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Abstract 

Human capital is becoming a more important part of organizations, and employee 

voluntary turnover has been identified as a key issue. To contribute, this study’s focus 

is on the prediction of individual-level voluntary employee turnover. Accurate 

predictions enable organizations to act for retention or succession planning of 

employees. To find the most appropriate predictive model for voluntary leave; sixteen 

models were evaluated based on their ROC curves. It was found that voluntary 

employee turnover can be linearly separated, and the most appropriate model is the 

Support Vector Machine (SVM). To evaluate the predictive performance, and since the 

data is not in balance (only 16% of the cases is labeled as leaving the organization); 

altered cutoff values, and the sampling methods up-sampling, and synthetic minority 

over-sampling technique (SMOTE), are applied and the resulting models evaluated 

based on the F1 score and balanced accuracy. Sampling was found to not provide 

significantly better models. The best performing model is a SVM with a F1 score and 

balanced accuracy of respectively, 0.86 and 0.77. Further, based on employee 

voluntary turnover literature, eight hypotheses were formed and tested based on 

logistic regression. And last, the relationships between the most important and 

significant predictors and voluntary turnover are identified. The top 10 most important 

and significant predictors found are: Overtime, Environment Satisfaction, Number of 

Companies Worked for, Job Satisfaction, Business Travel, Job Involvement, Years 

Since Last Promotion, Distance from Home, Age, and relationship status Single. The 

results are based on a publicly available dataset provided by IBM (McKinley, 2015). In 

accordance with (Rubenstein, Eberly, Lee, & Mitchell, 2017), the author wants to 

highlight the context-sensitive nature of individual-level voluntary leave; and advises 

practitioners to analyze their own data to find, and be able to react to, the predictors 

that are important and significant in their organization.  

Keywords: turnover prediction; voluntary turnover; employee turnover; attrition; 

machine learning; class imbalance; sampling; Human Resource Analytics;  
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1. Introduction 
The corporate landscape has changed dramatically over the past few decades. These 

changes are due to globalization, information availability, and the requirements of a 

high-tech economy. One specific change that has been noticed relates to the assets 

held by a company. Whereas in the 1970s, more than 95% of a company’s assets 

could be attributed to tangible holdings, by the early 2000s that number had reduced 

to less than 30%(King, 2016; Mcclure, 2003). This means that more than 70% of a 

firm’s total worth is due to intangible assets, including human capital. 

Human resource management (HRM) is the main department within organizations that 

manages human capital. The function of HRM is to motivate employees and enhance 

workforce effectiveness. According to (King, 2016), integrating information 

technologies and HRM will provide smarter work. Turnover can be considered as a 

subgroup of HRM, and is the focus of the current study. This paper is a machine 

learning approach for prediction of quit among staff. 

Researchers and HRM have focused on employee turnover for decades because it 

negatively affects organizations’ performance (Glebbeek et al., 2014; Hancock, Allen, 

& Bosco, 2013; Shaw, 2011). Employee retention is one of the main challenges in 

organizations, especially for those with a long lead time to hire a new employee. Also, 

organizations are complex and dynamic environments. (Akkermans, 2014) found that 

a shorter hiring and capacity delay have positive effects for new product development 

introduction projects, and can even avoid tipping point behavior for product 

success/failure. In accordance with Akkermans, (Kacmar, Andrews, & System, 2006) 

found that employee turnover is both costly and disruptive to the organizational 

function.  

Turnover causes many different types of costs for organizations. These costs can be 

divided between direct and indirect costs (Ongori, 2010). Direct costs activities such 

as advertising the position, replacement, recruitment and selection, temporary staff, 

and management time. Indirect costs are morale related costs, pressure on remaining 

staff, costs of learning, product/service quality, and organizational memory. Research 

suggests that 15-30 percent of turnover costs are direct and about 70-85 percent of 

turnover costs are hidden costs such as lost productivity and opportunity (Boles, 

Dudley, Onyemah, Rouziès, & Weeks, 2012). (Sagie, Birati, & Tziner, 2002) found that 

a high-tech firm lost 2.8 million US dollars or 16.5% of before-tax annual income 

because of employee turnover. Since voluntary turnover is expensive, companies do 

not want their employees to voluntarily leave (Allen, Bryant, & Vardaman, 2010). 

Among the reasons for termination, voluntary turnover is one of the major ones, 

accounting for 26% (X. Zhu, 2016). And compared to the other types of turnover, 

voluntary turnover is harder for companies to control. Understanding and forecasting 

turnover at the firm and departmental levels is essential for reducing it (Kacmar et al., 

2006), as well as for effectively planning, budgeting, and recruiting in the human 

resource field. 

Fortunately for companies, due to fast pace of developments in artificial intelligence 

(AI) and the decreasing prices of storage and computing power; machine learning (ML) 

capabilities have become increasingly more accessible (Shmueli, Patel, & Bruce, 
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2010; Witten, Frank, Hall, & Pal, 2016). Besides the increase in computing power and 

storage, also the volume of data that companies collect and is freely available has 

drastically increased (Goodfellow, Bengio, & Courville, 2016; Shmueli et al., 2010). It 

has been estimated that the amount of data stored in the world’s databases doubles 

every 20 months (Witten et al., 2016). Machine learning algorithms feed on this data. 

It is what they use to learn, figure out patterns, and spot trends.  

Every year Gardner proposes a top 10 of strategic technology trends. They indicated 

that AI and ML have reached a critical tipping point. According to them, AI and ML will 

increasingly augment and extend virtually every technology enabled service, thing or 

application. Creating intelligent systems that learn, adapt and potentially act 

autonomously rather than simply execute predefined instructions is primary 

battleground for technology vendors through at least 2020. (Panetta, 2016) 

Analytics in human resource management has been around for years. For example, 

the notion of measurement in human resources can be traced back to the early 1900s 

(Kaufman, 2014). Even though it has been discussed for many years, with only 16% 

of organizations reporting adoption, HR Analytics represents a new innovation 

according to (Marler & Boudreau, 2017).  

So, since HR Analytics represents a new innovation, human capital is becoming an 

increasingly more important part of organizations (King, 2016; Mcclure, 2003), 

employee turnover is an important part of HRM and expensive for organizations 

(Glebbeek et al., 2014; Hancock et al., 2013; Sagie et al., 2002; Shaw, 2011), and the 

machine learning opportunity of the percent (Panetta, 2016); this study’s objective is 

to examine the machine learning opportunities present today and apply these on an 

employee attrition (i.e. employees who voluntarily quit their job) dataset. This leads to 

the following four key questions: 

1. What machine learning algorithm is most appropriate for predicting employee 

voluntary leave? 

2. Does sampling of the dataset increase the predictive performance of the 

models? 

3. What results can be expected from predictive modeling of employee voluntary 

turnover? 

4. What are the significant predictors for determining employee voluntary leave? 

For this study the open-source program R is used for analysis. The appendix includes 

all R code and corresponding outcomes. A random set seed of 1247 was used to make 

the results reproducible.  

To answer the key questions, first, chapter 2 will provide the reader with a thorough 

description and analysis of the publicly available dataset used in this study (McKinley, 

2015). Chapter 3 will provide the reader with the context to place this study in, as well 

as forming some hypotheses based on individual-level voluntary turnover literature. In 

chapter 4 the process of creating the datasets is described. This is related to chapter 

5, which provides the reader with a concise description of the machine learning 

algorithms used, in that not one dataset is appropriate for all methods. Next, in chapter 

6 and 7, the model validation and evaluation techniques and metrics get described. 
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Some remedies for severe class imbalances get discussed in chapter 8. This brings 

us to part one of the results, chapter 9, where the results related to the predictive 

models are represented. More specifically, the 16 different models (described in 

chapter 5) are compared on effectiveness of modelling voluntary turnover; and the 

performance of the predictive models, after applying the methods to counter the severe 

class imbalance, are compared. Chapter 10 can be considered as part two of the 

results, this chapter will present the results related to predictor importance and 

significance. In chapter 11 the current study is compared to similar studies conducted 

in this area. This to provide the reader with better context of the contribution of the 

current study. The paper will end with a discussion of the results, a conclusion, and 

identification of areas of further research (Chapter 12).  

2. Data description 
Employee turnover analytics is an understudied subject in research. One likely 

explanation for the lack of employee turnover research is the difficulty associated with 

obtaining data. This data is hard to obtain, because once it becomes public it is prone 

to legal/privacy issues, and can be bad for an organization’s reputation. In 2015 IBM 

uploaded an employee attrition dataset which was originally intended to be used in 

combination with their product Watson. This publicly available dataset is used in this 

paper and can be found at: https://www.ibm.com/communities/analytics/watson-

analytics-blog/hr-employee-attrition/ (McKinley, 2015). 

The dataset contains 1470 records, 34 predictor variables, and one outcome variable, 

namely whether employee attrition (i.e. voluntary leave) took place. The predictor 

variables include information about employee’s demographic, satisfaction and 

performance, and some financial measures. The dataset does not include a full 

description of all the predictors. Therefore, based on the knowledge of an HR 

professional from Accenture, definitions for each of the predictors were created. The 

list of predictors and definitions used in this paper are included in the Table 1. 

The use of this open dataset has some negative side effects. First, since it is an open 

dataset the company background is unknown and the author is unable to speak to 

subject matter experts (SME) within the client company. This is a common an important 

step in obtaining the underlying structure and relations between predictors and 

outcome. Second, since it is unknown how the dataset is created the external validity 

and construct validity of the results might be in jeopardy. Third, the dataset has only 

1470 records which can limit the effectiveness of some of the machine learning 

algorithms used. It is probable that a dataset provided by a real client contains more 

records. However, datasets of similar previous studies contain even less records, 

namely 731 (X. Zhu, 2016) and 881 (Chang, 2009). On the other hand, using an open 

dataset has positive side effects as well. First, since the dataset is anonymized, 

financial data related to the employees are included; often these are excluded from the 

dataset. Second, since the dataset is open and available to everyone the internal 

validity of this study is greatly enhanced.  

  

https://www.ibm.com/communities/analytics/watson-analytics-blog/hr-employee-attrition/
https://www.ibm.com/communities/analytics/watson-analytics-blog/hr-employee-attrition/
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Table 1 Predictors with corresponding definition and metric 

Predictor Definition Metric 

Demographics   

EmployeeNumber Unique identifier for individual # 

Age Chronological number of years an individual has lived. (Rubenstein 
et al., 2017) 

# 

Gender Biologically based categories. (Rubenstein et al., 2017) Male/ Female 

MaritalStatus Relationship status of employee. Single/ Married/ Divorced 

NumCompaniesWorked Number of companies an individual has worked for. # 

EmployeeCount Count of employee # 

Over18 Indication whether an individual is over 18 years of age Y/N 

Internal measurements   

TotalWorkingYears  Time employed since end of one’s study (measured in years). # 

YearsAtCompany (i.e. 
Tenure) 

Time employed with one’s current organization (measured in years). 
(Rubenstein et al., 2017) 

# 

YearsInCurrentRole Number of years an individual practices the same role. # 

YearsSinceLastPromotion Number of years since an individual got last promoted. # 

YearsWithCurrManager Number of years under last manager. # 

TrainingTimesLastYear Number of trainings an individual took last year. # 

Financial related 
measures 

  

DailyRate Income of one day hire out of individual. # 

HourlyRate Income of one hour hire out of individual. # 

MonthlyRate Income of one month hire out of individual. # 

MonthlyIncome (i.e. Pay) Amount of money an individual receives for the job each month. 
(Rubenstein et al., 2017) 

# 

PercentSalaryHike Percentage of salary increase coming year. # 

StandardHours Number of standard hours for an individual. # 

StockOptionLevel Number indicating amount of monthly income goes to buying stock at 
a discount. 

0/ 1/ 2/ 3, assumed 3 
indicating higher monthly 
amount 
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OverTime Indication of whether an individual gets compensated for extra hours. Yes/No 

Individual attributes   

Education  An individual’s maximum level of education attained. (Rubenstein et 
al., 2017) 

1 'Below College', 2 'College', 
3 'Bachelor', 4 'Master', and 5 
'Doctor' 

EducationField Individual’s main education field 6 unique classes 

Department The department the individual works for.  Human Resources/ 
Research & Development/ 
Sales 

JobLevel Individual’s job level 1-5, 5 being the higher job 
level 

BusinessTravel Amount of travel the individual does for the organization Non-Travel/ Travel_Rarely/ 
Travel_Frequently 

DistanceFromHome Travel distance from individual’s home to work location, measured in 
Km.  

# 

Individual ratings   

PerformanceRating Grade given as indication of individual’s performance 1-4, 4 indicating outstanding 

JobInvolvement Degree to which an individual identifies with his or her job. 
(Rubenstein et al., 2017) 

1-4, 4 indicating very high 

EnvironmentSatisfaction Degree to which an individual likes his or her work environment. 1-4, 4 indicating very high 

JobSatisfaction Degree to which an individual likes his or her job. (Rubenstein et al., 
2017) 

1-4, 4 indicating very high 

RelationshipSatisfaction Degree to which an individual likes his or her job related relationships. 1-4, 4 indicating very high 
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2.1 Data exploratory analysis 
Within this dataset only 16%, 237 out of 1470, was labeled as having left the 

organization. The rate of interest is thus under represented. Even the basic rule ‘each 

employee is predicted to stays with the organization’ will result in an expected accuracy 

of 84% (100%-16%). This could negatively affect the performance of some of the 

predictive models. However, some methods exist to counter this, these will be 

discussed in chapter 8 (p.26). The age lies between 18 and 60 with an average age of 

36,92 years old. Within this dataset 60% is male and 40% female. The total working 

years range from 0 to 40 with an average of 11.28 years. Monthly income range from 

1009 to 19999 with an average income of 6503 a month. The performance rating is a 

grade given between 1 and 4, the former indicating bad performance and the latter 

good. This dataset only contains the performance ratings of 3 and 4, indicating that 

only the good performers are included in this dataset. Further, three departments are 

included in this dataset, namely, Human Resources, Research and Development, and 

Sales, where the bulk of employees is in the Research and Development department. 

Also, there are six job roles included in this dataset, namely, Sales Executive, 

Research Scientist, Laboratory Technician, Manufacturing Director, Healthcare 

Representative, and Manager, as well as a category ‘Other’. Given these departments 

and roles, an educated guess of the industry this dataset was gathered from would be 

the pharmaceutical industry.  

2.2 Data validity check 
To counter the second negative side effect discussed above, namely external validity 

and construct validity, the author did some analysis on the dataset. To increase the 

external validity of this study, the author first conducted some basic tests. The six basic 

checks that got tested are: 

• TotalWorkingYears >= YearsAtCompany,  

• YearsAtCompany >= YearsInCurrentRole,  

• YearsAtCompany >= YearsSinceLastPromotion,  

• YearsAtCompany >= YearsWithCurrManager,  

• MonthlyRate >= DailyRate,  

• and DailyRate >= HourlyRate.  

No indication for low internal dataset validity were found.  

Next, the author searched the forum of IBM to get a statement about the external 

validity of the dataset. A similar question was asked, namely “Is the sample HR 

employee attrition dataset completely fabricated or is it an anonymized dataset of 

actual employee information?”. The response of the Watson Analytics Support: “The 

HR Employee Attrition data set is based of real data with all personal identifiers 

removed. The data was also tweaked so that it performs better in telling a story about 

attrition in the HR department.”.  (Watson Analytics Support, 2015) 

According to the HR professional from Accenture, almost all predictors are commonly 

measured within organizations. For the rates, however, it was thought to be more 

common for organizations to use daily rate and calculated the other rates based on 

this variable. So, hourly rate is daily rate divided by eight, and monthly rate is equal to 
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daily rate times 20. Based on this, one would expect to find a strong correlation 

between these variables. However, this was not the case in this dataset.  

Another questionable variable was NumCompaniesWorked. The HR professional 

indicated that in general organizations do not measure this variable. However, we 

agreed it could be informative for employee attrition, and the statistic can be easily 

acquired based on the employee’s CV. Therefore, it was decided to leave this predictor 

in the dataset. If this variable is found to be significant and important in the predictive 

models it will be an indication to start acquiring this statistic. 

In conclusion, external validity establishes how generalizable the relationship is. 

Construct validity investigates whether measurement of the key constructs is sufficient 

to adequately assess the relationship (Marler & Boudreau, 2017). Based on some 

basic internal checks, information from IBM Watson Analytics Support, and an internal 

meeting with an HR professional; the author concludes the dataset to be representative 

to actual organizational data. The external validity of this study is therefore high. The 

construct validity is harder to assess, but there are no indications that this validity is in 

jeopardy.  

3. Literature review 
Human Resource Analytics (HRA) is a relatively new term. (Marler & Boudreau, 2017) 

conducted an evidence-based review of HR analytics. According to their research of 

major databases, HR analytics first appeared in the HR published literature in 2003–

2004. 

By bringing various definitions used throughout literature together, (Marler & Boudreau, 

2017) defined HR Analytics as: “A HR practice enabled by information technology that 

uses descriptive, visual, and statistical analyses of data related to HR processes, 

human capital, organizational performance, and external economic benchmarks to 

establish business impact and enable data-driven decision-making”. According to 

(Marler & Boudreau, 2017) HR analytics have five characteristics. First, HR Analytics 

is not HR Metrics. It involves more sophisticated analysis of HR-related data. Second, 

HR Analytics does not focus exclusively on HR functional data, and involves integrating 

data from different internal functions and data external to the firm. Third, HR Analytics 

involves using information technology to collect, manipulate, and report data. Fourth, 

HR Analytics is about supporting people related decisions. Finally, HR Analytics is 

about linking HR decisions to business outcomes and organizational performance. 

Based on this definition and these characteristics, the current study can be labeled as 

HR Analytics research.  

In conducting their review of the literature on HR Analytics, and despite evidence of a 

growing interest in this innovation, (Marler & Boudreau, 2017) found very little and 

limited scientific evidence to aid decision-making concerning whether to adopt HR 

Analytics. They further state that there are two notable paradoxes. First is that despite 

the popularity of HR Analytics there is very limited high-quality scientific evidence-

based research on this topic. The second paradox is the apparently limited adoption 

of HR Analytics when the available research seems frequently to suggest that it is 

associated with positive organizational outcomes. Also, much of the literature on the 
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topic of HR analytics has been focused on normative questions of what should be done 

rather than analytical questions of how it can be done, in what contexts, and with what 

results (Angrave, Charlwood, Kirkpatrick, & Stuart, 2016). With this article it is intended 

to contribute to the high quality scientific evidence-based research in HRA, and is 

focused on a more applied direction of HRA, as suggested by (King, 2016). 

3.1 Individual-level employee voluntary turnover 
Employee turnover is a general term referring to the loss of employees resulting from 

a wide range of causes, such as retirement, death, quitting, termination, promotion, 

and reassignment. Each of these turnover modes has different foundational causes 

and may be more or less prevalent during different points in one’s career (X. Zhu, 

2016). In this study, in accordance with (Sikaroudi, Ghousi, & EsmaieeliSikaroudi, 

2015), we consider turnover as the rate of employees’ leave and replacement in a 

predefined period of time. Turnover has various forms. It can be voluntary or 

involuntary, functional or dysfunctional, avoidable or unavoidable. 

In this study, we focus on employee voluntary turnover, also known as attrition. 

Employee voluntary turnover is part of the overall employee turnover, and is accounted 

for when an employee voluntarily leaves the organization. Among the reasons for 

termination, voluntary turnover is one of the major ones accounting for 26% of the total 

turnover (X. Zhu, 2016). Compared to the other types, employee voluntary turnover is 

more problematic for companies to control. Employee voluntary turnover is often 

dysfunctional and can be avoidable.  

Many researchers have attempted to identify turnover factors to prevent and reduce 

turnover. This study attributes by testing some of the suggested turnover factors. 

Nearly two decades ago (Griffeth, Hom, & Gaertner, 2000) conducted the broadest 

meta-analysis of the turnover literature. Since then, however, a sizable number of 

primary studies have been published, also seeking to understand this phenomenon. 

This year (Rubenstein et al., 2017) present an update and holistic picture of how the 

studied constructs operate within the turnover literature. Similar to this study, their 

focus is on individual voluntary turnover. In their study they include 57 predictors across 

1800 effect sizes, which is a 27% increase in constructs and a 114% increase in effects 

compared to (Griffeth et al., 2000).  

The author formed hypotheses based on the findings of (Rubenstein et al., 2017) and 

the predictors in the current dataset. A total of 8 predictors were found to be similar as 

the ones studied in the past. These are age, education, marital status, sex, tenure, 

pay, job involvement, and job satisfaction. However, although marital status is 

measured in this study, the measurement is somewhat unconventual as it indicates 

the three categories married, divorced, and single, while the conventual measure 

would be, unmarried, married. Therefore, marital status in this study was found to be 

unfit to compare with previous studies.  

The relationship between age and voluntary turnover has been investigated in many 

different studies (k =121).  Among individual attributes, age (𝜌 = -0.21) falls in the group 

that demonstrate the strongest effects. Here 𝜌 indicates the sample size weighted 

average correlation corrected for measurement error in the predictors. The effect can 
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be interpreted as older workers are less likely to quit, which leads to the following 

hypothesis: 

Hypothesis 1: Age is negatively related to voluntary turnover. 

In this study the education level of the employee is indicated by a number between 1 

and 5, 1 indicating below college, and 5 indicating doctor. In their meta-analysis 51 

studies investigated the relationship between education and voluntary turnover. The 𝜌 

is equal to 0.04, indicating only a moderate effect. Which leads to the following 

hypothesis: 

Hypothesis 2: Education is a significant predictor of voluntary turnover.  

