Number of Sessions 
15.082 21.880 2 524 

Number of Rounds 
72.496 96.787 1 1483 

Average Rounds per Sessions 
4.857 4.068 0.007 55.400 

Intersession Time (hours) 
16.300 22.660 0 167.960 

Total Round Time (seconds) 
3689.874 4718.943 0 107576 

Current Absence Time (hours) 
74.927 64.166 0 168 

Average Playtime per Session 
281.230 299.115 0 13955 

 

Table 30. Pearl’s Peril dataset descriptive statistics for t-1 

Features Mean Std. Min Max 

Acquired 
0.672 0.470 0 1 

Number of Sessions 
4.983 4.764 2 272 

Number of Rounds 
25.533 25.496 1 507 

Average Rounds per Sessions 
5.600 5.210 0.007 69.800 

Intersession Time (hours) 
4.895 5.483 0 23.996 

Total Round Time (seconds) 
1495.953 1691.112 0 70139 

Current Absence Time (hours) 
11.424 8.962 0 24 

Average Playtime per Session 
335.377 414.449 0 35069.500 

 

  



50 
 

Appendix B: Feature Importance per dataset and feature window. 

 

 
Figure 14. Feature importance decision tree classifier (Diamond Dash dataset t-7) 

 

 

Figure 15. Feature importance decision tree classifier (Diamond Dash dataset t-1) 

 



51 
 

 

 

 

Figure 17. Feature importance decision tree classifier (Jelly Splash dataset t-1) 

  

Figure 16. Feature importance decision tree classifier (Jelly Splash dataset t-7) 



52 
 

Appendix C: ROC & PR curves. 

 

 

Figure 18. ROC Comparison on Jelly Splash Dataset t-7 

 

 

Figure 19. ROC Comparison on Jelly Splash Dataset t-1 

 

 



53 
 

 

Figure 20. ROC Comparison on Diamond Dash Dataset t-7 

 

 

Figure 21. ROC Comparison on Diamond Dash Dataset t-1 

 

  



54 
 

 

Figure 22. Precision-Recall curve comparison Diamond Dash Dataset t-7 

 

 

Figure 23. Precision-Recall curve comparison Diamond Dash Dataset t-1 

 

 



55 
 

 

Figure 24. Precision-Recall curve comparison Jelly Splash Dataset t-7 

 

 

Figure 25. Precision-Recall curve comparison Jelly Splash Dataset t-7 

 



56 
 

 

Figure 26. Precision-Recall curve comparison Pearl’s Peril Dataset t-7 

 

Figure 27. Precision-Recall curve comparison Pearl’s Peril Dataset t-1 

  



57 
 

Appendix D: Executive summary 

This thesis provides an analysis and evaluation of a churn-prediction model using game-design-

independent features across mobile casual games. 

The datasets provided by Wooga contain data on three popular casual mobile games with different 

game-designs. The experiments conducted, tested the prediction performance differences between k-

nearest neighbours, decision tree, random forest and logistic regression. The models were evaluated on 

classification accuracy, F1-scores and area under the ROC & PR curve. 

The results show that predicting churn across games, using game-design-independent features, results 

in decent prediction performance using a 7-day feature window. 

• The results indicate random forest as overall best classifier for predicting churn across games. 

• The evaluation of the testing performance, conducted on out-of-sample data, shows excellent 

generalization of the model. 

• The experiments indicate that current absence time is most important feature for predicting 

churn across games, which is in accordance with the literature. 

 

This thesis also investigated the prediction performance of a single-day feature window. These results 

indicate substantial lower performance with only a minor improvement compared to the majority 

baseline. One limitation of the current study is that the data only contained owners of IOS devices. 

The models described, clear the path for game developers to predict player churn in the early stage of 

game development. A game that has recently been launched, which has not generated enough data 

itself to train a machine-learning model, can use this model to predict churning players.  

 

 