Sex is a predictor found to be significant in predicting voluntary turnover. With a 𝜌 = -

0.01, which can be interpreted as males are less likely to voluntary leave, although it’s 

effect on voluntary turnover is only moderate. Sex is in the current study denoted as 

gender. This leads to the following hypothesis: 

Hypothesis 3: Sex is a significant predictor of voluntary turnover.  

Among the individual attributes, tenure was found to have the strongest effect with a 𝜌 

= -2.7, which can be interpreted as employees that have been working for the current 

organization for a longer time are less likely to leave. In the current study tenure is 

denoted as ‘YearsAtCompany’. This leads to the following hypothesis: 

Hypothesis 4: Tenure is negatively related to voluntary turnover.  

Pay has been found to significantly affect voluntary turnover with an effect of 𝜌 = -0.17, 

indicating that employees which receive more monetary compensation are less likely 

to leave. In the current study pay is denoted as MonthlyIncome. This leads to the 

following hypothesis: 

Hypothesis 5: Pay is negatively related to voluntary turnover.  

Job involvement was found to have an even greater effect when including more current 

studies compared to the analysis done by (Griffeth et al., 2000). It now has a 𝜌 = –0.19 

which indicates that more job involvement will lead to less voluntary turnover. This 

leads to the following hypothesis:  

Hypothesis 6: Job involvement is negatively related to voluntary turnover.  

As job involvement, job satisfaction has also been found to have even greater effects 

compared to the older meta-analysis study. With a 𝜌 = –0.28 it has a strong effect on 

voluntary turnover. This leads to the following hypothesis:  

Hypothesis 7: Job satisfaction is negatively related to voluntary turnover.  

And lastly, Employee performance is found to be significantly negatively correlated to 

employee voluntary turnover, with a 𝜌 = –0.21. In this study the performance is rated 

on a 4 point scale, and only performance ratings of 3 and 4 are present in the dataset. 

This leads to the following hypothesis: 

Hypothesis 8: Employee performance is negatively related to voluntary turnover.  
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The hypotheses are tested by fitting a logistic regression model to the data. The results 

get discussed in chapter 10 (p. 35). 

4. Dataset creation 
One of the first steps in the model building process is to transform, or encode, the 

original data structure into a form that is most informative for the model (i.e. feature 

engineering). This encoding process is critical and must be done with foresight into the 

analyses that will be performed so that appropriate predictors can be elucidated from 

the original data. A consequence of not appropriately formatting the predictors is the 

development of ineffective predictive models. 

During the initial check of the data, first all predictors were transformed to their correct 

data type. Next, the data got checked for missing values, and predictors with near zero 

variances (i.e. containing close to only 1 unique value). No missing values were found, 

and three predictors got identified having low variances, namely Over18, 

EmployeeCount, and StandardHours, and got removed.  

Some machine learning (ML) algorithms only work with numeric data; therefore, two 

dummy sets were created. During this process the categories are reencoded into 

smaller bits of information called “dummy variables”. Each category gets its own 

dummy variable that is a zero/one indicator for that group. A variable with four 

categories can be transformed into only 3 new binary variables, since the fourth can 

be inferred. However, for interpretation purposes it can be useful to include all dummy 

variables. Some ML algorithms, such as simple linear regression, would have 

numerical issues if each dummy variable was included in the model. The reason is 

that, for each sample, these variables all add up to one and this would provide the 

same information as the intercept. Other ML algorithms are unaffected by this (e.g. 

tree based models). That is why two dummy sets were created, one containing all 

dummy categories (HRdataDummy with 52 columns), and one with # of categories -1 

(HRdataDummyFullRank with 46 columns).  

A correlation matrix can only handle numeric variables. Some ML algorithms have a 

significant performance decrease if the data is highly correlated, as indicated in the 

paragraph above. To check for correlations and the structure within this dataset a 

correlation matrix was created. It was created based on the dataset 

HRdataDummyFullRank, and is shown in Figure 1. A few strong correlations can be 

spotted. Next, the predictors with a minimum correlation of 0.75 got identified and 

removed. Five were found namely, JobLevel, YearsAtCompany, 

Department.Research & Development, Department.Sales, and 

BusinessTravel.Travel_Rarely. The author created a new dataset excluding these five 

variables, called HRdataDummyFullRankLowCorr with 41 columns.  

During the first impression analysis, the predictor EmployeeNumber stood out. The 

author decided that there is no causal link between EmployeeNumber and attrition. 

And since uninformative predictors can decrease the performance of some models 

(Kuhn & Johnson, 2016), this variable is deleted from the datasets. 
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Figure 1 Correlation Matrix HRdataDummyFullRank, method spearman 

4.1 Pre-processing procedures 
In addition to the already created data sets, for some ML algorithms additional pre-

processing procedures got conducted. Some models produce better results when the 

data is preprocessed. For example, centering and scaling will positively affect K-

Nearest Neighbors (KNN), but will only hinder the interpretability of tree based models. 

The preprocessing procedures used in this study are centering, scaling, and box-cox 

transformation, and will be discussed next.  

4.1.1 Centering and Scaling 

The most straightforward and common data transformation is to center and scale the 

predictor variables. These are preprocessing procedures done for some of the models. 

To center a predictor variable, the average predictor value is subtracted from all the 

values. This results in the predictor having a zero mean. To scale a predictor variable, 

each value of the predictor variable is divided by its standard deviation. Scaling the 

data coerces the values to have a common standard deviation of one. These 

manipulations are generally used to improve the numerical stability of some 

calculations. Some models, benefit from the predictors being on a common scale 

(Kuhn & Johnson, 2016). The only real downside to these transformations is a loss of 

interpretability of the individual values, since the data is no longer in the original units.  

4.1.2 Box-cox transformation 

Another preprocessing step used in this study is a transformation proposed by (Box & 

Cox, 1964). The purpose of this transformation, in this study, is to remove the 

distributional skewness in the predictors. An un-skewed distribution is one that is 
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roughly symmetric. This means that the probability of falling on either side of the 

distribution’s mean is roughly equal. A right-skewed distribution has a large number of 

points on the left side of the distribution (smaller values) than on the right side (larger 

values). 

The formula for the sample skewness statistic is: 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
∑(𝑥𝑖 − �̅�  )3

(𝑛 − 1)𝑣
3

2⁄
 

𝑤ℎ𝑒𝑟𝑒 𝑣 =  
∑(𝑥𝑖 − �̅�  )2

(𝑛 − 1)
 

where x is the predictor variable, n is the number of values, and x̄ is the sample mean 

of the predictor. If the predictor distribution is roughly symmetric, the skewness values 

will be close to zero. As the distribution becomes more right skewed, the skewness 

statistic becomes larger. Similarly, as the distribution becomes more left skewed, the 

value becomes negative.  

Replacing the data with the log, square root, or inverse may help to remove the skew. 

A statistical method used to empirically identify an appropriate transformation is the 

(Box & Cox, 1964) method. They propose a family of transformations that are indexed 

by a parameter, denoted as λ: 

𝑥∗ =  {
𝑥𝜆 − 1

𝜆
  𝑖𝑓 𝜆 ≠ 0

log(𝑥)   𝑖𝑓 𝜆 = 0

} 

In addition to the log transformation, this family can identify square transformation (λ = 

2), square root (λ =0 .5), inverse (λ = −1), and others in between. λ is estimated by 

using the maximum likelihood estimation of the predictor. This procedure would be 

applied independently to each predictor data that contain values greater than zero. 

For the HRdataDummyFullRankLowCorr data, 26 predictors were not transformed due 

to zero or negative values. From the remaining 13, 4 predictors had λ estimates within 

1 ± 0.2, and for these 4 no transformation was applied. The remaining 9 predictors had 

λ estimates between -1.3 and 1.6. For λ estimates within 0 ± 0.2 a log transformation 

is found to be reasonable.  

5. Machine learning algorithms 
In this chapter the machine learning algorithms used to make the predictive models 

are described. The descriptions will be concise. For a comprehensive explanation of 

the mathematics behind the models used in this study the author refers the reader to 

(Hastie, Tibshirani, & Friedman, 2009), and to the references used in text. This chapter 

is split into the three subchapters: Linear classification, nonlinear classification, and 

classification trees and rule based models. In each of these subchapters the 

corresponding machine learning algorithms get described.  
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5.1 Linear classification 
In this section, the linear classification models used are being described, as well as the 

tuning parameters used to get to the optimal model. All the models in this section are 

trained based on the HRdataDummyFullRankLowCorr dataset.  

5.1.1 Logistic regression 

The logistic regression model is one of the basic linear models for classification. The 

model is very popular due to its simplicity and ability to make inferential statements 

about model terms. Logistic regression is a specific category of regression best used 

to predict for binary or categorical dependent variables. Logistic regression finds 

parameter values that maximizes the binomial likelihood function. Even though the 

equation used in logistic regression is nonlinear, it produces linear classification 

boundaries. 

For logistic regression, formal statistical hypothesis tests can be conducted to assess 

whether the slope coefficients for each predictor are statistically significant. This 

application of logistic regression will also be used to check the hypotheses stated in 

chapter 3 (p. Error! Reference source not found.). A Z statistic is commonly used for t

hese models, and is essentially a measure of the signal-to-noise ratio: the estimated 

slope is divided by its corresponding standard error. Using this statistic, the predictors 

can be ranked to understand which terms had the largest effect on the model (Kuhn & 

Johnson, 2016).  

5.1.2 Linear Discriminant Analysis 

Linear Discriminant Analysis is explained as deriving a z-score, which is a linear 

combination of two or more independent variables that will discriminate best between 

two (or more) different categories or groups. The z-scores calculated using the 

discriminant functions is then used to estimate the probabilities that an observation 

belongs to a class. Linear discriminant analysis could be formulated as a model that 

minimizes the total probability of misclassification. In this analysis, it is assumed that 

the predictors in each class shared a common covariance structure. The consequence 

of this assumption is that the class boundaries are linear functions of the predictors. 

(Hastie et al., 2009) 

5.1.3 Penalized logistic regression 

Some classification models utilize penalties (or regularization) to improve the fit to the 

data (Kuhn & Johnson, 2016). In this paper, a penalty term for the logistic regression 

model is included. Recall that logistic regression finds parameter values that 

maximizes the binomial likelihood function.  

The method used for regularizing linear regression models in this paper is the Lasso 

and Elastic-Net Regularized Generalized Linear Models(glmnet). This glmnet model 

uses ridge and lasso penalties simultaneously and structures the penalty in the 

following way (Friedman, Hastie, & Tibshirani, 2010): 

log 𝐿(𝑝) − 𝜆 [(1 − 𝑎)
1

2
 ∑ 𝛽𝑗

2 +  𝛼 ∑|𝛽𝑗|

𝑃

𝑗=1

𝑃

𝑗=1

] 
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Here, the α value is the “mixing proportion” that toggles between the pure lasso penalty 

(when α = 1) and a pure ridge-regression-like penalty (α = 0). The other tuning 

parameter λ controls the total amount of penalization. 

The model was tuned over a α from 0-1 divided into 10 equal steps, and a λ between 

0.01 and 0.2 divided into 40 equal steps. The final model had a α of 0, and a λ 0.01, 

which suggests a small amount of penalization on a pure ridge-regression-like penalty.  

5.2 Nonlinear classification models 
The previous section described models that were intrinsically linear—the structure of 

the model would produce linear class boundaries. This section deals with some 

intrinsically nonlinear models. There are other nonlinear models that use trees or rules 

for modeling the data, these are discussed in the next section. All models in this section 

are trained based on the HRdataDummyFullRankLowCorr dataset.  

5.2.1 Neural Networks 

Neural networks (NN) are powerful nonlinear regression techniques inspired by 

theories about how the brain works (Goodfellow et al., 2016). The two classes (attrition 

yes/no) can be encoded into two binary columns of dummy variables and then used 

as the outcomes for the model. The outcome is modeled by an intermediary set of 

unobserved variables called hidden units. These hidden units are linear combinations 

of the original predictors. Each hidden unit is a linear combination of some or all of the 

predictor variables.  

The structure of the model described here is the simplest neural network architecture: 

a single-layer feed-forward network. There are many other kinds (Goodfellow et al., 

2016), such as models where there are more than one layer of hidden units (i.e., there 

is a layer of hidden units that models the other hidden units), or the model architectures 

have loops going both directions between layers.  

Neural networks for classification have a significant potential for over-fitting. When 

optimizing the entropy, weight decay attenuates the size of the parameter estimates. 

This can lead to much smoother classification boundaries. Also, model averaging helps 

reduce over-fitting (Kuhn & Johnson, 2016). In this case, the class probability estimates 

would be averaged across networks and these average values would be used to 

classify samples. In this study both single NN’s and averaged NN’s are being tested.  

(Kuhn & Johnson, 2016) found that spatial sign transformation can have a significant 

positive impact on the performance of neural networks. For these data that was also 

the case, so the results of the NN and Averaged NN are based on data pre-processed 

including the spatial sign transformation (Serneels, De Nolf, & Van Espen, 2006).  

The models were tuned over the number of units in the hidden layer ranging from 1 to 

10, as well as a of weight decay between 0 and 2 (λ = 0, 0.1, 1, 2). The best NN used 

only one hidden unit with a λ = 0.1. The averaged NN was the average of 10 single NN 

and similar as the single NN used only one hidden units and a λ = 0.1. In both these 

models only a single hidden unit is found to be optimal, which suggests the outcome 

can be linearly separated.  
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5.2.2 Flexible Discriminant Analysis 

In the previous section, the motivation for classical linear discriminant analysis was 

based on minimizing the total probability of misclassification. It turns out that the same 

model can be derived in a completely different manner. (Hastie, Tibshirani, & Buja, 

1994) describe a process where, for C classes, a set of C linear regression models 

can be fit to binary class indicators and show that the regression coefficients from these 

models can be post-processed to derive the discriminant coefficients. This allows the 

idea of linear discriminant analysis to be extended in a number of ways (Kuhn & 

Johnson, 2016). First, models such as the lasso, ridge regression, or MARS, can be 

extended to create discriminant variables. For example, MARS can be used to create 

a set of hinge functions that result in discriminant functions that are nonlinear 

combinations of the original predictors. As another example, the lasso can create 

discriminant functions with feature selection. This conceptual framework is referred to 

as flexible discriminant analysis (FDA).  

An FDA model was tuned and trained with a first-degree MARS hinge functions where 

the number of retained terms ranged from 1 to 30 and with a degree 1 and 2. The 

optimal model had 29 retained terms with a degree of 1.  

5.2.3 Support Vector Machines 

Support vector machines are a class of statistical models first developed in the mid-

1960s by Vladimir Vapnik. In later years, the model has evolved considerably into one 

of the most flexible and effective machine learning tools available (Kuhn & Johnson, 

2016). A support vector machine constructs a hyperplane or set of hyperplanes in 

higher dimensional space for achieving class separation. The intuition here is that a 

good separation is achieved by the hyperplane that has the largest distance to the 

nearest training data points of any class- the larger the margin the lower the 

generalization error of the classifier. For this reason, it is also referred to as maximum 

margin classifier (Kuhn & Johnson, 2016).  

Alternate versions of the support vector machine model also exist (Kuhn & Johnson, 

2016), such as least squares support vector machines (Suykens & Vandewalle, 1999), 

relevance vector machines (Tipping, 2001), and import vector machines (J. Zhu & 

Hastie, 2005). There are several approaches to using SVMs. In this paper, we 

evaluated the radial basis function kernel. It should be noted that support vector 

machines can be negatively affected by including non-informative predictors in the 

model. The equation for this kernel is: 

𝐾(𝑥, 𝑥′) = exp (−𝛾‖𝑥 − 𝑥‖2) 

The radial basis function kernel was tuned over a cost of 2 with a power ranging from 

-4 till 4. The optimal model results in σ = 0.009475476 and a cost of 2. 

5.2.4 K-Nearest Neighbors 

K-Nearest Neighbors (KNN) uses a sample’s geographic neighborhood to predict the 

sample’s classification. KNN for classification predicts a new sample using the K 

closest samples from the training set. “Closeness” is determined by a distance metric, 

and the choice of metric depends on predictor characteristics. For any distance metric, 

it is important to recall that the original measurement scales of the predictors affect the 
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resulting distance calculations. This implies that if predictors are on widely different 

scales, the distance value between samples will be biased towards predictors with 

larger scales. (Kuhn & Johnson, 2016) 

The neighborhood range evaluated for tuning was between 1 and 451.  The optimal 

model was found to have a neighborhood of 151, which is quite large. A large number 

of neighbors stimulates underfitting and a drop in corresponding predictive 

performance will be the result.   

5.2.5 Naïve Bayes 

Bayes’ Rule answers the question “based on the predictors that we have observed, 

what is the probability that the outcome is class C?” Thus, Bayes’ Rule is essentially a 

probability statement. The underlying logic to using the Bayes’ rule for machine 

learning is as follows: To train a target function fn: X → Y, which is the same as, P 

(Y|X), we use the training data to learn estimates of P (X|Y) and P(Y). Using these 

estimated probability distributions and Bayes’ rule new X samples could then be 

classified. (Kuhn & Johnson, 2016) 

The Naïve Bayes model simplifies the probabilities of the predictor values by assuming 

that all of the predictors are independent of the others. This is an extremely strong 

assumption. For most applications, it would be difficult to claim that this assumption is 

realistic. However, the assumption of independence yields a significant reduction in 

the complexity of the calculations.  

These predictors were modeled using either a normal distribution or a nonparametric 

density (the density type was treated as a tuning parameter), and a Laplace correction 

ranging between 0 and 2. The Laplace correction is a smoothing technique which 

counters the effect of the predictor not having a training sample, and thus no posterior 

probability. For this dataset, the best tuned model had a Laplace of 0 and used the 

nonparametric density distribution.  

5.3 Classification Trees and Rule-Based Models 
Classification trees fall within the family of tree-based models and consist of nested if-

then statements. Some benefits of trees are: they can be highly interpretable, can 

handle many types of predictors as well as missing data. Some weaknesses are: they 

suffer from model instability, and may not produce optimal predictive performance.  

For tree models, the splitting procedure may be able to make more dynamic splits of 

the data, such as groups of two or more categories on either side of the split (Kuhn & 

Johnson, 2016). However, to do this, the algorithm must treat the categorical predictors 

as an ordered set of bits. Therefore, when fitting trees and rule-based models, a choice 

must be made regarding the treatment of categorical predictor data: 

1. Each categorical predictor can be entered into the model as a single entity so 

that the model decides how to group or split the values. In this study this refers 

to using the HRdata set. 

2. Categorical predictors are first decomposed into binary dummy variables. In this 

way, the resulting dummy variables are considered independently, forcing 
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binary splits for the categories. In this study this refers to using the 

HRdataDummy set. 

Which approach is more appropriate depends on the data and the model. For example, 

if a subset of the categories are highly predictive of the outcome, the first approach is 

probably best. However, this choice can have a significant effect on the complexity of 

the model, and the performance. Although the trees are identifying similarly important 

information, the independent category tree is much easier to interpret than the grouped 

category tree. In this study, models will be created using both approaches described 

above.  

5.3.1 Classification trees (CART, and C4.5) 

The aim of classification trees is to partition the data into smaller, more homogeneous 

groups. Homogeneity in this context means that the nodes of the split are more pure 

(i.e. contain a larger proportion of one class in each node). A simple way to define 

purity in classification is by maximizing accuracy or equivalently by minimizing 

misclassification error. However, accuracy as a measure of purity can be misleading, 

since the measure’s focus is on partitioning the data in a way that minimizes 

misclassification rather than a focus on partitioning the data in a way that place 

samples primarily in one class (Kuhn & Johnson, 2016). Two alternative measures, the 

Gini index and cross-entropy shift the focus from accuracy to purity. Here Gini is equal 

to: 

𝐺 =  ∑ �̂�𝑚𝑘 (1 − �̂�𝑚𝑘)

𝐾

𝐾=1

 , 

And the cross-entropy equation: 

𝐷 = − ∑ �̂�𝑚𝑘 log (�̂�𝑚𝑘)

𝐾

𝐾=1

 

Where �̂�𝑚𝑘 is the proportion of training observations in the 𝑚𝑡ℎ region that belongs to 

the 𝑘𝑡ℎ class. If the �̂�𝑚𝑘 is close to zero or one, then G and D will be small.  

Gini is the criterion used by Classification and Regression Trees (CART) model. In this 

model pruning is applied via the cost of complexity. And the cross-entropy criterion is 

used by the C4.5 model. Both models are likely to overfit the data. CART uses a cost 

function as pruning method; and C4.5 uses either a simple elimination of a sub-tree, 

or raising a sub-tree so that it replaces a node further up the tree. Both these models 

are used in this study. While CART and C4.5 classification trees are the most widely 

used, there has been extensive research on and many other proposals for tree based 

models (Kuhn & Johnson, 2016).  

The CART model was tuned over 30 different trees with different complexity parameter 

(cp) values. Any split that does not decrease the overall lack of fit by a factor of cp is 

not attempted. The C4.5 like tree was trained using the standard tuning parameters 

ranging the confidence factor between 0.01 and 0.5 and a minimum number of 

instances ranging between 1 and 3. The best tuned CART model had a cp of 

0.0009040424 and 0.007232339, for the HRdata and HRdataDummy respectively. 
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And the best tuned C4.5 model had a confidence factor of 0.255 and 0.5, for the 

HRdata and HRdataDummy respectively, and both had a minimum number of 

instances of three.  

5.3.2 Rule-Based Models: PART 

(Frank & Witten, 1998) describe a rule model called PART. Here, a pruned C4.5 tree 

is created from the data and the path through the tree that covers the most samples is 

retained as a rule. The samples covered by the rule are discarded from the data set 

and the process is repeated until all samples are covered by at least one rule. Although 

the model uses trees to create the rules, each rule is created separately and has more 

potential freedom to adapt to the data.  

Since this model uses C4.5 trees, the same tuning parameters are used. The final 

model had a cp of 0.01 and 0.5 for the HRdata and HRdataDummy respectively, and 

in both cases the model was pruned.  

5.3.3 Bagged Trees 

Bagging trees for classification uses an unpruned classification tree for modeling, in 

this case, the two classes of attrition. Each model in the ensemble is used to predict 

the class of the new sample. Each model has equal weight in the ensemble, and can 

be thought of as casting a vote for the class it thinks the new sample belongs to. The 

total number of votes within each class are then divided by the total number of models 

in the ensemble (M) to produce a predicted probability vector for the sample. The new 

sample is then classified into the group that has the most votes, and therefore the 

highest probability. (Kuhn & Johnson, 2016) 

According to (Kuhn & Johnson, 2016), bagging performance often plateaus with about 

50 trees, so 50 was selected as the number of trees for each of these models. Both of 

these ROC curves are smoother than curves produced with CART or C4.5, which is 

an indication of bagging’s ability to reduce variance via the ensemble. Additionally, 

both bagging models have better AUCs than either of the previous tree models. 

5.3.4 Random Forests 

Random forests are quite similar to bagging, each tree in the forest casts a vote for the 

classification of a new sample, and the proportion of votes in each class across the 

ensemble is the predicted probability vector. However, the type of tree changes in the 

algorithm, and the tuning parameter of number of randomly selected predictors to 

choose from at each split (denoted as mtry) is now added (Breiman, 2002). The idea 

behind randomly sampling predictors during training is to de-correlate the trees in the 

forest.  

To tune mtry, (Kuhn & Johnson, 2016) recommend starting with five values that are 

somewhat evenly spaced across the range from 2 to P, where P is the number of 

predictors. They also recommend starting with an ensemble of 1,000 trees and 

increasing that number if performance is not yet close to a plateau. This is applied to 

the HRdata and HRdataDummy sets, and resulted in mtry of 2 for both datasets.   

5.3.5 Boosting 

The idea behind boosting is to combine many weak classifiers (e.g., a classifier that 

predicts marginally better than random) into a strong classifier. Boosting can be applied 
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to any classification technique, but classification trees are a popular method for 

boosting, since these can be made into weak learners by restricting the tree depth to 

create trees with few splits. Since classification trees are a low bias/high variance 

technique, the ensemble of trees helps to drive down variance, producing a result that 

has low bias and low variance. There are many species of boosting algorithms, and in 

this paper two major ones Stochastic Gradient Boosting and C5.0, are used. (Kuhn & 

Johnson, 2016) 

5.3.5.1 Stochastic Gradient Boosting 

(Friedman, J., Hastie, T., & Tibshirani, 2000) worked to provide statistical insight of the 

AdaBoost algorithm. For the classification problem, they showed that it could be 

interpreted as a forward stagewise additive model that minimizes an exponential loss 

function (Kuhn & Johnson, 2016). This framework led to algorithmic generalizations 

such as Real AdaBoost, Gentle AdaBoost, and LogitBoost. These generalizations 

were put into a unifying framework called gradient boosting machines. The basic 

principles of gradient boosting are as follows: given a loss function (e.g., shrinkage) 

and a weak learner (e.g., classification trees), the algorithm seeks to find an additive 

model that minimizes the loss function. The gradient (e.g., residual) is calculated, and 

a model is added to the previous model, and the procedure continues for a user-

specified number of iterations (Kuhn & Johnson, 2016).  

When trees are used as the base learner, as in this study, basic gradient boosting has 

two tuning parameters: tree depth (or interaction depth) and number of iterations. Also, 

the model can be tuned over a loss function, in this case shrinkage is implemented. In 

this study a tuning parameter grid was constructed where interaction depth ranged 

from 1 to 9, number of trees ranged from 100 to 2,000, and shrinkage ranged from 

0.01 to 0.1. This grid was applied to constructing a boosting model for the 

HRdataDummy and resulted in a model with: interaction depth of 1, 600 trees, and a 

shrinkage of 0.1.  

5.3.5.2 C5.0 

C5.0 is a more advanced version of the C4.5 classification model, and has additional 

features. It is claimed to be faster, use memory more efficient, gets similar results with 

smaller trees, offers support for boosting, allows the user to give the classes different 

weights, and offers winnowing (i.e. removal of unhelpful predictors). (Kuhn & Johnson, 

2016) 

In this study, several variations of the C5.0 model were evaluated:  

- Single tree- and rule-based models 

- Tree and rules with boosting (up to 100 iterations) 

- Using all predictors and using the winnowed set  

The final best tuned model based on the HRdataDummy set is a rule based model with 

90 iterations where winnowing was not used.  
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6. Model Validation technique 
It is inappropriate to validate the models on the same data the model is trained with, 

since the data is not new to the predictive model the results will be biased and show 

an over optimistic performance of the model. So, to properly validate the trained 

predictive models there is need for a test set (i.e. a set which the predictive model has 

not seen before). The author chose to split the data into a training and test set of 75% 

and 25% respectively. Since the rate of interest is under represented, stratified random 

sampling is used to split the data. This will ensure that the proportions of attrition are 

equal in each set. The number of recorders for the training set and test set are 1103 

and 367 respectively. 

6.1 Resampling method 
Additionally, to increase the reliability of the training process outcomes the practitioner 

can choose to use a resampling technique. Generally during the resampling process a 

subset of samples are used to fit a model, and the remaining samples are used to 

estimate the efficacy of the model. The resampling technique try to improve the bias 

and variance properties of the trained models. Here the bias is the difference between 

the estimated and true value of performance, and variance is the certainty of the bias. 

For example, an unbiased and high variance method may produce very different 

results when repeated. Some of the more common resampling techniques are: K-fold 

cross-validation, Leave-one-out cross-validation, repeated k-fold cross-validation, 

generalized cross-validation, repeated training/test splits, and bootstrap. 

No resampling method is uniformly better than another. Several factors should be 

considered before making the choice. In this case the sample size is small. For a small 

sample size (Kuhn & Johnson, 2016) suggests using repeated 10-fold cross-validation 

for several reasons: the bias and variance properties are good and, given the sample 

size, the computational costs are not large. The author chose for 5 repeats of a 10-fold 

cross-validation as the validation method used during this study.  

7. Model evaluation metrics 
Although many machine learning techniques can be used both for regression and 

classification, the model evaluation metric is very different. Metrics like RMSE and R2 

are not appropriate in the context of classification. Some metrics that are useful for 

classification are accuracy, sensitivity, specificity, Positive predictive value, balanced 

accuracy, F1 score, and Receiver Operating Characteristic (ROC). To improve the 

interpretability of the evaluation metrics, Table 2 shows a confusion matrix and its basic 

measures (e.g. TP, FP, FN, and TN) as well as the relationship with the evaluation 

metrics used in this study. These will be explained next.  

7.1 Accuracy 
Accuracy is one of the simplest metrics. It reflects the agreement between the 

observed and predicted classes, and has the most straightforward interpretation. 

However, in situations where the costs are different, accuracy may not measure the 

important model characteristics. Also, the natural frequencies of each class must be 

taken into consideration. For example, in the current case a simple rule stating that all 
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employees will stay at the company will already result in an accuracy of 84%. Although 

84% can be considered high in other predictive modeling applications, it is the base 

rate in our study. If the class imbalance would be even more severe, it could be the 

case that a predictive model can achieve almost perfect accuracy with only one rule. 

The formula for Accuracy is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
# 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

 

Table 2 Confusion Matrix including evaluation metrics used in current study 

 True Condition  

Condition 
Positive 

Condition 
Negative 

Predicted 
condition 

Predicted 
Condition 
Positive 

True 
positive 
(TP) 

False 
positive 
(FP) 

PPV (or Precision) 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

 

Predicted 
Condition 
Negative 

False 
negative 
(FN) 

True 
negative 
(TN) 

 

 Sensitivity 
(or Recall) 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity 
 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 Balanced 
Accuracy 
1

2

∗ (
𝑆e𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑡𝑦
) 

 F1 score 
2

∗
𝑃𝑃𝑉 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑃𝑉 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

 

7.2 Sensitivity and specificity 
For two class classification problems sensitivity and specificity are two additional 

statistics that can be relevant. The sensitivity (or recall) of the model is the rate that the 

event of interest is predicted correctly for all samples having the event, or 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
# 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑎𝑛𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑜 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡

# 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
The sensitivity is sometimes considered the true positive rate since it measures the 

accuracy in the event population. Conversely, the specificity is defined as the rate 

that nonevent samples are predicted as non events, or 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
# 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑎𝑛𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑛𝑜𝑛𝑒𝑣𝑒𝑛𝑡𝑠

# 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡
=

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

7.3 Positive predictive value  
Like sensitivity and specificity, the positive predictive value (PPV), also known as 

precision, can be calculated using the confusion matrix. One often overlooked aspect 
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of sensitivity and specificity is that they are conditional measures. Sensitivity is the 

accuracy rate for only the event population (and specificity for the nonevents). 

Intuitively, if the event is rare, this should be reflected in the answer. The PPV takes 

this into account and is an unconditional measure for the positive condition. The 

formula is: 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(Kuhn & Johnson, 2016) 

7.4 Balanced Accuracy 
Since the accuracy can be a misleading performance measure (as described in the 

accuracy section), it may falsely suggest above-chance generalizability. To safeguards 

against reporting an optimistic accuracy estimate the balanced accuracy is introduced. 

The balanced accuracy can be defined as the average accuracy obtained on either 

class. Based on a confusion matrix the balanced accuracy is given by: 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

2
∗ (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑡𝑦) =  

1

2
∗ (

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) 

If the classifier performs equally well on either class, this term reduces to the 

conventional accuracy. In contrast, if the conventional accuracy is high only because 

the classifier takes advantage of an imbalanced test set, then the balanced accuracy 

will drop to chance. 

(Brodersen, Ong, Stephan, & Buhmann, 2010) 

7.5 F score 
The F1 score is a measure of a test’s accuracy for binary classification problems. It 

considers both the sensitivity (or recall) and PPV (or precision). The F1 score can be 

interpreted as a weighted average of these two measures. The F1 score will result in 

a grade between 1 and 0 where 1 is considered best. The formula is: 

𝐹1 = 2 ∗
𝑃𝑃𝑉 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑃𝑉 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

Note, however, that the F1 score does not directly consider the true negatives in its 

calculation.  

(Yang & Liu, 1999) 

7.6 Receiver Operating Characteristic (ROC) Curve 
The ROC curve is created by evaluating the class probabilities for the model across a 

continuum of thresholds. For each candidate threshold, the resulting true-positive rate 

(i.e., the sensitivity) and the false-positive rate (one minus the specificity) are plotted 

against each other. The default threshold is 50%, which is also the threshold used to 

indicate the results. This threshold can be changed to choose a new sensitivity and 

specificity trade-off, as discussed in the previous section.  
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The ROC curve can also be used for a quantitative assessment of the model. A perfect 

model that completely separates the two classes would have 100% sensitivity and 

specificity. Graphically, the ROC curve would be a single step between (0, 0) and (0, 

1) and remain constant from (0, 1) to (1, 1). The area under the ROC curve for such a 

model would be one. A completely ineffective model would result in an ROC curve with 

an area under the ROC curve of 0.5. 

One advantage of using ROC curves to characterize models is that, since it is a 

function of sensitivity and specificity, the curve is insensitive to disparities in the class 

proportions (Fawcett, 2006). Since altered cutoff values can completely change the 

other metrics described above, performance metrics that are independent of probability 

cutoffs (such as the area under the ROC curve) are likely to produce more meaningful 

contrasts between models. That is why this metric is chosen to select the best model 

on during the training process. 

8. Remedies for severe class imbalance 
When modeling discrete classes, the relative frequencies of the classes can have a 

significant impact on the effectiveness of the model. An imbalance occurs when one 

or more classes have very low proportions in the training data as compared to the other 

classes. This is the case in the current dataset. Several remedies for severe class 

imbalances exist. In this study the two remedies altered cutoff value and sampling are 

being implemented. Some other remedies include, e.g. model tuning on minority case 

accuracy, adjusting prior probabilities, cost-sensitive training, and unequal case 

weights (Kuhn & Johnson, 2016).  

8.1 Alternated Cutoffs 
When there are two possible outcome categories, a method for increasing the 

prediction accuracy of the minority class samples is to determine alternative cutoffs for 

the predicted probabilities which effectively changes the definition of a predicted event. 

The most straightforward approach is to use the ROC curve, since it calculates the 

sensitivity and specificity across a continuum of cutoffs. Using this curve, an 

appropriate balance between sensitivity and specificity can be determined. 

Several techniques exist for determining a new cutoff. First, if there is a specific target 

that must be met for the sensitivity, or specificity, this point can be found on the ROC 

curve and the corresponding cutoff can be determined. Another approach is to find the 

point on the ROC curve that is closest (i.e. the shortest distance) to the perfect model 

(a model with 100% sensitivity and 100% specificity), which is associated with the 

upper left corner of the plot. Another approach for determining the cutoff uses Youden’s 

J index, which measures the proportion of correctly predicted samples for both the 

event and nonevent groups. This index can be computed for each cutoff that is used 

to create the ROC curve. Youden and the upper left corner approach often result in 

very similar results. During this study the upper left corner approach is implemented. 

It is worth noting that changing the cutoff does not change the core of the model, i.e. 

the same model parameters are being used. Changing the cutoff to increase the 

sensitivity does not increase the overall predictive effectiveness of the model. The main 
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impact that an alternative cutoff has is to make trade-offs between particular types of 

errors. For example, in a confusion matrix (Table 2), alternate cutoffs can only move 

samples up and down rows of the matrix. Thus, using an alternative cutoff does not 

induce further separation between the classes. 

In our analysis, the alternate cutoff values were determined only for the most promising 

models. The alternate cutoff value was derived from the training set, since, if the test 

set was used it will no longer be an unbiased source to judge the model performance. 

However, using the training set does has it downsides, e.g. the results on the training 

are likely to have an optimistic bias and can thus lead to an inaccurate assessment of 

the sensitivity and specificity. However, these effects are being mitigated by using 

validation methods (described in chapter 6 p.23). A better estimation of the altered 

cutoff value would be by creating an additional evaluation set (i.e. an extra dataset not 

used during the training process), estimate the optimal cutoff value based on this 

dataset (validation set), assess the performance of the model using the test set.  

8.2 Sampling Methods 
When using alternated cutoff values, there is almost always a decrease in either 

sensitivity or specificity as one is increased. Unlike alternate cutoff values, sampling 

approaches have the benefit of enabling better trade-offs between sensitivity and 

specificity. There are several methods of sampling, and in this study the methods 

oversampling and synthetic minority over-sampling technique (SMOTE) are being 

evaluated.  

Two general post hoc approaches are down-sampling and up-sampling the data. Up-

sampling is any technique that simulates or imputes additional data points to improve 

balance across classes, while down-sampling refers to any technique that reduces the 

number of samples to improve the balance across classes. (Ling & Li, 1998) provide 

one approach to up-sampling in which cases from the minority classes are sampled 

with replacement until each class has approximately the same number. The training 

set in this study contain 178 cases of attrition and 925 cases of non-attrition. Applying 

up-sampling resulted in adding 747 randomly chosen replacement samples.  

The synthetic minority over-sampling technique (SMOTE) (Chawla, Bowyer, Hall, & 

Kegelmeyer, 2002) is a data sampling procedure that uses both up-sampling and 

down-sampling and can be considered a hybrid sampling approach. This approach 

has three operational parameters: the amount of up-sampling, the amount of down-

sampling, and the number of neighbors that are used to impute new cases. To up-

sample for the minority class, SMOTE synthesizes new cases. To do this, a data point 

is randomly selected from the minority class and its K-nearest neighbors (KNNs) are 

determined, in this study we used a k equal to five. The new synthetic data point is a 

random combination of the predictors of the randomly selected data point and its 

neighbors. While the SMOTE algorithm adds new samples to the minority class via up-

sampling, it also can down-sample cases from the majority class via random sampling 

in order to help balance the training set. Implementing this approach using both up and 

down sampling resulted in a training set with 534 cases of attrition and 712 cases of 

non-attrition.  
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It should be noted that when using modified versions of the training set, resampled 

estimates of model performance can become biased. For example, if the data are up-

sampled, resampling procedures are likely to have the same sample in the cases that 

are used to build the model as well as the holdout set, leading to optimistic results. 

Despite this, resampling methods can still be effective at tuning the models. 

9. Results of predictive modeling  
The results of this study are split into two parts. In part 1 (this chapter) the results of 

the machine learning algorithms will be presented. Part 2 (Chapter 10, p.35) represents 

the results of the hypotheses and additional HR voluntary attrition findings. In this 

chapter, the author will provide the reader with a better context for interpreting the 

results by explaining the concept of measurement error. Next, we will discuss the 

results of the predictive models. This chapter will end with an evaluation of the severe 

class imbalance remedies.   

9.1 Measurement error  
The better we understand the measurement system and its limits, as well as the 

relationship between predictors and the response, the better we can foresee the limits 

of the model performance. To set expectations for the predictive modeling performance 

the author wants to inform the reader about two types of errors namely, measurement 

error in the outcome and measurement error in the predictors.  

9.1.1 Measurement error in the outcome  

During the modeling process the goal is to eliminate the model error. However, there 

is a component that cannot be eliminated through the modeling process. This is the 

case when the outcome contains significant measurement noise. As noise increases, 

the models used become virtually indistinguishable in terms of their predictive 

performance. This means that the advantages that some of the more complex models 

bring are only advantageous when the measurement system error is relatively low. 

(Kuhn & Johnson, 2016) 

Some aspects that can increase the measurement error in the outcome is right 

censoring and left truncation (Carrión, Solano, Gamiz, & Debón, 2010). Simply put, 

each dataset can be thought of as an observation window in time. Here left truncation 

is the periods on the left of this observation window. This period will also include cases 

of voluntary leave, but these will remain unobserved, and only the cases for which 

attrition did not happen are included in the dataset. The opposite of this phenomenon 

happens during right censoring, this is the period on the right side of the observation 

window. In this study, it can be interpreted as the non-attrition cases in the observation 

window (i.e. dataset) that eventually did leave the organization after the observation 

window ended.  

9.1.2 Measurement error in the predictors 

Measurement errors in the predictors can cause considerable issues when building 

models, especially in terms of reproducibility of the results on future data sets. Although 

it is often assumed that predictors are measured without errors, this is not always the 

case. The effect of error in measurement in the predictors can be drastic. The effect 
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depends on several factors namely: The amount of randomness, the importance of the 

predictors, the type of models being used, as well as others. Future results may be 

poor because the underlying predictor data are different than the values used in the 

training set. (Kuhn & Johnson, 2016) 

The dataset used in this study contains 34 different predictors. Although some 

predictors are expected to have low measurement error in the predictors, like for 

example age, gender, total work years, etc. Others are expected to include some noise, 

for example job satisfaction, work life balance, performance rating, etc.. The latter are 

expected to have noise, since there may be a difference in how people perceive the 

object (rater-to-rater noise). Also, it can be imagined that not all employees are totally 

honest when filling in these types of surveys for personal reasons. As noted before, 

the effect of these predictors on the model depend on several factors. And it is 

important for the reader to keep these in mind while interpreting the model. Also, 

although these predictors have noise, this does not mean they are unable to provide 

additional information about the outcome.  

9.2 Comparison of the models 
In this section the results of the models used in this study will be compared. As 

discussed in the chapter 7 (p.23), model metrics can be severely influenced by the 

cutoff value used; so, in this section the ROC, which is insensitive to the cutoff value, 

is chosen to compare the models. The results of the modeling process validated based 

on the test set are shown in Table 3.  

For the linear classification models the results are all very similar with an approximate 

area under the ROC curve (AUC) of 0,83. This result is good compared to the other 

type of models, indicating attrition can be linearly separated.  

The non-linear classification models include the best model based on AUC namely the 

support vector machine. However, the other non-linear classification models performed 

worse compared to the linear classification models, further confirming the linear 

relationship.  

Classification trees and rule based models were expected to have difficulty with the 

class imbalance. Compared to the other two groups, the classification trees and rule 

based models had the worst performance. The more complex models did improve the 

AUC over the simpler tree and rule based models, with gradient boost machine 

performing the best with a AUC of 0.82.  

To better compare the models Figure 2 was created which shows the 95% confidence 

interval of the AUC for each of the models represented in Table 3. This figure can be 

used to compare the effectiveness and performance of the models. The bars represent 

95% confidence intervals of the AUC that were derived using 2000 stratified bootstrap 

replicates. 

Based on this figure it can be inferred that the simpler tree and rule based models 

together with KNN, and Naïve Bayes perform significantly worse than the other 

models. Also for the tree and rule based models the dataset used (dummy or non-

dummy) did not result in significantly different models, indicating the dummy dataset 

might be preferred due to being more interpretable.  
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Table 3 The test set results of the modeling process based on the normal training set. 

Model Accuracy Sensitivity Specificity PPV F1 Score Balanced 
Accuracy 

AUC 

Linear Classification  
Models 

       

Logistic Regression 0.8719 0.38983          0.96429          0,77876          0,49462 0.67706          0.8303 
Linear Discriminant Analysis 0.8692          0.42373         0.95455         0,64103         0.51020 0.68914         0.8397 
Penalized logistic regression 0.8692          0.32203         0.97403         0.70370 0.44186 0.64803         0.8319 
Non-linear Classification  
Models 

       

Neural Network 0.8692          0.37288         0.96429         0.66667 0.47826 0.66858         0.828 
Average Neural Network 0.8556           0.35593          0.95130          0.58333 0.44211 0.65362          0.8259 
Flexible Discriminant Analysis 0.8801           0.44068          0.96429          0.70270 0.54167 0.70248          0.7972 
Support Vector Machine 0.8856           0.38983          0.98052          0.79310 0.52273 0.68517          0.8489 

KNN 0.8392           0 1 NA NA 0.5000           0.7644 
Naïve Bayes 0.8392           0 1 NA NA 0.5000           0.7595 
Classification Trees and  
Rules based models 

       

RPART (Gini based) 0.8147           0.32203          0.90909          0.40426 0.35849 0.61556          0.6901 
RPART Dummy 0.8556           0.33898          0.95455          0.58824 0.43011 0.64676          0.7145 
J48 (cross-entropy based) 0.842            0.30508          0.94481          0.40426 0.35849 0.62494          0.6867 
J48 Dummy 0.812            0.42373          0.88636          0.58824 0.43011 0.6581 0.6581 
PART 0.7902           0.28814          0.88636          0.51429 0.38298 0.58725          0.6411 
PART Dummy 0.7929           0.30508          0.88636          0.41667 0.42017 0.59572          0.607 
Bagged Trees 0.8692          0.35593         0.96753         0.67742 0.46667 0.66173         0.7649 
Bagged Trees Dummy 0.8583           0.30508          0.96429          0.62069          0.40909 0.63469          0.7632 
Random Forest 0.8665           0.2551           1 1 0.28986 0.58475          0.7839 
Random Forest Dummy 0.8583           0.11864          1 1 0.21212 0.55932          0.7859 
GBM Dummy 0.8638           0.44068          0.94481          0.60465 0.50980 0.69274          0.8154 
C5.0 Dummy 0.8774 0.35593          0.97727          0.75000 0.48276 0.66660          0.7912 
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The more complex trees AUCs all significantly overlap, indicating that the simpler 

random forest might be preferred over the more complex C5.0 model. GBM seems to 

slightly outperform the other tree based models.  

The confidence intervals of AUC for the linear and more complex non-linear 

classification models all significantly overlap, indicating that the outcome can be 

linearly separated and that the less complex logistic regression model might be 

preferred over the more complex neural network. From these models the SVM seems 

to slightly outperform the rest.  

 

Figure 2 A plot of the test set ROC AUCs and their associated 95% confidence intervals. Here, the upper part of the graph 
represents the tree and rule based models, from ‘c5.0 dummy’ – ‘RPART’; the middle with the non linear classification models, 
from ‘NaiveBayes’ – ‘nnet’; and the lower part the linear classification models, from ‘PenalizedLR’ – ‘logisticReg’.  

9.3 Comparison of models after implementation of class imbalance remedies 
Based on the previous results some models were selected to compare the results 

based on sampling and alternate cutoff value methods. The results of sampling are not 

expected to outperform the base case models based on the AUC, since the training 

set is sampled and is thus less comparative to the test set results. The implementation 

of these methods are, however, expected to result in more optimal sensitivity and 

specificity tradeoffs; and as a result in higher F1 scores and balanced accuracies. The 

alternate cutoff values are selected based on the point most close to the top left corner 

of the ROC based on the training set, as described in section 8.1 (p.26); and the 

results, represented in Table 4Table 3, are validated on the test set, and are 

representative for the models actual performance. 
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Table 4 Results most promising models base case vs. altered cutoff value vs. sampling results 

Model Accuracy Sensitivity Specificity PPV F1 Score Balanced Accuracy AUC 

Logistic Regression 0.8719 0.38983          0.96429          0,77876          0,49462 0.67706          0.8303 
Altered Cutoff 0.7901907    0.7288136    0.8019481 0.93916 0.82072 0.7654  

Logistic Regression UpSampled 0.7629          0.7288 0.7695        0.3772 0.49711 0.7491  0.8168 
Logistic Regression SMOTE 0.7902 0.6949 0.8084           0.4100 0.51572 0.7517           0.815 
Neural Network 0.8692          0.37288         0.96429         0.66667 0.47826 0.66858         0.828 

Altered Cutoff 0.8174387    0.6949153    0.6949153    0.93501 0.79728 0.69492  

Neural Network UpSampled 0.8338           0.50847          0.89610          0.48387 0.49587 0.70229          0.7925 
Neural Network SMOTE 0.8065 0.61017 0.84416          0.42857 0.50350 0.72716          0.7676 

Flexible Discriminant Analysis 0.8801           0.44068          0.96429          0.70270 0.54167 0.70248          0.7972 

Altered Cutoff 0.7329700 0.6610169    0.7467532 0.92000 0.76930 0,70389  
FDA UpSampled 0.782 0.6949 0.7987 0.3981 0.50617 0.7468 0.7729 
FDA SMOTE 0.8338 0.47458 0.90260 0.48276 0.47863 0.68859 0.7569 
Support Vector Machines 0.8856           0.38983          0.98052          0.79310 0.52273 0.68517          0.8489 

Altered Cutoff 0.7574932    0.7796610    0.7532468 0.94694 0.85520 0.76645  

Support Vector Machines UpSampled 0.8638           0.44068          0.94481          0.60465 0.50980 0.69274          0.7753 
Support Vector Machines SMOTE 0.8283           0.44068          0.90260          0.46429 0.45217 0.67164          0.7581 
Random Forests Dummy 0.8583           0.11864          1 1 0.21212 0.55932          0.7859 
Altered Cutoff 0.8801090    0.3050847    0.9902597 0.88150 0.45329 0.64767  

Random Forests Dummy UpSampled 0.8719 0.37288 0.96753         0.68750 0.48352 0.67021          0.7778 
Random Forests Dummy SMOTE 0.8719           0.38983          0.96429          0.67647 0.49462 0.67706          0.7911 
GBM dummy 0.8638           0.44068          0.94481          0.60465 0.50980 0.69274          0.8154 
Altered Cutoff 0.8092643    0.6949153    0.8311688 0.93430 0.79702 0.76304  

GBM dummy UpSampled 0.8692 0.4068 0.9578  0.6486 0.5 0.6823          0.7751 
GBM dummy SMOTE 0.8338 0.44068 0.90909         0.48148 0.46018 0.67488          0.7673 
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Table 5 Results of altered cutoff values based on the test set, base case vs. sampling results 

Model Threshold Accuracy Specificity Sensitivity PPV F1 score Balanced 
Accuracy 

Logistic Regression 0.2295564 
 

0.8365123 
 

0.7118644 
 

0.8603896 
 

0.9397163 0.81007 0.786127 
 

Logistic Regression 
UpSampled 

0.5343487 
 

0.7901907  
 

0.7288136 
 

0.8019481 
 

0.9391635 0.82072 0.7653809 
 

Logistic Regression SMOTE 0.5257691 
 

0.8010899 
 

0.6949153 
 

0.8214286 
 

0.9335793 0.79676 0.7581720 
 

Neural Network 0.1674948 
 

0.8147139 
 

0.7118644 
 

0.8344156 
 

0.9379562 0.80942 0.77314 
 

Neural Network UpSampled 0.1066153 
 

0.7574932 
 

0.7288136 
 

0.7629870 
 

0.9362550 0.81961 0.7459003 
 

Neural Network SMOTE 0.3349407 
 

0.7738420 
 

0.6779661 
 

0.7922078 
 

0.9277567 0.78343 0.7350870 
 
 

Support Vector Machines 0.1770735 
 

0.7874659 
 

0.7627119 
 

0.7922078 
 

0.9457364 0.84442 0.7774599 
 

Support Vector Machines 
UpSampled 

0.08109166 
 

0.72752044 
 

0.67796610 
 

0.73701299 
 

0.92276423 0.781646 0.7074895 
 

Support Vector Machines 
SMOTE 

0.1183862 
 

0.6594005 
 

0.7118644 
 

0.6493506 
 

0.9216590 0.80329 0.6806075 
 

Random Forests Dummy 0.1475000 
 

0.7411444 
 

0.7457627 
 

0.7402597 
 

0.9382716 0.83101 0.7430112 
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Random Forests Dummy 
UpSampled 

0.2065000 
 

0.7247956 
 
 
 

0.7457627 
 

0.7207792 
 

0.9367089 0.83040 0.7332710 
 
 
 

Random Forests Dummy 
SMOTE 

0.3885000 
 

0.8174387 
 
 

0.6610169 
 

0.8474026 
 

0.9288256 0.77237 0.75420975 
 

GBM dummy 0.1652439 0.7792916 0.7796610 0.7792208 0.9486166 0.85588 0.7794409 

GBM dummy UpSampled 0.002546103 0.754768392 0.677966102 
 

0.769480519 
 

0.9257813 0.78273 0.7237233 
 

GBM dummy SMOTE 0.006469846 0.752043597 0.711864407 
 

0.759740260 
 

0.9322709 0.80729 0.735802334 
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For random forest the sampling did result in a better F1 score and balanced accuracy, 

as compared to altered cutoff. For all other models the F1 score was found to be 

optimal when altered cutoff values were used. The best performing model is Support 

Vector Machine (SVM) model with a corresponding F1 score and balanced accuracy 

of, respectively, 0.85520 and 0.76645. The second to best model is a Logistic 

Regression model with altered cutoff value, which results are similar as the SVM. It 

has a corresponding F1 score and balanced accuracy of, respectively, 0.82072 and 

0.7654. Based on these metrics these two models significantly outperformed the other 

tested models. 

9.3.1 Comparison of models with altered cutoffs based on test set 

To further investigate the results of sampling, Table 5 represents the results of the 

models build on: the original dataset, up sampled data, and SMOTE data, with altered 

cutoff values selected based on the test set. So, the results may not be interpreted as 

actual results, since they will likely be over optimistic. However, the alternative cutoff 

values can be used as an evaluation method between the sampled and the base case 

to check whether actual predictive performance gains are likely to have been made. 

These results indicate that based on F1 score up-sampling could potentially outperform 

the normal dataset (logistic regression and NN), although the scores are very similar. 

And based on the balanced accuracy, applying sampling did not result in better 

predictive performance. 

10.  Results Predictor Importance and Significance 
As indicated on the beginning of the previous chapter, this section can be considered 

part two of the results. In this chapter the hypotheses stated in section 3.1 (p.11) are 

tested. Also, some of the other significant predictors will be discussed. The logistic 

regression method was used to evaluate the significance, as this model provided, 

compared to all parametric models, the best results according to previous chapter. 

Notice that during the dataset creation some of the hypothesized predictors got 

removed from the dataset, due to high correlations with the other predictors. To be 

able to test the hypotheses, the author reentered these variables into the dataset, 

which is only used for this chapter, and deleted their corresponding correlation 

counterparts. All hypothesis tests are based on an alpha of 0.05. A list of predictors 

that are significant at the 0.05 level is presented below, ordered by their relative 

importance. 

Figure 3 provides the reader with a visual representation of the relative importance of 

all predictors used in the model. In addition to the already found relevance of logistic 

regression in the previous chapter; this chapter will start with two goodness of fit 

evaluations for logistic regression. Next, based on the results of the model, the 

hypotheses will be tested. And this chapter will end with an evaluation and discussion 

of the other significant predictors related to voluntary turnover.   

 
Coefficients: 

                                  Estimate Std. Error z value Pr(>|z|)     

(Intercept)                      -2.462e+01  1.284e+01  -1.917 0.055257 .   

OverTime.Yes                     -1.993e+00  1.936e-01 -10.295  < 2e-16 *** 
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EnvironmentSatisfaction           4.390e-01  8.280e-02   5.302 1.15e-07 *** 

NumCompaniesWorked               -1.945e-01  3.769e-02  -5.161 2.46e-07 *** 

JobSatisfaction                   4.009e-01  8.153e-02   4.918 8.75e-07 *** 

BusinessTravel.Travel_Frequently -1.020e+00  2.109e-01  -4.837 1.32e-06 *** 

JobInvolvement                    3.452e-01  7.965e-02   4.334 1.46e-05 *** 

YearsSinceLastPromotion          -1.667e-01  4.178e-02  -3.991 6.58e-05 *** 

DistanceFromHome                 -3.464e-01  8.854e-02  -3.912 9.14e-05 *** 

Age                               7.463e-01  2.122e-01   3.517 0.000436 *** 

MaritalStatus.Single             -1.173e+00  3.448e-01  -3.403 0.000666 *** 

RelationshipSatisfaction          2.588e-01  8.247e-02   3.138 0.001699 **  

MonthlyIncome                     9.037e-01  2.924e-01   3.090 0.001999 **  

YearsWithCurrManager              1.391e-01  4.607e-02   3.020 0.002527 **  

YearsInCurrentRole                1.199e-01  4.466e-02   2.685 0.007245 **  

`JobRole.Sales Representative`   -1.481e+00  5.524e-01  -2.681 0.007338 **  

TrainingTimesLastYear             1.909e-01  7.293e-02   2.618 0.008850 **  

WorkLifeBalance                   1.885e-01  7.240e-02   2.604 0.009208 **  

`JobRole.Sales Executive`        -1.050e+00  4.469e-01  -2.349 0.018812 *   

`JobRole.Laboratory Technician`  -1.068e+00  4.799e-01  -2.225 0.026107 *   

Gender.Male                      -3.949e-01  1.845e-01  -2.141 0.032271 *   

 

Signif. codes:  ‘***’= 0.001, ‘**’= 0.01, ‘*’= 0.05 

 

 

Figure 3 A graphical indication of the relative importance of all predictors. 

10.1 Evaluation Goodness of Fit 
Discrimination in linear regression models is generally measured using R2. Since this 

has no direct analog in logistic regression, various methods can be used instead to 

evaluated the goodness of fit of the model. In this study the methods likelihood ratio 

test and Hosmer-Lemeshow test are conducted, and will be discussed next. 
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10.1.1 Likelihood ratio tests 

In linear regression analysis, one is concerned with partitioning variance via the sum 

of squares calculations. Variance in the criterion is essentially divided into variance 

accounted for by the predictors and residual variance. In logistic regression analysis, 

deviance is used instead of sum of squares calculations. Deviance is analogous to the 

sum of squares calculations in linear regression and is a measure of the lack of fit to 

the data in a logistic regression model like (Hosmer D.W. and Lemeshow, 1980).  

If the distribution of the likelihood ratio Λ corresponding to a particular null and 

alternative hypothesis can be explicitly determined, then it can directly be used to form 

decision regions (to accept/reject the null hypothesis). In most cases, however, the 

exact distribution of the likelihood ratio corresponding to specific hypotheses is very 

difficult to determine. (Wilks, 1938) found that as the sample size approaches ∞, the 

test statistic −2log (Λ) for a nested model will be asymptotically chi-squared distributed 

(𝜒2) with degrees of freedom equal to the difference in dimensionality. This means that 

for a great variety of hypotheses, a practitioner can compute the likelihood ratio Λ for 

the data and compare −2log (Λ) to the 𝜒2 value corresponding to a desired statistical 

significance as an approximate statistical test.   

For the logistic model the null deviance and residual deviance are provided. With the 

null deviance defined as: 

𝐷 𝑛𝑢𝑙𝑙 =  −2 ln
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑛𝑢𝑙𝑙 𝑚𝑜𝑑𝑒𝑙

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙
 

And with the residual deviance defined as: 

𝐷 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =  −2 ln
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑚𝑜𝑑𝑒𝑙
 

Here the null model estimates only one parameter to explain the data, the saturated 

model is a model that assumes each data point has its own parameter, and the 

proposed model assumes that the data points can be explained with p parameters + 

an intercept term.  

Based on these two statistics, their corresponding degrees of freedom, and the findings 

of (Wilks, 1938) the following hypothesis can be tested: 

𝐻1 = 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑙𝑜𝑔𝑖𝑡𝑖𝑐 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑠 𝑎𝑛 𝑎𝑑𝑒𝑞𝑢𝑎𝑡𝑒 𝑓𝑖𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎. 

With a p-value = 0 the null hypothesis can be rejected. So, no evidence was found that 

the model fits the data inadequately.  

10.1.2 Hosmer-Lemeshow test 

The Hosmer–Lemeshow test is another statistical test for goodness of fit for logistic 

regression models. The test assesses whether or not the observed event rates match 

expected event rates in subgroups of the model population. Logistic regression models 

provide an estimate of the probability of an outcome. It is desirable that the estimated 

probability of success is close to the true probability.  
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In a 1980 paper Hosmer and Lemeshow showed by simulation that, given that the 

predictors +1 is smaller than the number of groups (g), their test statistic approximately 

followed a chi-squared distribution 𝜒2 on g−2 degrees of freedom, when the model is 

correctly specified (Hosmer D.W. and Lemeshow, 1980). This means that given our 

fitted model, the p-value can be calculated as the right hand tail probability of the 

corresponding 𝜒2 distribution using the calculated test statistic. If the p-value is small, 

this is indicative of poor fit. Applying the Hosmer–Lemeshow test to our model resulted 

in: 𝜒2 equal to -4.32, degrees of freedom equal to 8, and a p-value equal to 1, indicating 

a good fit of the current model.  

10.2 Hypothesis test results 
Eight hypotheses are formed at the beginning of this study (p.11). Each of these will 

be discussed in turn. But first, the consequences of the preprocessing step box-cox 

will be explained.  

A box-cox transformation was used as a preprocessing step to better handle the 

skewness in the data. Due to this transformation, the results give a better estimate of 

actual predictor importance and significance. Consequently however, the relationship 

between predictor and outcome becomes less interpretable. Out of 39 predictors 13 

were considered to be transformed. From the significant predictors, the following 

predictors got transformed using this method: Age, Monthly income, Distance from 

home, Job involvement, and Work life balance. To present the relationship of these 

predictors with the outcome, plots were created with the y-ass representing the logistic 

model outcome, and the x-ass representing the original units (pre-box-cox 

transformation). In these plots, all other variables are held at a constant equal to their 

corresponding means.  

Hypothesis 1: Age is negatively related to voluntary turnover. 

Evidence was found to reject this null hypothesis. Although age is found to be a 

significant predictor for employee attrition (p < 0.001), in this dataset as age goes up 

so does the likelihood of attrition. However, it should be kept in mind that this evidence 

can be found due to the left truncation effect described at the beginning of the previous 

chapter. Age is one of the significant predictors that got transformed using the box-cox 

method, this hinders the interpretation of the estimate. Figure 4 shows the plot created 

as an indication of the effect of age on the outcome. As age goes up, so does the 

likelihood of attrition.  

Hypothesis 2: Education is a significant predictor of voluntary turnover.  

For this dataset employee education is not a significant indicator for employee 

voluntary turnover, and the null hypothesis cannot be rejected. Based on Figure 3, 

employee education level is not only insignificant it is also at the bottom of the list of 

relative importance to the outcome. This indicates that employee’s voluntary leave 

behavior is similar regardless of their education level.   
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Figure 4 Effect Age on model Outcome with all other predictors held equal to their respective means 

Hypothesis 3: Sex is a significant predictor of voluntary turnover.  

Gender is found to be a significant predictor for employee voluntary turnover (p < 0.05), 

and thus, the null hypothesis can be rejected. In this dataset if the employee is a male 

the odds ratio of voluntary leave is 0.67(exp(-3.949e-01)) indicating that the voluntary 

turnover odds decrease with 33% if the employee is male compared to female. This 

hypothesis is thus found to be true. However, out of all significant predictors, gender is 

at the bottom of the list of importance to the outcome.  

Hypothesis 4: Tenure is negatively related to voluntary turnover.  

Tenure in this dataset is indicated as years at company. Although years at company 

was found to be negatively related to voluntary turnover; with a p = 0.051 it is not 

significant and therefore the null hypothesis cannot be rejected.  

Hypothesis 5: Pay is negatively related to voluntary turnover.  

In this dataset pay is denoted as monthly income. There is no evidence to reject the 

null hypothesis. Although monthly income is found to be a significant predictor for 

voluntary turnover with a p < 0.01, the relation that was positive rather than negative, 

implying that as monthly income increases, so does the likelihood of employee 

voluntary turnover. Since monthly income is transformed by the box-cox procedure the 

results are, similar as age, hard to interpret. Figure 5 shows the relationship between 

pay and the outcome.  
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Figure 5 Effect Monthly Income on model Outcome with all other predictors held equal to their respective means 

Hypothesis 6: Job involvement is negatively related to voluntary turnover.  

Job involvement was found to be a significant indicator for voluntary turnover with a p 

< 0.001. However, contrary to the hypothesis as job involvement increases so does 

voluntary turnover. Like age and monthly income, job involvement is transformed by 

the box-cox procedure. A similar graph was plotted and is shown in Figure 6.  

Hypothesis 7: Job satisfaction is negatively related to voluntary turnover.  

Job satisfaction was found to be a significant predictor to voluntary turnover with a p < 

0.001. However, contrary to the hypothesis it was found that as job satisfaction 

increases so does the likelihood of voluntary turnover. With an estimate equal to 

0.4009 (= 4.009e-01) as job satisfaction increases with one the odds of voluntary 

turnover increase with 49% (1- exp(0.4009)).  

Hypothesis 8: Employee performance is negatively related to voluntary turnover.  

For this dataset employee performance is not a significant predictor for voluntary 

turnover, thus we cannot reject the null hypothesis. However, it should be stated that 

although employee performance is grade between 1 and 4, the former indicating bad 

performance the latter good; all employees in the current dataset had a performance 

of either 3 or 4. Employee performance could still be a significant predictor for voluntary 

turnover within a dataset containing the full spectrum of employee performance 

grades. However, when it comes to voluntary turnover, practitioners are probably 

mostly interested in the good performing employees. 
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Figure 6 Effect of Job Involvement on model Outcome with all other predictors held equal to their respective means 

10.3 Other significant predictors 
In the current study overtime is by far the most important predictor for voluntary 

turnover and is also significant with a p< 0.001. As indicated in Table 1, overtime is 

equal to either yes or no, and indicates whether an employee is allowed to write and 

get payed for the extra hours he/she makes. The odds ratio for overtime is equal to 

0.14, indicating if overtime is equal to ‘yes’ the turnover odds decreases with 86%. 

Usually in organizations lower career levels equal to employee overtime: yes, and 

higher career levels equal to overtime: no. Assuming this is true, in the case study 

organization higher career level employees are leaving the organization. This 

conclusion is in alignment with the relationships with voluntary turnover found in the 

hypotheses about age, and pay. In fact, during the initial creation of the datasets 

(Chapter 4 p.13) some predictors got deleted due to being highly correlated with others; 

and job level was found to have a 0.95 correlation with monthly income. The author 

suspects that the voluntary leave behavior for certain job levels will significantly differ 

from others.  

Another important and significant predictor for voluntary turnover is environment 

satisfaction, with a p<0.001. Contrary to common sense, the odds ratio for environment 

satisfaction is equal to 1.55, indicating if environment satisfaction is increased by 1 the 

voluntary turnover odds increase by 55%.  

Next in the list of important and significant predictors is the number of companies the 

employee has worked for in the past, with a p<0.001. Employees who worked for a 

larger number of companies are less likely to voluntarily leave the organization. The 

odds ratio is equal to 0.82, indicating that if number of companies is increased by one 

the odds for voluntary turnover decrease by 18%.  
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Employees that worked for many companies in the past can be considered more 

experienced. They will have better understanding of the differences between 

organizations, and will eventually settle in an organization and role which is most 

aligned with their own values. This settlement in the organization and in the role the 

employee wants to fulfil is likely to be associated with the ‘years since last promotion’ 

predictor, which is another important and significant predictor with a p<0.001. Here 

more years since last promotion reduces the likelihood of attrition. An increase of one 

year in years since last promotion decreases the odds ratio with 15%. It should be 

noted that this effect could be influenced by the left truncation effect, i.e. a high number 

of years since last promotion is likely to be over represented in the dataset compared 

to lower years since last promotion.  

Another important and significant predictor for voluntary turnover is business travel, 

with a p<0.001. More specific, it was found that employees who travel frequently are 

less likely to voluntary leave, with a decrease in odds of 64% compared with employees 

that do not travel or travel rarely.   

Next, distance from home was found to be a significant predictor to voluntary turnover, 

with a p<0.001. As the distance from home increases the likelihood of voluntary 

turnover decreases. Distance from home yet another predictor that is transformed by 

the box-cox procedure. A plot was created in a similar fashion as the other cases, and 

is shown in Figure 7.  

 

Figure 7 Effect of Distance from Home on model Outcome with all other predictors held equal to their respective means 
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Although marital status was found to be incomparable with previous studies, in this 

study single employees were found to be significantly different (p<0.001) from married 

or divorced employees. More specifically, the odds ratio is equal to 0.31; indicating an 

odd decrease of 69% when an employee is single.  

The most important and significant predictors were discussed. Some other less 

important but still significant predictors are: relationship satisfaction, years with current 

manager, years in current role, job role, training times last year, and work life balance. 

Here relationship satisfaction, years with current manager, years in current role, and 

training times are positively related to voluntary turnover. And the job roles: sales 

representative, sales executive, and laboratory technician, were found to be 

significantly different from the other job roles and are all negatively related to voluntary 

turnover.  

11. Related work 
In their study, (X. Zhu et al., 2017) made a summary of previous research on employee 

turnover forecasting. It contains references dating back from 1982 until 2015. From 

these, the studies classified as response variable equal to probability are considered 

related to this study. Next, the author searched for related research after 2015 and 

found two additional paper. The author was unable to get access to the paper  

(Nagadevara, Srinivasan, & Valk, 2008), and is thus excluded from the table. Table 6 

provides an overview of comparable studies and some characteristics of these studies. 

Some characteristics that differentiates the current study from previous studies are: 

the number of methods used, number of samples, number of predictors, class-

imbalance resolution, and the combination of model accuracy and predictor 

significance. In this study, multiple machine learning algorithms get compared. The 

sample size is greater than any of the other studies, indicating this study’s outcome to 

be more robust. The dataset includes many predictors, including predictors such as 

monthly salary and monthly rate which are often excluded. This enabled the author to 

analyze the significance of multiple predictors related to voluntary turnover, improve 

the performance of the predictive models, and for practitioners the results give a better 

indication of actual model performance. Also, previous studies did often not address 

the class imbalance which exists in all datasets. In addition, the current study, contrary 

to previous studies, uses a publicly available dataset which makes the results 100% 

reproducible.  
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Table 6 Previous studies predicting voluntary turnover  

Authors Data 
Acquisition 

Methods # 
Samples 
(N) 

# 
Predictors 
(P) 

Test 
Set 

Validation 
Method  

Class- 
Imbalance 
Resolution 

Model 
Accuracy 
Calculation 

Predictor 
Significance 
Calculation 

(Ng, Cram, & 
Jenkins, 1991) 

Survey Hazard 
proportional 
model 

1002 8 No  No No No Yes 

(Balfour & Neff, 
1993) 

Employee 
records 

Logistic 
regression 

171 7 No No No No Yes 

(Feeley & 
Barnett, 1997) 

Survey Social network, 
logistic 
regression 

166 3 No No No No Yes 

(Sexton, 
McMurtrey, 
Michalopoulos, 
& Smith, 2005) 

Employee 
records 

Multiple 
versions of NN 

447 18 No 10-fold 
cross-
validation 

No Yes No 

(Hong, Wei, & 
Chen, 2007) 

Survey Logistic 
regression, and 
probit 
regression 

132 6 32% No No No Yes 

(Saradhi & 
Palshikar, 2011) 

Employee 
records 

SVM, Random 
Forest, Naïve 
Bayes 

1363 32 20% No Weighting Yes No 

(Tews, Stafford, 
& Michel, 2014) 

Survey Logistic 
regression 

290 10 No No No No Yes 

(X. Zhu, 2016) 
Chapter 4 

Employee 
records 

Logistic 
regression, 
classification 
tree 

731 8 40% No No No Yes 

(Ribes, Touahri, 
& Perthame, 
2017) 

Employee 
records 

SVM, RF, LDA, 
bagged trees 

1000 11 20% 10-fold 
cross-
validation 

Down-
sampling, 
Up-
sampling, 
Weighting, 

Yes No 
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SMOTE, 
and ROSE 

Current Study Employee 
records 

Logistic 
regression, 
LDA, penalized 
logistic 
regression, NN, 
FDA, SVM, 
KNN, Naïve 
Bayes, Simple 
decision trees 
and rule based 
models, bagged 
trees, random 
forest, 
Stochastic 
Gradient 
Boosting, and 
C5.0 

1470 31 25% 5 repeats 
of 10-fold 
cross-
validation 

Up-
sampling, 
SMOTE, 
and altered 
cutoffs 

Yes Yes 
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12. Discussion and conclusion 
This chapter will provide the reader with a discussion of the results, the conclusion of 

this papers, and areas for future research.  

12.1 Discussion 
At the start of this paper four key questions got formed, in this section each of these 

will be discussed in turn. The first key question formed is: ‘What machine learning 

algorithm is most appropriate for predicting employee voluntary leave?’. To answer this 

question 16 different machine learning algorithms got tested, and the results were 

analyzed. From this analysis, it was found that voluntary turnover can be linearly 

separated; indicating that the simpler more interpretable linear classification models 

might be preferable over the less interpretable nonlinear classification models. 

However, the model that was found to have the best performance based on the area 

under the ROC curve is the non-linear classification model Support Vector Machine.  

The second key question is: ‘Does sampling of the dataset increase the predictive 

performance of the models?’. A method for countering the effects of class imbalance 

is to apply alternated cutoff values (see section 8.1 for more detail, p.26). The normal 

cutoff value for predicting a case is 0.5. Based on the ROC curve an altered cutoff 

value was found, which provides the best trade-off between sensitivity and specificity. 

Notice that the model, which is based on the original data, remains unchanged. In 

contrast, sampling is a technique for which the models are trained on more balanced 

datasets with the aim to find even better trade-offs between sensitivity and specificity. 

Training on sampled data will result in structurally different models. Two additional 

datasets based on over-sampling, and synthetic minority over-sampling technique 

(SMOTE) (section 8.2, p.27), where created two answer the second key question. Our 

findings suggest that sampling does not significantly improve the performance of the 

models for voluntary turnover. However, only two sampling approaches got tested 

here, and there might still be others that will result in better performing models.  

The third key question stated is: ‘What results can be expected from predictive 

modeling of employee voluntary turnover?’. In this study based on the F1 score and 

balanced accuracy the best performing model is the support vector machine when 

applied with altered cutoff, with a F1 score and balanced accuracy of respectively, 0.86 

and 0.77. This model has a corresponding sensitivity of 0.78, specificity of 0.75, and a 

positive predictive value (PPV) of 0.95. These results can be interpreted as: for 

sensitivity, assuming the employee is voluntary leaving the organization, this test has 

an accuracy of 78%; for specificity, assuming the employee is not leaving the 

organization, this test has an accuracy of 75%; and for PPV, for all employees identified 

by the model as voluntary leaving the organization, this model has an accuracy of 95%. 

A close second is the more interpretable logistic regression applied with altered cutoff, 

with a F1 score and balanced accuracy of respectively, 0.82 and 0.77; and with 

corresponding sensitivity, specificity, and PPV of, respectively, 0.73, 0.80, and 0.94. It 

should be noted that the altered cutoffs were found on the ROC curves of the training 

set. This may not produce optimal results on the test set, since the models are likely 
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to overfit the training data. Even better results can be expected from a model for which 

the altered cutoffs are based on an additional evaluation set.  

And the final question: ‘What are the significant predictors for determining employee 

voluntary leave?’. The significance of predictors is evaluated by fitting a logistic 

regression model to the data. The model was found to fit the data well (section 10.1 

p.36). Out of 39 predictors 20 were found to be significant for predicting employee 

voluntary leave. The top 10 most important and significant predictors are: Overtime, 

EnvironmentSatisfaction, NumCompaniesWorked, JobSatisfaction, BusinessTravel, 

JobInvolvement, YearsSinceLastPromotion, DistanceFromHome, Age, and 

relationship status Single. For the full list, and interpretation of the relationship between 

predictor and outcome, the author refers the reader to chapter 10 (p. 35). In section 2 

of this chapter (p.38) the hypothesis formed in chapter 3 (p.11) are tested. Out of the 

eight hypotheses formed, education, tenure, and employee performance where found 

to be insignificantly related to voluntary turnover. However, tenure is only slightly 

insignificant with a p=0.051; and this dataset did only contain employees with a 

performance rating of 3-4 on a 4-point scale. Sex was found to be a significant 

predictor, where males are less likely to leave compared to females. The remaining 

hypotheses, age, pay, job involvement, and job satisfaction, were all found to be 

significantly related to employee voluntary turnover. However, not always in the 

relationship described based on literature. For these data, age, and pay were found to 

be positively related to voluntary leave, indicating older successful employees are 

leaving the organization. And, job involvement, and job satisfaction, were found to be 

negatively related to voluntary leave, indicating employee’s that are more involved and 

more satisfied with their job are leaving this organization. 

12.2 Conclusion 
The importance of predicting employee voluntary turnover and the application of 

machine learning in building predictive models are presented in this paper. The dataset 

used in this study is a publicly available dataset provided by IBM (McKinley, 2015). 

The dataset was found to be valid in being representative to an organization’s actual 

data. Multiple datasets were created to effectively compare the results of 16 different 

machine learning methods. The support vector machine was found to produce the best 

model, closely followed by logistic regression. Based on these data, it was found that 

voluntary turnover can be linearly separated. Also, sampling was investigated as a 

remedy for the severe class imbalance in the data. Compared to altered cutoff values, 

it did not result in better performing models.  

In addition, based on previous literature some hypotheses got formed. These 

hypotheses, in addition with the other predictors used in this study, were tested on their 

respective importance and significance. Out of 39, 20 were found to be significant for 

predicting voluntary turnover. However, some of the relationships found go against 

common sense and suggests areas for further research, which will be discussed next.  

12.3 Future work 
The results of analysis of the importance and significance of the predictors can be 

counterintuitive. For example, in this dataset the older more experienced employees 

are leaving the organization, which is in contrast to other studies. This does not mean 
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that this, or previous studies, are invalid. This merely means that for voluntary turnover 

there is variability in the outcome. This results in some predictors being significant for 

voluntary turnover in one organization, but can be found insignificant in others; or have 

a contradicting relationship with the outcome.  

This finding is in accordance with (Rubenstein et al., 2017) which, besides investigating 

the correlation found between predictors and voluntary leave, investigated the effect 

of moderating factors on the relationship between the predictors and voluntary leave. 

In their study, they highlight the context-sensitive nature of individual-level voluntary 

leave. This implies that it is important for practitioners to analyze their own data to find, 

and be able to react to, the predictors that are important and significant in their 

organization. And for researchers to come up with a framework, so organizations can 

be categorized, and the results can be compared to their respective groups; as well as 

investigate the meta-analytic moderators (Rubenstein et al., 2017).  

In addition, (Rubenstein et al., 2017) found that by far the strongest correlation with 

voluntary turnover is intent to leave. This would be an interesting variable for 

organizations to measure, and will most likely increase the performance of the models. 

Previous individual-level voluntary turnover predictive modeling research did not 

include this predictor yet, so this is another important contribution that can be made to 

literature.  

Some other related avenues, future research should focus on including external 

available data. For example, job market opportunities, macro-economic factors, 

unemployment rate, activity of employee on work related social media site (e.g. 

LinkedIn in the Netherlands), etc., are all potentially interesting measures that can 

possibly influence the predictive performance of the models. This was impossible to 

do on the current dataset, since the dataset is anonymized and not enough is known 

about its background.  

It would also be interesting to see the effect of the changes of variables (e.g., job 

satisfaction, or employee performance) in time on employee voluntary turnover, to see 

if this can bring additional predictive information.  

And last, the predictive model results presented in this study can still be improved by, 

for example, feature engineering. It would be interesting to see based on these data 

the optimal performance of the logistic regression model vs. the support vector 

machine.  
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Session 
# during this study the author made use of two machines. The session information for both 
are presented below.  
#machine 1: 
 sessionInfo() 
Outcome: 
R version 3.1.3 (2015-03-09) 

Platform: x86_64-w64-mingw32/x64 (64-bit) 

Running under: Windows Server 2012 x64 (build 9200) 

 

 
#machine 2: 
sessionInfo() 
Outcome: 
R version 3.3.3 (2017-03-06) 
Platform: x86_64-w64-mingw32/x64 (64-bit) 
Running under: Windows >= 8 x64 (build 9200) 
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Library Packages used during this study 
# the packages used to generate the results in this study are: 
library("caret") 
library("corrplot") 
library("doSNOW") 
library("e1071") 
library("earth") 
library("glmnet") 
library("kernlab") 
library("klaR") 
library("mda") 
library("pls") 
library("pROC") 
library("rpart.plot") 
library("rrcov") 
library("sparseLDA") 
library("lattice") 
library("nnet") 
library("C50") 
library("gbm") 
library("ipred") 
library("partykit") 
library("randomForest") 
library("RWeka") 
library("stringr") 
library("plyr") 
library("DMwR") 
library("reshape") 
library("ResourceSelection") 
library("rms") 
library("pscl") 
library("arm") 

Dataset validity 
#dataset validation 
HRdata <- Dataset_HR_Employee_Attrition 
 
#Check 1. TotalWorkingYears>=YearsAtCompany 
extractyears <- function(x) { 
  if(HRdata[x, "TotalWorkingYears"] < HRdata[x, "YearsAtCompany"]){ 
    return(1) 
  } else{ 
    return(0) 
  } 
} 
workingyearasvalidity <- NULL 
for (i in 1:nrow(HRdata)){ 
  workingyearasvalidity <- c(workingyearasvalidity, extractyears(i)) 
} 
unique(workingyearasvalidity) 
Outcome: 
[1] 0 
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#Conclusion, the validity of TotalWorkingYears>=YearsAtCompany holds.  
 
#Check 2. YearsAtCompany>=YearsInCurrentRole 
extractyears2 <- function(x) { 
  if(HRdata[x, "YearsAtCompany"] < HRdata[x, "YearsInCurrentRole"]){ 
    return(1) 
  } else{ 
    return(0) 
  } 
} 
YearsRoleValidity <- NULL 
for (i in 1:nrow(HRdata)){ 
  YearsRoleValidity <- c(YearsRoleValidity, extractyears2(i)) 
} 
unique(YearsRoleValidity) 
Outcome: 
[1] 0 
 

#Conclusion, the validity of YearsAtCompany>=YearsInCurrentRole holds. 
 
#Check 3. YearsAtCompany>=YearsSinceLastPromotion 
extractyears3 <- function(x) { 
  if(HRdata[x, "YearsAtCompany"] < HRdata[x, "YearsSinceLastPromotion"]){ 
    return(1) 
  } else{ 
    return(0) 
  } 
} 
YearsPromotionValidity <- NULL 
for (i in 1:nrow(HRdata)){ 
  YearsPromotionValidity <- c(YearsPromotionValidity, extractyears3(i)) 
} 
unique(YearsPromotionValidity) 
Outcome: 
[1] 0 

#Conclusion, the validity of YearsAtCompany>=YearsSinceLastPromotion holds. 
 
#Check 4. YearsAtCompany>=YearsWithCurrManager 
extractyears4 <- function(x) { 
  if(HRdata[x, "YearsAtCompany"] < HRdata[x, "YearsWithCurrManager"]){ 
    return(1) 
  } else{ 
    return(0) 
  } 
} 
YearsManagerValidity <- NULL 
for (i in 1:nrow(HRdata)){ 
  YearsManagerValidity <- c(YearsManagerValidity, extractyears4(i)) 
} 
unique(YearsManagerValidity) 
Outcome: 
[1] 0 

#Conclusion, the validity of YearsAtCompany>=YearsWithCurrManager holds. 
 
#Check 5. MonthlyRate>=DailyRate 
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extractrate <- function(x) { 
  if(HRdata[x, "MonthlyRate"] < HRdata[x, "DailyRate"]){ 
    return(1) 
  } else{ 
    return(0) 
  } 
} 
rateValidity <- NULL 
for (i in 1:nrow(HRdata)){ 
  rateValidity <- c(rateValidity, extractrate(i)) 
} 
unique(rateValidity) 
Outcome: 
[1] 0 

#Conclusion, the validity of MonthlyRate>=DailyRate holds. 
 
#Check 6. DailyRate>=HourlyRate 
extractrate6 <- function(x) { 
  if(HRdata[x, "DailyRate"] < HRdata[x, "HourlyRate"]){ 
    return(1) 
  } else{ 
    return(0) 
  } 
} 
rateValidity6 <- NULL 
for (i in 1:nrow(HRdata)){ 
  rateValidity6 <- c(rateValidity6, extractrate6(i)) 
} 
unique(rateValidity6) 
Outcome: 
[1] 0 

#Conclusion, the validity of DailyRate>=HourlyRate holds. 

Dataset Analytics 
 

Frist dataset check 
#check structure of the dataset 
str(HRdata) 
output: 
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#the results indicate that some chr string variables should become factors 
#check if this is true 
unique(HRdata $Attrition) 
unique(HRdata $Gender) 
unique(HRdata $MaritalStatus) 
unique(HRdata $Over18) 
unique(HRdata $OverTime) 
unique(HRdata $EducationField) 
unique(HRdata $Department) 
unique(HRdata $BusinessTravel) 
unique(HRdata $JobRole) 
outcome: 
> unique(HRdata$Attrition) 
[1] "Yes" "No"  
> unique(HRdata$Gender) 
[1] "Female" "Male"   
> unique(HRdata$MaritalStatus) 
[1] "Single"   "Married"  "Divorced" 
> unique(HRdata$Over18) 
[1] "Y" 
> unique(HRdata$OverTime) 
[1] "Yes" "No"  
> unique(HRdata$EducationField) 
[1] "Life Sciences"    "Other"            "Medical"          "Marketing"        
"Technical Degree" 
[6] "Human Resources"  
> unique(HRdata$Department) 
[1] "Sales"                  "Research & Development" "Human Resources"        
> unique(HRdata$BusinessTravel) 
[1] "Travel_Rarely"     "Travel_Frequently" "Non-Travel"        
> unique(HRdata$JobRole) 
[1] "Sales Executive"           "Research Scientist"        "Laboratory T
echnician"     "Manufacturing Director"    
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[5] "Healthcare Representative" "Manager"                   "Sales Repres
entative"      "Research Director"         
[9] "Human Resources"  
 
 

#the results indicate that all of them should be factors instead of string characters.  
#also Over18 seems to have only one unique value, which is uninformative related to the 
outcome. 
 
#change the chr string to factor. 
HRdata$Attrition <- as.factor(HRdata$Attrition) 
HRdata$Gender <- as.factor(HRdata$Gender) 
HRdata$MaritalStatus <- as.factor(HRdata$MaritalStatus) 
HRdata$OverTime <- as.factor(HRdata$OverTime) 
HRdata$EducationField <- as.factor(HRdata$EducationField) 
HRdata$Department <- as.factor(HRdata$Department) 
HRdata$BusinessTravel <- as.factor(HRdata$BusinessTravel) 
HRdata$JobRole <- as.factor(HRdata$JobRole) 
HRdata$Over18<- as.factor(HRdata$Over18) 
 
#Check summary of dataset for interesting results and missing data.  
summary.data.frame(HRdata) 
Outcome: 
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#no missing values found. 
#Employee count seems also uninformative. 
#PerformanceRating seems to have only two values 3 and 4. All employees in this dataset 
are rated to perform good.   
 
#handle uninformative predictors. 
summary.data.frame(HRdata[ , nearZeroVar(HRdata)]) 
Outcome: 
EmployeeCount    Over18          StandardHours 
 Min.   :1     Length:1470        Min.   :80    
 1st Qu.:1     Class :character   1st Qu.:80    
 Median :1     Mode  :character   Median :80    
 Mean   :1                        Mean   :80    
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 3rd Qu.:1                        3rd Qu.:80    
 Max.   :1                        Max.   :80  
 
 

HRdata<-HRdata[ , -nearZeroVar(HRdata)] 
#nearZeroVar indicates which columns should be removed. 
#The columns EmployeeCount, Over18, and StandardHours are removed. 
 
#Next, let's transform Attrition into binary variable.  
# 1=Yes, 0=No 
extractAttrition <- function(x) { 
  if(HRdata[x, "Attrition"]== "Yes"){ 
    return(1) 
  } else{ 
    return(0) 
  } 
} 
AttritionBinary <- NULL 
for (i in 1:nrow(HRdata)){ 
  AttritionBinary <- c(AttritionBinary, extractAttrition(i)) 
} 
#check correctness 
head(AttritionBinary) 
head(HRdata[ , "Attrition"]) 
Outcome: 
> head(AttritionBinary) 
[1] 1 0 1 0 0 0 
> head(HRdata[ , "Attrition"]) 
[1] Yes No  Yes No  No  No  
Levels: No Yes 
 

#transform into binary 
HRdata[ , "Attrition"]<-AttritionBinary 
 

Dummy variable creation 
#Create dummy variables. Is necessary for some models and correlation check. 
#One with all predictors for interpretability, and one with #class -1 predictors.  
#FullRank=TRUE: factors are encoded so that there are no linear dependencies induced 
between the columns 
DummyVars <- dummyVars(~ Gender + MaritalStatus + EducationField + Department + 
BusinessTravel + JobRole, data = HRdata, levelsOnly = FALSE, fullRank = FALSE)  
HRdataDummyVars <- predict(DummyVars, HRdata) 
DummyVars2 <- dummyVars(~ Gender + MaritalStatus + EducationField + Department + 
BusinessTravel + JobRole, data = HRdata, levelsOnly = FALSE, fullRank = TRUE)  
HRdataDummyVars2 <- predict(DummyVars2, HRdata) 
#All predictors 
HRdataDummy<-subset(HRdata, , -c(Gender, MaritalStatus, EducationField, Department, 
BusinessTravel, JobRole)) 
HRdataDummy<-cbind(HRdataDummy, HRdataDummyVars) 
#class -1 predictors, or no linear dependencies in dummyset. 
HRdataDummyFullRank<-subset(HRdata, , -c(Gender, MaritalStatus, EducationField, 
Department, BusinessTravel, JobRole)) 
HRdataDummyFullRank<-cbind(HRdataDummyFullRank, HRdataDummyVars2) 
#HRdataDummy has 52 columns 
#HRdataDummyFullRank has 46 columns 
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PCA and correlation check 
#Create a correlation matrix, to get a feel for the data.  
#first on dummy without full rank 
correlations <- cor(HRdataDummy, method = c("spearman")) 
corrplot(correlations, order = "hclust") 
Outcome: 

 
 
#next, on dummy with full rank 
correlations2 <- cor(HRdataDummyFullRank, method = c("spearman")) 
corrplot(correlations2, order = "hclust") 
Outcome: 
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#notice a small decrease in correlations between HRdataDummy vs. 
HRdataDummyFullRank, and just couple of high correlations. 
 
#Find highly correlated variables Full Rank. 
highCorr <- findCorrelation(correlations, cutoff = .75) 
length(highCorr) 
Outcome: 

5 

 
#5 correlations were found with a between correlation of .75 or higher 
#highCorr contains the column numbers of the highly correlated predictors 
str(HRdataDummyFullRank[, highCorr]) 
Outcome: 
'data.frame': 1470 obs. of  5 variables: 
 $ JobLevel                         : num  2 2 1 1 1 1 1 1 3 2 ... 
 $ YearsAtCompany                   : num  6 10 0 8 2 7 1 1 9 7 ... 
 $ Department.Research & Development: num  0 1 1 1 1 1 1 1 1 1 ... 
 $ Department.Sales                 : num  1 0 0 0 0 0 0 0 0 0 ... 
 $ BusinessTravel.Travel_Rarely     : num  1 0 1 0 1 0 1 1 0 1 ... 
 

 
#create dataset without the correlations Full Rank 
HRdataDummyFullRankLowCorr<- HRdataDummyFullRank[, -highCorr] 
 
#Check the difference with and without Full Rank. 
#Find highly correlated variables. 
highCorr <- findCorrelation(correlations, cutoff = .75) 
length(highCorr) 
#8 correlations were found with a between correlation of .75 or higher 
#Notice that the number is higher compared to Full Rank. 
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#highCorr contains the column numbers of the highly correlated predictors 
str(HRdataDummyFullRank[, highCorr]) 
Outcome: 
'data.frame': 1470 obs. of  8 variables: 
 $ JobLevel                     : num  2 2 1 1 1 1 1 1 3 2 ... 
 $ YearsAtCompany               : num  6 10 0 8 2 7 1 1 9 7 ... 
 $ JobRole.Laboratory Technician: num  0 0 1 0 1 1 1 1 0 0 ... 
 $ JobRole.Manager              : num  0 0 0 0 0 0 0 0 0 0 ... 
 $ JobRole.Sales Representative : num  0 0 0 0 0 0 0 0 0 0 ... 
 $ MaritalStatus.Married        : num  0 1 0 1 1 0 1 0 0 1 ... 
 $ EducationField.Medical       : num  0 0 0 0 1 0 1 0 0 1 ... 
 $ JobRole.Research Director    : num  0 0 0 0 0 0 0 0 0 0 ... 

 

 
#Also the except for the first two all the other variables are different 
 
#check correlation of attrition vs all other predictors 
corAttrition <- apply(HRdataDummy,2, function(col)cor(col, HRdataDummy$Attrition)) 
corAttrition 
Outcome: 

 
 
# Next, principal component analysis to find out the main variance in the data. 
#BoxCox corrects the skewness in the data. 
#Center centers the variables. 
#scale makes the scales of all variables the same.  
pcaObject <- preProcess(HRdataDummyFullRankLowCorr, method = c("BoxCox", "center", 
"scale", "pca")) 
pcaObject 
Outcome: 
Created from 1470 samples and 41 variables 
 
Pre-processing: 
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  - Box-Cox transformation (14) 
  - centered (41) 
  - ignored (0) 
  - principal component signal extraction (41) 
  - scaled (41) 
 
Lambda estimates for Box-Cox transformation: 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
-1.3000  0.3250  0.7500  0.6643  1.1000  1.6000  
 
PCA needed 33 components to capture 95 percent of the variance 
 
 

#out of 41 variables, 33 components were created to capture 95 percent of the varian
ce. 
#still many components are needed to explain the variance in the data. 
 

Hypothesis check 
#Hypotheses basic check, and first impression. 
 
#first let’s look at the outcome variable Attrition. 
summary(HRdata$Attrition) 
Outcome: 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
 0.0000  0.0000  0.0000  0.1612  0.0000  1.0000 
 

 
#make attrition a factor so basic plots can be made. 
HRdata$Attrition<-as.factor(HRdata$Attrition) 
summary(HRdata$Attrition) 
Outcome: 
  No  Yes  
1233  237 
 

 
#Only 16,12%, 237 out of 1470, is labeled as attrition. 
#The rate of interest (Attrition yes) is under represented. 
#This should be kept in mind for predictive model training. 
 
#Hypothesis 1: Employee salary is a significant predictor of voluntary turnover.  
 
#first create groups out of the salary.  
#for this the function cut is used. This “breaks” MonthlyIncome in 5 pieces  
HRdata$SalaryCut <- cut(HRdata$MonthlyIncome, breaks = 5, labels = FALSE) 
 
#create a plot to investigate income and attrition. 
table(HRdata$SalaryCut) 
Outcome: 
  1   2   3   4   5  
714 399 166  70 121 
 

 
ggplot(HRdata, aes(x = SalaryCut, fill = factor(Attrition))) + 
  geom_bar() + 
  xlab("SalaryCut") + 
  ylab("Total Count") + 



67 
 

  labs(fill = "Attrition") 
Outcome: 

 
 
#The first impression confirms hypothesis 1. 
#delete HRdata$SalaryCut 
HRdata$SalaryCut<-NULL 
 
#Hypothesis 2: Employee performance is a significant predictor of voluntary turnover.  
#create a plot to investigate Employee performance and attrition. 
ggplot(HRdata, aes(x = PerformanceRating, fill = factor(Attrition))) + 
  geom_bar() + 
  xlab("PerformanceRating") + 
  ylab("Total Count") + 
  labs(fill = "Attrition") 
Outcome: 

 
 
#again, the performance has only two unique values.  
#only a fraction gets the performance rating 4. 
#the proportion of leave for a performance rating of 3 seems only marginally more than 4.  
 
#Hypothesis 3: Employee education level is a significant predictor of voluntary turnover.  
#create a plot to investigate Employee education and attrition. 
ggplot(HRdata, aes(x = Education, fill = factor(Attrition))) + 
  geom_bar() + 
  xlab("Education Level") + 
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  ylab("Total Count") + 
  labs(fill = "Attrition")  
Outcome: 

 
 
#an education level of 5 seems to be informative for employee attrition 
#the proportions of attrition with a level of education below 5 seem equally distributed. 
 
#Hypothesis 4: Female employees are more likely to voluntary leave than male employees.  
#create a plot to investigate gender and attrition. 
ggplot(HRdata, aes(x = Gender, fill = factor(Attrition))) + 
  geom_bar() + 
  xlab("Gender") + 
  ylab("Total Count") + 
  labs(fill = "Attrition") 
Outcome: 

 
 
#Gender seems uninformative for attrition.  
#Looking at the plot and hypothesis, the opposite seems to be more likely.  
 
#Hypothesis 5: Age is a significant factor of voluntary turnover. 
#create a plot to investigate age and attrition. 
ggplot(HRdata, aes(x = Age, fill = factor(Attrition))) + 
  geom_bar() + 
  xlab("Age") + 
  ylab("Total Count") + 
  labs(fill = "Attrition") 
Outcome: 
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#The dataset does not seem to contain many old/retirement employees. 
#Younger staff seems to be more likely to leave compared to older staff. 
 
#Hypothesis 6: Years of service at company is a significant factor of voluntary turnover.  
#create a plot to investigate years of service and attrition. 
ggplot(HRdata, aes(x = YearsAtCompany, fill = factor(Attrition))) + 
  geom_bar() + 
  xlab("YearsAtCompany") + 
  ylab("Total Count") + 
  labs(fill = "Attrition") 
Outcome: 

 
 
#years at company does seem informative for attrition. 
#notice that the dataset is skewed to the right.  
 
#Hypothesis 7: Work environment is a significant factor of voluntary turnover. 
#create a plot to investigate work environment and attrition. 
ggplot(HRdata, aes(x = EnvironmentSatisfaction, fill = factor(Attrition))) + 
  geom_bar() + 
  xlab("EnvironmentSatisfaction") + 
  ylab("Total Count") + 
  labs(fill = "Attrition") 
Outcome: 
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#The environment does not seem to be informative for attrition, in this dataset. 
 
#Next, the author decided that there is no causal link between EmployeeNumber and 
attrition, since uninformative predictors can decrease the performance of some models this 
variable is deleted from the datasets. 
HRdata$EmployeeNumber<-NULL 
HRdataDummy$EmployeeNumber<-NULL 
HRdataDummyFullRank$EmployeeNumber<-NULL 
HRdataDummyFullRankLowCorr$EmployeeNumber<-NULL 
 

#Training and test set creation.  
#The author chose to split the data into a training set of 75% and thus a test set of 25%. 
#Since the rate of interest is under represented, stratified random sampling is used to split 
the data.  
 
#first, create a dataset of the outcome. 
classes <- HRdata[, "Attrition"] 
 
# Set the random number seed so the results can be reproduced 
set.seed(1247) 
# By default, the numbers are returned as a list. Using list = FALSE, a matrix of row numbers 
is generated. 
# These samples are allocated to the training set. 
trainingRows <- createDataPartition(classes, p = .75, list = FALSE) 
 
# Subset the data into objects for training using integer sub-setting. 
trainClasses <- classes[trainingRows] 
trainHRdata <- HRdata[trainingRows, ] 
trainHRdataDummy <- HRdataDummy[trainingRows, ] 
trainHRdataDummyFullRank <- HRdataDummyFullRank[trainingRows, ] 
trainHRdataDummyFullRankLowCorr <- HRdataDummyFullRankLowCorr[trainingRows, ] 
# Do the same for the test set using negative integers. 
testClasses <- classes[-trainingRows] 
testHRdata <- HRdata[-trainingRows, ] 
testHRdataDummy <- HRdataDummy[-trainingRows, ] 
testHRdataDummyFullRank <- HRdataDummyFullRank[-trainingRows, ] 
testHRdataDummyFullRankLowCorr <- HRdataDummyFullRankLowCorr[-trainingRows, ] 
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Predictive Modeling 
 
#to make computations go faster multi-core training is used.  
cl <- makeCluster(6, type = "SOCK") 
registerDoSNOW(cl) 
 
#Shutdown cluster 
stopCluster(cl) 
 

#cross validation of the models 
#with the caret function train, predictive models can be trained and tuned.  
#within this function, trControl the method of cross validation. 
#next, the author will set the specifics for the traincontrol settings used in this paper.  
#It was chosen to use a repeated 10-fold cross-validation.  
ctrl <- trainControl(method = "repeatedcv", repeats = 5, summaryFunction = 
twoClassSummary, classProbs = TRUE, savePredictions = TRUE) 
 
#------------------------------------------------------ 

#create functions to check model results 
#------------------------------------------------------ 
 
# a = Machine learning algorithm 
# b = dataset 
 
#first, the function to get trainset results 
 
trainresultsfunction <- function(a, b){ 
  #confusion matrix and roc curve for train set.  
  #The basic predict call evaluates new samples, and type = "prob" returns the class 
probabilities.  
TrainPredict <- predict(a, b[, -1], type = "prob") 
TrainPredict$class <- predict(a, b[, -1]) 
TrainPredict$outcome <- b$Attrition 
TrainPredict$outcome <- as.factor(TrainPredict$outcome) 
 
#Confusion matrix for trainset: 
cm <- confusionMatrix(data = TrainPredict$class, reference = TrainPredict$outcome, positive 
= "X1") 
print(cm) 
 
#plot ROC curve and Area under the curve statistic 
RocTrain <- roc(response = TrainPredict$outcome, predictor = TrainPredict$X1, levels = 
rev(levels(TrainPredict$outcome)))  
plot(RocTrain, type = "s", print.thres = c(.5), 
     print.thres.pch = 3, 
     print.thres.pattern = "", 
     print.thres.cex = 1.2, 
     col = "red", legacy.axes = TRUE, 
     print.thres.col = "red") 
print(auc(RocTrain)) 
 
return(TrainPredict) 
} 



72 
 

 
#Second, the function to get testset results 
 
testresultsfunction <- function(a, b, c){ 
  #confusion matrix and roc curve for test set.  
  #The basic predict call evaluates new samples, and type = "prob" returns the class 
probabilities.  
  TestPredict <- predict(a, b[, -1], type = "prob") 
  TestPredict$class <- predict(a, b[, -1]) 
  TestPredict$outcome <- b$Attrition 
  TestPredict$outcome <- as.factor(TestPredict$outcome) 
  
  #Confusion matrix for testset: 
  cm <- confusionMatrix(data = TestPredict$class, reference = TestPredict$outcome, positive 
= "X1") 
  print(cm) 
  cmbyClass <- cm$byClass 
  cmbyClass <- as.data.frame(cmbyClass) 
   
  Fscore <- 
(2*cmbyClass$cmbyClass[1]*cmbyClass$cmbyClass[3]/(cmbyClass$cmbyClass[1]+cmbyCla
ss$cmbyClass[3])) 
   
  print(paste(c("F1 score =", Fscore), collapse = " ")) 
   
  #plot ROC curve and Area under the curve statistic 
  RocTest <- roc(response = TestPredict$outcome, predictor = TestPredict$X1, levels = 
rev(levels(TestPredict$outcome)))  
  plot(RocTest,  
       type = "s", 
       add = TRUE, 
       print.thres = c(.5), 
       print.thres.pch = 16, legacy.axes = TRUE, 
       print.thres.pattern = "", 
       print.thres.cex = 1.2) 
   
  legend(.75, .2, 
         c(str_c("Testset ", c), str_c("Trainset ", c)), 
         lwd = c(1, 1), 
         col = c("black", "red"), 
         pch = c(16, 3)) 
   
  print(auc(RocTest)) 
   
  return(TestPredict) 
} 
#create objects to save results in 
trainresults <- NULL 
testresults <- NULL 
 

#Linear classification models 
#make attrition useful for model classification 
 
#first make outcome variable a factor to be useful for classification. 
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trainHRdataDummyFullRankLowCorr$Attrition <- 
as.factor(trainHRdataDummyFullRankLowCorr$Attrition) 
testHRdataDummyFullRankLowCorr$Attrition <- 
as.factor(testHRdataDummyFullRankLowCorr$Attrition) 
#change the name of factor, so it can be computed.  
trainHRdataDummyFullRankLowCorr$Attrition <- 
make.names(trainHRdataDummyFullRankLowCorr$Attrition, unique = FALSE, allow_ = 
TRUE) 
testHRdataDummyFullRankLowCorr$Attrition <- 
make.names(testHRdataDummyFullRankLowCorr$Attrition, unique = FALSE, allow_ = 
TRUE) 
 
#first make outcome variable a factor. 
trainHRdataDummy$Attrition <- as.factor(trainHRdataDummy$Attrition) 
testHRdataDummy$Attrition <- as.factor(testHRdataDummy$Attrition) 
#change the name of factor, so it can be computed.  
trainHRdataDummy$Attrition <- make.names(trainHRdataDummy$Attrition, unique = FALSE, 
allow_ = TRUE) 
testHRdataDummy$Attrition <- make.names(testHRdataDummy$Attrition, unique = FALSE, 
allow_ = TRUE) 
 

#Logistic Regression 
set.seed(1247) 
logisticReg <- train(trainHRdataDummyFullRankLowCorr[ , -1], y = 
trainHRdataDummyFullRankLowCorr$Attrition,  method = "glm", preProc = c("BoxCox", 
"center", "scale"), metric = “ROC”, trControl = ctrl) 
logisticReg 
Outcome: 
Generalized Linear Model  
 
1103 samples 
  39 predictor 
   2 classes: 'X0', 'X1'  
 
Pre-processing: Box-Cox transformation (13), centered (39), scaled (39)  
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...  
Resampling results: 
 
  ROC        Sens       Spec      
  0.8380446  0.9615101  0.4566013 

 

 
#the predictions for this analysis is contained in the sub-object pred. 
head(logisticReg$pred) 
Outcome: 
  pred obs        X0           X1 rowIndex parameter    Resample 
1   X1  X1 0.3289703 0.6710297002        1      none Fold01.Rep1 
2   X0  X0 0.9749180 0.0250820405        6      none Fold01.Rep1 
3   X1  X1 0.2889912 0.7110088106       16      none Fold01.Rep1 
4   X0  X0 0.9992801 0.0007199291       17      none Fold01.Rep1 
5   X1  X0 0.2274435 0.7725564938       39      none Fold01.Rep1 
6   X0  X0 0.9437310 0.0562690283       42      none Fold01.Rep1 

 

 
#results of trained model 
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trainresults$logisticReg <- trainresultsfunction(logisticReg, 
trainHRdataDummyFullRankLowCorr) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 900  90 
        X1  25  88 
                                           
               Accuracy : 0.8957           
                 95% CI : (0.8762, 0.9132) 
    No Information Rate : 0.8386           
    P-Value [Acc > NIR] : 3.419e-08        
                                           
                  Kappa : 0.5482           
 Mcnemar's Test P-Value : 2.401e-09        
                                           
            Sensitivity : 0.49438          
            Specificity : 0.97297          
         Pos Pred Value : 0.77876          
         Neg Pred Value : 0.90909          
             Prevalence : 0.16138          
         Detection Rate : 0.07978          
   Detection Prevalence : 0.10245          
      Balanced Accuracy : 0.73368          
                                           
       'Positive' Class : X1               
                                           
[1] "F1 score = 0.494623655913979" 
Area under the curve: 0.8739 

 
 
#results of trained model on test set 
testresults$logisticReg <- testresultsfunction(logisticReg, 
trainHRdataDummyFullRankLowCorr, "logisticReg") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 297  36 
        X1  11  23 
                                           
               Accuracy : 0.8719           
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                 95% CI : (0.8334, 0.9044) 
    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.0480056        
                                           
                  Kappa : 0.4273           
 Mcnemar's Test P-Value : 0.0004639        
                                           
            Sensitivity : 0.38983          
            Specificity : 0.96429          
         Pos Pred Value : 0.67647          
         Neg Pred Value : 0.89189          
             Prevalence : 0.16076          
         Detection Rate : 0.06267          
   Detection Prevalence : 0.09264          
      Balanced Accuracy : 0.67706          
                                           
       'Positive' Class : X1  

 
Area under the curve: 0.8303 

 
 
 

 

#Linear Discriminant Analysis 
set.seed(1247) 
ldaFit <- train(trainHRdataDummyFullRankLowCorr[ , -1], y = 
trainHRdataDummyFullRankLowCorr$Attrition, method = "lda", preProc = c("BoxCox", 
"center", "scale"), metric = "ROC", trControl = ctrl) 
ldaFit 
Outcome: 
Linear Discriminant Analysis  
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1103 samples 
  39 predictor 
   2 classes: 'X0', 'X1'  
 
Pre-processing: Box-Cox transformation (13), centered (39), scaled (39)  
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...  
Resampling results: 
 
  ROC        Sens       Spec      
  0.8302441  0.9660519  0.4498039 

 

 
#results of trained model 
trainresults$ldaFit <- trainresultsfunction(ldaFit, trainHRdataDummyFullRankLowCorr) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 905  94 
        X1  20  84 
                                          
               Accuracy : 0.8966          
                 95% CI : (0.8772, 0.914) 
    No Information Rate : 0.8386          
    P-Value [Acc > NIR] : 2.037e-08       
                                          
                  Kappa : 0.5411          
 Mcnemar's Test P-Value : 8.083e-12       
                                          
            Sensitivity : 0.47191         
            Specificity : 0.97838         
         Pos Pred Value : 0.80769         
         Neg Pred Value : 0.90591         
             Prevalence : 0.16138         
         Detection Rate : 0.07616         
   Detection Prevalence : 0.09429         
      Balanced Accuracy : 0.72514         
                                          
       'Positive' Class : X1              
                                          
Area under the curve: 0.8633 
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#results of trained model on test set 
testresults$ldaFit <- testresultsfunction(ldaFit, testHRdataDummyFullRankLowCorr, "ldaFit") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 294  34 
        X1  14  25 
                                          
               Accuracy : 0.8692          
                 95% CI : (0.8304, 0.902) 
    No Information Rate : 0.8392          
    P-Value [Acc > NIR] : 0.064977        
                                          
                  Kappa : 0.4383          
 Mcnemar's Test P-Value : 0.006099        
                                          
            Sensitivity : 0.42373         
            Specificity : 0.95455         
         Pos Pred Value : 0.64103         
         Neg Pred Value : 0.89634         
             Prevalence : 0.16076         
         Detection Rate : 0.06812         
   Detection Prevalence : 0.10627         
      Balanced Accuracy : 0.68914         
                                          
       'Positive' Class : X1  
 
[1] "F1 score = 0.510204081632653" 
Area under the curve: 0.8397 
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#Penalized logistic regression 
# Specify the tuning values for training  
glmnGrid <- expand.grid(.alpha = seq(0, 1, length = 10), .lambda = seq(.01, .2, length = 40)) 
 
#train the model 
set.seed(1247) 
glmnTuned <- train(trainHRdataDummyFullRankLowCorr[ , -1], y = 
trainHRdataDummyFullRankLowCorr$Attrition, method = "glmnet", tuneGrid = glmnGrid, 
preProc = c("BoxCox", "center", "scale"), metric = "ROC", trControl = ctrl) 
glmnTuned 
Outcome: 
glmnet  
 
1103 samples 
  39 predictor 
   2 classes: 'X0', 'X1'  
 
Pre-processing: Box-Cox transformation (13), centered (39), scaled (39)  
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 993, 992, 993, 993, 992, 994, ...  
Resampling results across tuning parameters: 
 
 
  alpha  lambda      ROC        Sens       Spec        
  0.0    0.01000000  0.8388901  0.9790276  0.409411765 
  0.0    0.01487179  0.8384322  0.9837821  0.394836601 
  0.0    0.01974359  0.8376994  0.9865965  0.378039216 
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  0.0    0.02461538  0.8371455  0.9885414  0.352026144 
  0.0    0.02948718  0.8364904  0.9894086  0.336405229 
  0.0    0.03435897  0.8358813  0.9902735  0.319346405 
  0.0    0.03923077  0.8351582  0.9915708  0.298954248 
  0.0    0.04410256  0.8345746  0.9924381  0.282091503 
  0.0    0.04897436  0.8338869  0.9930832  0.270653595 
  0.0    0.05384615  0.8334509  0.9935157  0.256143791 
  0.0    0.05871795  0.8332058  0.9945979  0.241568627 
  0.0    0.06358974  0.8325966  0.9956802  0.222352941 
  0.0    0.06846154  0.8321102  0.9963277  0.204379085 
  0.0    0.07333333  0.8316511  0.9969752  0.194248366 
  0.0    0.07820513  0.8310447  0.9974077  0.180718954 

This list was reduced! 
ROC was used to select the optimal model using  the largest value. 
The final values used for the model were alpha = 0 and lambda = 0.01.  

 

 
#results of trained model 
trainresults$glmnTuned <- trainresultsfunction(glmnTuned, 
trainHRdataDummyFullRankLowCorr) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 913  99 
        X1  12  79 
                                           
               Accuracy : 0.8994           
                 95% CI : (0.8801, 0.9165) 
    No Information Rate : 0.8386           
    P-Value [Acc > NIR] : 4.070e-09        
                                           
                  Kappa : 0.5368           
 Mcnemar's Test P-Value : 3.275e-16        
                                           
            Sensitivity : 0.44382          
            Specificity : 0.98703          
         Pos Pred Value : 0.86813          
         Neg Pred Value : 0.90217          
             Prevalence : 0.16138          
         Detection Rate : 0.07162          
   Detection Prevalence : 0.08250          
      Balanced Accuracy : 0.71542          
                                           
       'Positive' Class : X1 

 
Area under the curve: 0.87 
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#results of trained model on test set 
testresults$glmnTuned <- testresultsfunction(glmnTuned, 
testHRdataDummyFullRankLowCorr, "glmnTuned") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 300  40 
        X1   8  19 
                                          
               Accuracy : 0.8692          
                 95% CI : (0.8304, 0.902) 
    No Information Rate : 0.8392          
    P-Value [Acc > NIR] : 0.06498         
                                          
                  Kappa : 0.3792          
 Mcnemar's Test P-Value : 7.66e-06        
                                          
            Sensitivity : 0.32203         
            Specificity : 0.97403         
         Pos Pred Value : 0.70370         
         Neg Pred Value : 0.88235         
             Prevalence : 0.16076         
         Detection Rate : 0.05177         
   Detection Prevalence : 0.07357         
      Balanced Accuracy : 0.64803         
                                          
       'Positive' Class : X1  

 
[1] "F1 score = 0.441860465116279" 
Area under the curve: 0.8319 
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#Create a heatmap. 
plot(glmnTuned, plotType = "level") 
Outcome: 

 
 

#Nonlinear classification models 
 

#Neural Networks 
 
#create grid 
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nnetGrid <- expand.grid(.size = 1:10, .decay = c(0, .1, 1, 2)) 
 
maxSize <- max(nnetGrid$.size) 
numWts <- 1*(maxSize * (length(trainHRdataDummyFullRankLowCorr) ) + maxSize + 1) 
 
#train model 
#spatialSign increases the predictive performance 
set.seed(1247)  
nnetFit <- train(trainHRdataDummyFullRankLowCorr[ , -1], 
trainHRdataDummyFullRankLowCorr$Attrition, method = "nnet", metric = "ROC", preProc = 
c("BoxCox", "center", "scale", "spatialSign"), tuneGrid = nnetGrid, trace = FALSE, maxit = 
2000, MaxNWts = numWts, trControl = ctrl) 
nnetFit 
Outcome: 
Neural Network  
 
1103 samples 
  39 predictor 
   2 classes: 'X0', 'X1'  
 
Pre-processing: Box-Cox transformation (13), centered (39), scaled (39), s
patial 
 sign transformation (39)  
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...  
Resampling results across tuning parameters: 
 
  size  decay  ROC        Sens       Spec        
   1    0.0    0.6331973  0.9556942  0.339346405 
   1    0.1    0.8403970  0.9641000  0.465294118 
   1    1.0    0.8325750  0.9974053  0.137973856 
   1    2.0    0.8244572  1.0000000  0.000000000 
   2    0.0    0.6156003  0.9424848  0.384771242 
   2    0.1    0.8236169  0.9576134  0.462026144 
   2    1.0    0.8326925  0.9937284  0.202026144 
   2    2.0    0.8236968  1.0000000  0.002222222 
   3    0.0    0.6417868  0.9331884  0.379738562 
   3    0.1    0.8095311  0.9411664  0.447516340 
   3    1.0    0.8328273  0.9937307  0.215424837 
   3    2.0    0.8242260  1.0000000  0.005555556 
Note: list was reduced 
 
ROC was used to select the optimal model using  the largest value. 
The final values used for the model were size = 1 and decay = 0.1. 

 

 
#results of trained model 
trainresults$nnetFit <- trainresultsfunction(nnetFit, trainHRdataDummyFullRankLowCorr) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 902  86 
        X1  23  92 
                                          
               Accuracy : 0.9012          
                 95% CI : (0.882, 0.9182) 
    No Information Rate : 0.8386          
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    P-Value [Acc > NIR] : 1.325e-09       
                                          
                  Kappa : 0.574           
 Mcnemar's Test P-Value : 2.876e-09       
                                          
            Sensitivity : 0.51685         
            Specificity : 0.97514         
         Pos Pred Value : 0.80000         
         Neg Pred Value : 0.91296         
             Prevalence : 0.16138         
         Detection Rate : 0.08341         
   Detection Prevalence : 0.10426         
      Balanced Accuracy : 0.74599         
                                          
       'Positive' Class : X1   

 
Area under the curve: 0.867 

 
 

 
#results of trained model on test set 
testresults$nnetFit <- testresultsfunction(nnetFit, testHRdataDummyFullRankLowCorr, 
"nnetFit") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 297  37 
        X1  11  22 
                                          
               Accuracy : 0.8692          
                 95% CI : (0.8304, 0.902) 
    No Information Rate : 0.8392          
    P-Value [Acc > NIR] : 0.064977        
                                          
                  Kappa : 0.4102          
 Mcnemar's Test P-Value : 0.000308        
                                          
            Sensitivity : 0.37288         
            Specificity : 0.96429         
         Pos Pred Value : 0.66667         
         Neg Pred Value : 0.88922         
             Prevalence : 0.16076         
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         Detection Rate : 0.05995         
   Detection Prevalence : 0.08992         
      Balanced Accuracy : 0.66858         
                                          
       'Positive' Class : X1 

 
[1] "F1 score = 0.478260869565217" 
Area under the curve: 0.828 

 
 

 
#------------------------ 

#train average nnet model 
#------------------------ 
 
#create grid 
rdaGrid <- expand.grid(.gamma = seq(0, 1, length = 10), .lambda = seq(0, 1, length = 10)) 
 
set.seed(1247) 
nnetFit2 <- train(x = trainHRdataDummyFullRankLowCorr[ , -1], y = 
trainHRdataDummyFullRankLowCorr$Attrition, method = "avNNet", metric = "ROC", preProc 
= c("BoxCox", "center", "scale", "spatialSign"), tuneGrid = avnnetGrid, trace = FALSE, 
trControl = ctrl) 
nnetFit2 
Outcome: 
Model Averaged Neural Network  
 
1103 samples 
  39 predictor 
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   2 classes: 'X0', 'X1'  
 
Pre-processing: Box-Cox transformation (13), centered (39), scaled (39), s
patial sign transformation (39)  
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...  
Resampling results across tuning parameters: 
 
  size  decay  ROC        Sens       Spec        
   1    0.0    0.4937108  1.0000000  0.000000000 
   1    0.1    0.8355051  0.9712436  0.455228758 
   1    1.0    0.8242448  1.0000000  0.007777778 
   1    2.0    0.8060022  1.0000000  0.000000000 
   2    0.0    0.5278147  1.0000000  0.000000000 
   2    0.1    0.8318003  0.9625993  0.449738562 
   2    1.0    0.8231309  1.0000000  0.014509804 
   2    2.0    0.8041041  1.0000000  0.000000000 
   3    0.0    0.5093318  1.0000000  0.000000000 
   3    0.1    0.8315763  0.9608509  0.443660131 
   3    1.0    0.8263758  0.9987050  0.050588235 
   3    2.0    0.8044978  1.0000000  0.000000000 
   4    0.0    0.5195749  1.0000000  0.000000000 
   4    0.1    0.8326432  0.9617251  0.453071895 
   4    1.0    0.8247662  0.9995699  0.060522876 
   4    2.0    0.8051703  1.0000000  0.000000000 
   5    0.0    0.5321935  1.0000000  0.000000000 
   5    0.1    0.8308858  0.9621482  0.456535948 
   5    1.0    0.8248748  1.0000000  0.058300654 
   5    2.0    0.8018000  1.0000000  0.000000000 
   6    0.0    0.5539379  1.0000000  0.000000000 
   6    0.1    0.8350617  0.9619402  0.448562092 
   6    1.0    0.8232154  0.9993525  0.068300654 
   6    2.0    0.8023413  1.0000000  0.000000000 
   7    0.0    0.5543868  1.0000000  0.000000000 
   7    0.1    0.8305635  0.9595605  0.454052288 
   7    1.0    0.8247775  0.9991374  0.067516340 
   7    2.0    0.8036769  1.0000000  0.000000000 
   8    0.0    0.5831814  1.0000000  0.000000000 
   8    0.1    0.8271659  0.9632235  0.441895425 
   8    1.0    0.8230947  0.9991328  0.076143791 
   8    2.0    0.8033158  1.0000000  0.000000000 
   9    0.0    0.5599956  1.0000000  0.000000000 
   9    0.1    0.8331060  0.9630178  0.448169935 
   9    1.0    0.8249645  0.9993525  0.062549020 
   9    2.0    0.8042971  1.0000000  0.000000000 
  10    0.0    0.5501331  1.0000000  0.000000000 
  10    0.1    0.8324096  0.9623749  0.440653595 
  10    1.0    0.8245509  0.9995676  0.067320261 
  10    2.0    0.8019499  1.0000000  0.000000000 
 
Tuning parameter 'bag' was held constant at a value of 10 
ROC was used to select the optimal model using  the largest value. 
The final values used for the model were size = 1, decay = 0.1 and bag = 1
0. 
 

 
#results of trained model 
trainresults$nnetFit2 <- trainresultsfunction(nnetFit2, trainHRdataDummyFullRankLowCorr) 
Outcome: 
Confusion Matrix and Statistics 
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          Reference 
Prediction  X0  X1 
        X0 902  80 
        X1  23  98 
                                           
               Accuracy : 0.9066           
                 95% CI : (0.8879, 0.9231) 
    No Information Rate : 0.8386           
    P-Value [Acc > NIR] : 3.587e-11        
                                           
                  Kappa : 0.6038           
 Mcnemar's Test P-Value : 3.432e-08        
                                           
            Sensitivity : 0.55056          
            Specificity : 0.97514          
         Pos Pred Value : 0.80992          
         Neg Pred Value : 0.91853          
             Prevalence : 0.16138          
         Detection Rate : 0.08885          
   Detection Prevalence : 0.10970          
      Balanced Accuracy : 0.76285          
                                           
       'Positive' Class : X1               
                                           
Area under the curve: 0.856 

 
 
 

 
#results of trained model on test set 
testresults$nnetFit2 <- testresultsfunction(nnetFit2, testHRdataDummyFullRankLowCorr, 
"nnetFit2") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 293  38 
        X1  15  21 
                                           
               Accuracy : 0.8556           
                 95% CI : (0.8154, 0.8899) 
    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.219061         
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                  Kappa : 0.3647           
 Mcnemar's Test P-Value : 0.002512         
                                           
            Sensitivity : 0.35593          
            Specificity : 0.95130          
         Pos Pred Value : 0.58333          
         Neg Pred Value : 0.88520          
             Prevalence : 0.16076          
         Detection Rate : 0.05722          
   Detection Prevalence : 0.09809          
      Balanced Accuracy : 0.65362          
                                           
       'Positive' Class : X1               
                                           
[1] "F1 score = 0.442105263157895" 
Area under the curve: 0.8259 

 
 

 

#Flexible Discriminant Analysis 
 
#Train FDA over number of components from 1 to 30 and a degree of 1 and 2.  
set.seed(1247) 
fdaFit <- train(x = trainHRdataDummyFullRankLowCorr[ , -1], y = 
trainHRdataDummyFullRankLowCorr$Attrition, method = "earth", metric = "ROC", preProc = 
c("BoxCox", "center", "scale"), tuneGrid = expand.grid(.nprune = 1:30, .degree = 1:2), 
trControl = ctrl) 
fdaFit 
Outcome: 
Multivariate Adaptive Regression Spline  
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1103 samples 
  39 predictor 
   2 classes: 'X0', 'X1'  
 
Pre-processing: Box-Cox transformation (13), centered (39), scaled (39)  
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 992, 994, 992, 992, 993, 993, ...  
Resampling results across tuning parameters: 
 
  degree  nprune  ROC        Sens       Spec      
  1       25      0.8083973  0.9571739  0.3620915 
  1       26      0.8084876  0.9567438  0.3632026 
  1       27      0.8080336  0.9565288  0.3620915 
  1       28      0.8083617  0.9563137  0.3632026 
  1       29      0.8095219  0.9569565  0.3643137 
  1       30      0.8094213  0.9571716  0.3654248 
  2       25      0.7510179  0.9437821  0.3062745 
  2       26      0.7494129  0.9437868  0.3051634 
  2       27      0.7493593  0.9437868  0.3041830 
  2       28      0.7482044  0.9442193  0.3053595 
  2       29      0.7479579  0.9442193  0.3065359 
  2       30      0.7480327  0.9444343  0.3053595 
 
ROC was used to select the optimal model using  the largest value. 
The final values used for the model were nprune = 29 and degree = 1. 

 

 
#results of trained model 
trainresults$fdaFit <- trainresultsfunction(fdaFit, trainHRdataDummyFullRankLowCorr) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 899 107 
        X1  26  71 
                                           
               Accuracy : 0.8794           
                 95% CI : (0.8587, 0.8981) 
    No Information Rate : 0.8386           
    P-Value [Acc > NIR] : 8.126e-05        
                                           
                  Kappa : 0.4542           
 Mcnemar's Test P-Value : 4.009e-12        
                                           
            Sensitivity : 0.39888          
            Specificity : 0.97189          
         Pos Pred Value : 0.73196          
         Neg Pred Value : 0.89364          
             Prevalence : 0.16138          
         Detection Rate : 0.06437          
   Detection Prevalence : 0.08794          
      Balanced Accuracy : 0.68538          
                                           
       'Positive' Class : X1               
                                           
Area under the curve: 0.8594 
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#results of trained model on test set 
testresults$fdaFit <- testresultsfunction(fdaFit, testHRdataDummyFullRankLowCorr, "fdaFit") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 297  33 
        X1  11  26 
                                           
               Accuracy : 0.8801           
                 95% CI : (0.8424, 0.9115) 
    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.016982         
                                           
                  Kappa : 0.4768           
 Mcnemar's Test P-Value : 0.001546         
                                           
            Sensitivity : 0.44068          
            Specificity : 0.96429          
         Pos Pred Value : 0.70270          
         Neg Pred Value : 0.90000          
             Prevalence : 0.16076          
         Detection Rate : 0.07084          
   Detection Prevalence : 0.10082          
      Balanced Accuracy : 0.70248          
                                           
       'Positive' Class : X1               
                                           
[1] "F1 score = 0.541666666666667" 
Area under the curve: 0.7972 
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#check the variable importance 
fdaimp <- varImp(fdaFit, scale = FALSE)  
fdaimp  
Outcome: 
earth variable importance 
 
  only 20 most important variables shown (out of 39) 
 
                                 Overall 
OverTime.Yes                      100.00 
TotalWorkingYears                  87.29 
EnvironmentSatisfaction            72.56 
StockOptionLevel                   64.85 
JobInvolvement                     58.48 
NumCompaniesWorked                 51.62 
BusinessTravel.Travel_Frequently   45.41 
RelationshipSatisfaction           39.99 
YearsWithCurrManager               31.36 
YearsSinceLastPromotion            27.07 
JobSatisfaction                    27.07 
WorkLifeBalance                    14.86 
MaritalStatus.Married               0.00 
DailyRate                           0.00 
PercentSalaryHike                   0.00 
Education                           0.00 
Gender.Male                         0.00 
MonthlyRate                         0.00 
EducationField.Marketing            0.00 
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EducationField.LifeSciences         0.00 
 

 
#plot the variable importance 
plot(fdaimp , top = 20, scales = list(y = list(cex = .95))) 
Outcome: 

 
 

# Support Vector Machines 
#create tuning parameters 
set.seed(1247) 
sigmaRangeReduced <- sigest(as.matrix(trainHRdataDummyFullRankLowCorr[ , -1]))  
svmRGridReduced <- expand.grid(.sigma = sigmaRangeReduced[1], .C = 2^(seq(-4, 4))) 
 
#train the model 
set.seed(1247) 
svmFit <- train(x = trainHRdataDummyFullRankLowCorr[ , -1], y = 
trainHRdataDummyFullRankLowCorr$Attrition, method = "svmRadial", metric = "ROC", 
preProc = c("BoxCox", "center", "scale"), tuneGrid = svmRGridReduced, fit = FALSE, 
trControl = ctrl) 
svmFit 
Outcome: 
Support Vector Machines with Radial Basis Function Kernel  
 
1103 samples 
  39 predictor 
   2 classes: 'X0', 'X1'  
 
Pre-processing: Box-Cox transformation (13), centered (39), scaled (39)  
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Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 992, 992, 992, 993, 993, 993, ...  
Resampling results across tuning parameters: 
 
  C        ROC        Sens       Spec      
   0.0625  0.8367184  0.9628144  0.4480392 
   0.1250  0.8366713  0.9641094  0.4358824 
   0.2500  0.8366593  0.9636816  0.4401307 
   0.5000  0.8367560  0.9625993  0.4405229 
   1.0000  0.8369186  0.9641117  0.4427451 
   2.0000  0.8370395  0.9703763  0.4058170 
   4.0000  0.8342243  0.9764236  0.3707843 
   8.0000  0.8234219  0.9749112  0.3392157 
  16.0000  0.8088556  0.9777349  0.2840523 
 
Tuning parameter 'sigma' was held constant at a value of 0.009475476 
ROC was used to select the optimal model using  the largest value. 
The final values used for the model were sigma = 0.009475476 and C = 2. 
 

 
#results of trained model 
trainresults$svmFit <- trainresultsfunction(svmFit, trainHRdataDummyFullRankLowCorr) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 916  75 
        X1   9 103 
                                           
               Accuracy : 0.9238           
                 95% CI : (0.9066, 0.9388) 
    No Information Rate : 0.8386           
    P-Value [Acc > NIR] : < 2.2e-16        
                                           
                  Kappa : 0.6691           
 Mcnemar's Test P-Value : 1.321e-12        
                                           
            Sensitivity : 0.57865          
            Specificity : 0.99027          
         Pos Pred Value : 0.91964          
         Neg Pred Value : 0.92432          
             Prevalence : 0.16138          
         Detection Rate : 0.09338          
   Detection Prevalence : 0.10154          
      Balanced Accuracy : 0.78446          
                                           
       'Positive' Class : X1  
 
Area under the curve: 0.9243 
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#results of trained model on test set 
testresults$svmFit <- testresultsfunction(svmFit, testHRdataDummyFullRankLowCorr, 
"svmFit") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 302  36 
        X1   6  23 
                                           
               Accuracy : 0.8856           
                 95% CI : (0.8485, 0.9163) 
    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.007567         
                                           
                  Kappa : 0.4662           
 Mcnemar's Test P-Value : 7.648e-06        
                                           
            Sensitivity : 0.38983          
            Specificity : 0.98052          
         Pos Pred Value : 0.79310          
         Neg Pred Value : 0.89349          
             Prevalence : 0.16076          
         Detection Rate : 0.06267          
   Detection Prevalence : 0.07902          
      Balanced Accuracy : 0.68517          
                                           
       'Positive' Class : X1  

 
[1] "F1 score = 0.522727272727273" 
Area under the curve: 0.8489 
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#K-Nearest Neighbors 
 
#Train model 
set.seed(1247) 
knnFit <- train(x = trainHRdataDummy[ , -1], y = trainHRdataDummy$Attrition, method = 
"knn", metric = "ROC", preProc = c("BoxCox", "center", "scale"), tuneGrid = data.frame(.k = 
c(4*(0:5)+1, 20*(1:5)+1, 50*(2:9)+1)), trControl = ctrl) 
knnFit 
Outcome: 
k-Nearest Neighbors  
 
1103 samples 
  51 predictor 
   2 classes: 'X0', 'X1'  
 
Pre-processing: Box-Cox transformation (14), centered (51), scaled (51)  
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...  
Resampling results across tuning parameters: 
 
  k    ROC        Sens       Spec        
    1  0.5547712  0.9115685  0.197973856 
    5  0.6908449  0.9716830  0.156797386 
    9  0.7351462  0.9872347  0.097647059 
   13  0.7512537  0.9956826  0.075359477 
   17  0.7557581  0.9971926  0.059346405 
   21  0.7592417  0.9991351  0.045882353 
   41  0.7734339  1.0000000  0.003333333 
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   61  0.7879072  1.0000000  0.000000000 
   81  0.7968381  1.0000000  0.000000000 
  101  0.8053464  1.0000000  0.000000000 
  151  0.8137418  1.0000000  0.000000000 
  201  0.8117384  1.0000000  0.000000000 
  251  0.8099499  1.0000000  0.000000000 
  301  0.8085165  1.0000000  0.000000000 
  351  0.8008097  1.0000000  0.000000000 
  401  0.8016349  1.0000000  0.000000000 
  451  0.8035886  1.0000000  0.000000000 
 
ROC was used to select the optimal model using  the largest value. 
The final value used for the model was k = 151. 

 

 
#results of trained model 
trainresults$knnFit <- trainresultsfunction(knnFit, trainHRdataDummy) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 925 178 
        X1   0   0 
                                           
               Accuracy : 0.8386           
                 95% CI : (0.8156, 0.8599) 
    No Information Rate : 0.8386           
    P-Value [Acc > NIR] : 0.52             
                                           
                  Kappa : 0                
 Mcnemar's Test P-Value : <2e-16           
                                           
            Sensitivity : 0.0000           
            Specificity : 1.0000           
         Pos Pred Value :    NaN           
         Neg Pred Value : 0.8386           
             Prevalence : 0.1614           
         Detection Rate : 0.0000           
   Detection Prevalence : 0.0000           
      Balanced Accuracy : 0.5000           
                                           
       'Positive' Class : X1               
                                           
Area under the curve: 0.8272 
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#results of trained model on test set 
testresults$knnFit <- testresultsfunction(knnFit, testHRdataDummy, "knnFit") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 308  59 
        X1   0   0 
                                           
               Accuracy : 0.8392           
                 95% CI : (0.7976, 0.8753) 
    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.5347           
                                           
                  Kappa : 0                
 Mcnemar's Test P-Value : 4.321e-14        
                                           
            Sensitivity : 0.0000           
            Specificity : 1.0000           
         Pos Pred Value :    NaN           
         Neg Pred Value : 0.8392           
             Prevalence : 0.1608           
         Detection Rate : 0.0000           
   Detection Prevalence : 0.0000           
      Balanced Accuracy : 0.5000           
                                           
       'Positive' Class : X1               
                                           
[1] "F1 score = NaN" 
Area under the curve: 0.7644 
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#Naive Bayes 
#create Naive Bayes grid 
nbgrid <- expand.grid(.usekernel = c(TRUE, FALSE), .fL = seq(0, 2, length.out = 4), .adjust = 
1) 
 
#train model 
set.seed(1247) 
nbFit <- train(x = trainHRdataDummyFullRankLowCorr[ , -1], y = 
trainHRdataDummyFullRankLowCorr$Attrition, method = "nb", metric = "ROC", preProc = 
c("BoxCox", "center", "scale"), tuneGrid = nbgrid, trControl = ctrl) 
nbFit 
Outcome: 
Naive Bayes  
 
1103 samples 
  39 predictor 
   2 classes: 'X0', 'X1'  
 
Pre-processing: Box-Cox transformation (13), centered (39), scaled (39)  
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...  
Resampling results across tuning parameters: 
 
  usekernel  fL   ROC        Sens       Spec        
  FALSE      0.0  0.7401731  0.6366604  0.766739288 
  FALSE      0.5  0.7401731  0.6366604  0.766739288 
  FALSE      1.0  0.7401731  0.6366604  0.766739288 
  FALSE      1.5  0.7401731  0.6366604  0.766739288 
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  FALSE      2.0  0.7401731  0.6366604  0.766739288 
   TRUE      0.0  0.8078821  0.9997849  0.001111111 
   TRUE      0.5  0.8078821  0.9997849  0.001111111 
   TRUE      1.0  0.8078821  0.9997849  0.001111111 
   TRUE      1.5  0.8078821  0.9997849  0.001111111 
   TRUE      2.0  0.8078821  0.9997849  0.001111111 
 
Tuning parameter 'adjust' was held constant at a value of 1 
ROC was used to select the optimal model using  the largest value. 
The final values used for the model were fL = 0, usekernel = TRUE and adj
ust = 1. 
 

 
#Note model were kernel density estimate is used outperformed normal density 
 
#results of trained model 
trainresults$nbFit <- trainresultsfunction(nbFit, trainHRdataDummyFullRankLowCorr) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 925 178 
        X1   0   0 
                                           
               Accuracy : 0.8386           
                 95% CI : (0.8156, 0.8599) 
    No Information Rate : 0.8386           
    P-Value [Acc > NIR] : 0.52             
                                           
                  Kappa : 0                
 Mcnemar's Test P-Value : <2e-16           
                                           
            Sensitivity : 0.0000           
            Specificity : 1.0000           
         Pos Pred Value :    NaN           
         Neg Pred Value : 0.8386           
             Prevalence : 0.1614           
         Detection Rate : 0.0000           
   Detection Prevalence : 0.0000           
      Balanced Accuracy : 0.5000           
                                           
       'Positive' Class : X1               
                                           
Area under the curve: 0.857 
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#results of trained model on test set 
testresults$nbFit <- testresultsfunction(nbFit, testHRdataDummyFullRankLowCorr, "nbFit") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 308  59 
        X1   0   0 
                                           
               Accuracy : 0.8392           
                 95% CI : (0.7976, 0.8753) 
    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.5347           
                                           
                  Kappa : 0                
 Mcnemar's Test P-Value : 4.321e-14        
                                           
            Sensitivity : 0.0000           
            Specificity : 1.0000           
         Pos Pred Value :    NaN           
         Neg Pred Value : 0.8392           
             Prevalence : 0.1608           
         Detection Rate : 0.0000           
   Detection Prevalence : 0.0000           
      Balanced Accuracy : 0.5000           
                                           
       'Positive' Class : X1               
                                           
[1] "F1 score = NaN" 
Area under the curve: 0.7595 
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Classification Trees and Rule-Based Models 
 

#Classification Trees 
 
#------------------------------ 

#rpart non dummy train set 
#------------------------------ 
 
set.seed(1247) 
rpartFit <- train(x = trainHRdata[, -1],  
                  y = trainHRdata$Attrition, 
                  method = "rpart", 
                  tuneLength = 30, 
                  metric = "ROC", 
                  trControl = ctrl) 
rpartFit 
Outcome: 
CART  
 
1103 samples 
  30 predictor 
   2 classes: 'X0', 'X1'  
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 5 times)  



101 
 

Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...  
Resampling results across tuning parameters: 
 
  cp            ROC        Sens       Spec      
  0.0000000000  0.7230258  0.9227887  0.3174510 
  0.0009040424  0.7234989  0.9234409  0.3174510 
  0.0018080847  0.7226876  0.9238733  0.3151634 
  0.0027121271  0.7202946  0.9260285  0.3128758 
  0.0036161694  0.7203436  0.9286232  0.3105882 
  0.0045202118  0.7148741  0.9301286  0.3050327 
  0.0054242542  0.7147050  0.9303460  0.3050327 
  0.0063282965  0.7144686  0.9379383  0.2994771 
  0.0072323389  0.7144686  0.9379383  0.2994771 
  0.0081363812  0.7091616  0.9388032  0.2916993 
  0.0090404236  0.7044311  0.9411875  0.2861438 
  0.0099444660  0.6967399  0.9420524  0.2783660 
  0.0108485083  0.6888061  0.9466059  0.2715686 
  0.0117525507  0.6888061  0.9466059  0.2715686 
  0.0126565931  0.6872033  0.9522137  0.2659477 
  0.0135606354  0.6872033  0.9522137  0.2659477 
  0.0144646778  0.6865412  0.9526461  0.2624183 
  0.0153687201  0.6786785  0.9537260  0.2545752 
  0.0162727625  0.6777687  0.9545979  0.2533333 
  0.0171768049  0.6737032  0.9550281  0.2533333 
  0.0180808472  0.6737032  0.9550281  0.2533333 
  0.0189848896  0.6614408  0.9587027  0.2433333 
  0.0198889319  0.6614408  0.9587027  0.2433333 
  0.0207929743  0.6565543  0.9597779  0.2366667 
  0.0216970167  0.6565543  0.9597779  0.2366667 
  0.0226010590  0.6416361  0.9600070  0.2119608 
  0.0235051014  0.6384054  0.9606592  0.2097386 
  0.0244091437  0.6384054  0.9606592  0.2097386 
  0.0253131861  0.6173281  0.9651893  0.1670588 
  0.0262172285  0.6173281  0.9651893  0.1670588 
 
ROC was used to select the optimal model using  the largest value. 
The final value used for the model was cp = 0.0009040424. 
 

 
#results of trained model 
trainresults$rpartFit <- trainresultsfunction(rpartFit, trainHRdata) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 892  71 
        X1  33 107 
                                           
               Accuracy : 0.9057           
                 95% CI : (0.8869, 0.9223) 
    No Information Rate : 0.8386           
    P-Value [Acc > NIR] : 6.716e-11        
                                           
                  Kappa : 0.6188           
 Mcnemar's Test P-Value : 0.0002855        
                                           
            Sensitivity : 0.60112          
            Specificity : 0.96432          
         Pos Pred Value : 0.76429          
         Neg Pred Value : 0.92627          
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             Prevalence : 0.16138          
         Detection Rate : 0.09701          
   Detection Prevalence : 0.12693          
      Balanced Accuracy : 0.78272          
                                           
       'Positive' Class : X1               
                                           
Area under the curve: 0.8845 

 
 

 
#results of trained model on test set 
testresults$rpartFit <- testresultsfunction(rpartFit, testHRdata) 
Outcome: 

Confusion Matrix and Statistics 
 

         Reference 

Prediction  X0  X1 

       X0 280  40 

       X1  28  19 

                                          
              Accuracy : 0.8147           
                95% CI : (0.7711, 0.8531) 
   No Information Rate : 0.8392           
   P-Value [Acc > NIR] : 0.9096           
                                          
                 Kappa : 0.2518           
Mcnemar's Test P-Value : 0.1822           
                                          
           Sensitivity : 0.32203          
           Specificity : 0.90909          
        Pos Pred Value : 0.40426          
        Neg Pred Value : 0.87500          
            Prevalence : 0.16076          
        Detection Rate : 0.05177          
  Detection Prevalence : 0.12807          
     Balanced Accuracy : 0.61556          
                                          
      'Positive' Class : X1               
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[1] "F1 score = 0.358490566037736" 
Area under the curve: 0.6901 

 
 

 
#------------------------------ 

#rpart dummy train set 
#------------------------------ 
 
#train model 
set.seed(1247) 
rpartFitDummy <- train(x = trainHRdataDummy[, -1],  
                  y = trainHRdataDummy$Attrition, 
                  method = "rpart", 
                  tuneLength = 30, 
                  metric = "ROC", 
                  trControl = ctrl) 
rpartFitDummy 
Outcome: 
CART  
 
1103 samples 
  51 predictor 
   2 classes: 'X0', 'X1'  
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...  
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Resampling results across tuning parameters: 
 
  cp            ROC        Sens       Spec      
  0.0000000000  0.6957270  0.9212903  0.2964706 
  0.0009040424  0.6957270  0.9212903  0.2964706 
  0.0018080847  0.6999908  0.9221552  0.2942484 
  0.0027121271  0.7023316  0.9238850  0.2930719 
  0.0036161694  0.7041678  0.9290767  0.2908497 
  0.0045202118  0.7021433  0.9318887  0.2828105 
  0.0054242542  0.7027168  0.9325339  0.2828105 
  0.0063282965  0.7047712  0.9388149  0.2748366 
  0.0072323389  0.7047712  0.9388149  0.2748366 
  0.0081363812  0.6989168  0.9401075  0.2681699 
  0.0090404236  0.6980900  0.9420594  0.2636601 
  0.0099444660  0.6968498  0.9431417  0.2614379 
  0.0108485083  0.6945832  0.9474731  0.2557516 
  0.0117525507  0.6945832  0.9474731  0.2557516 
  0.0126565931  0.6935093  0.9504932  0.2559477 
  0.0135606354  0.6935093  0.9504932  0.2559477 
  0.0144646778  0.6926781  0.9507106  0.2524183 
  0.0153687201  0.6821177  0.9520079  0.2467974 
  0.0162727625  0.6755023  0.9533053  0.2343791 
  0.0171768049  0.6726681  0.9537354  0.2343791 
  0.0180808472  0.6674113  0.9541655  0.2277124 
  0.0189848896  0.6556316  0.9578448  0.2186928 
  0.0198889319  0.6556316  0.9578448  0.2186928 
  0.0207929743  0.6531749  0.9584923  0.2120261 
  0.0216970167  0.6528882  0.9591374  0.2098039 
  0.0226010590  0.6508223  0.9610846  0.1950980 
  0.0235051014  0.6475916  0.9617368  0.1928758 
  0.0244091437  0.6475916  0.9617368  0.1928758 
  0.0253131861  0.6264301  0.9692917  0.1286275 
  0.0262172285  0.6264301  0.9692917  0.1286275 
 
ROC was used to select the optimal model using  the largest value. 
The final value used for the model was cp = 0.007232339. 
 

 
#results of trained model 
trainresults$rpartFitDummy <- trainresultsfunction(rpartFitDummy, trainHRdataDummy) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 896  91 
        X1  29  87 
                                          
               Accuracy : 0.8912          
                 95% CI : (0.8713, 0.909) 
    No Information Rate : 0.8386          
    P-Value [Acc > NIR] : 3.954e-07       
                                          
                  Kappa : 0.5323          
 Mcnemar's Test P-Value : 2.569e-08       
                                          
            Sensitivity : 0.48876         
            Specificity : 0.96865         
         Pos Pred Value : 0.75000         
         Neg Pred Value : 0.90780         
             Prevalence : 0.16138         
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         Detection Rate : 0.07888         
   Detection Prevalence : 0.10517         
      Balanced Accuracy : 0.72871         
                                          
       'Positive' Class : X1              
                                          
Area under the curve: 0.7999 

 
 

 
#results of trained model on test set 
testresults$rpartFitDummy <- testresultsfunction(rpartFitDummy, testHRdataDummy) 
Outcome: 

Confusion Matrix and Statistics 
 

         Reference 

Prediction  X0  X1 

       X0 294  39 

       X1  14  20 

                                          
              Accuracy : 0.8556           
                95% CI : (0.8154, 0.8899) 
   No Information Rate : 0.8392           
   P-Value [Acc > NIR] : 0.2190611        
                                          
                 Kappa : 0.3542           
Mcnemar's Test P-Value : 0.0009784        
                                          
           Sensitivity : 0.33898          
           Specificity : 0.95455          
        Pos Pred Value : 0.58824          
        Neg Pred Value : 0.88288          
            Prevalence : 0.16076          
        Detection Rate : 0.05450          
  Detection Prevalence : 0.09264          
     Balanced Accuracy : 0.64676          
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      'Positive' Class : X1               
                                          
[1] "F1 score = 0.43010752688172" 
Area under the curve: 0.7145 

 
 

#------------------------------ 

#C4.5/J48 non dummy trainset 
#------------------------------ 
 
set.seed(1247) 
j48Fit <- train(x = trainHRdata[, -1],  
                y = trainHRdata$Attrition, 
                method = "J48", 
                metric = "ROC", 
                trControl = ctrl) 
j48Fit 
Outcome: 
C4.5-like Trees  
 
1103 samples 
  30 predictor 
   2 classes: 'X0', 'X1'  
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...  
Resampling results across tuning parameters: 
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  C      M  ROC        Sens       Spec       
  0.010  1  0.5355405  0.9895979  0.03156863 
  0.010  2  0.5199565  0.9924147  0.02124183 
  0.010  3  0.5199419  0.9900257  0.02241830 
  0.255  1  0.5658017  0.9319121  0.29562092 
  0.255  2  0.5905983  0.9301753  0.28418301 
  0.255  3  0.6147518  0.9314727  0.30104575 
  0.500  1  0.5659947  0.8932071  0.33261438 
  0.500  2  0.5953606  0.8999042  0.31222222 
  0.500  3  0.6108905  0.9100818  0.32026144 
 
ROC was used to select the optimal model using  the largest value. 
The final values used for the model were C = 0.255 and M = 3. 
 

 
#results of trained model 
trainresults$j48Fit <- trainresultsfunction(j48Fit, trainHRdata) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 917  77 
        X1   8 101 
                                          
               Accuracy : 0.9229          
                 95% CI : (0.9056, 0.938) 
    No Information Rate : 0.8386          
    P-Value [Acc > NIR] : < 2.2e-16       
                                          
                  Kappa : 0.6625          
 Mcnemar's Test P-Value : 1.636e-13       
                                          
            Sensitivity : 0.56742         
            Specificity : 0.99135         
         Pos Pred Value : 0.92661         
         Neg Pred Value : 0.92254         
             Prevalence : 0.16138         
         Detection Rate : 0.09157         
   Detection Prevalence : 0.09882         
      Balanced Accuracy : 0.77938         
                                          
       'Positive' Class : X1              
                                          
Area under the curve: 0.8327 
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#results of trained model on test set 
testresults$j48Fit <- testresultsfunction(j48Fit, testHRdata, "j48Fit") 
Outcome: 

Confusion Matrix and Statistics 
 

         Reference 

Prediction  X0  X1 

       X0 291  41 

       X1  17  18 

                                          
              Accuracy : 0.842            
                95% CI : (0.8005, 0.8778) 
   No Information Rate : 0.8392           
   P-Value [Acc > NIR] : 0.478071         
                                          
                 Kappa : 0.2991           
Mcnemar's Test P-Value : 0.002527         
                                          
           Sensitivity : 0.30508          
           Specificity : 0.94481          
        Pos Pred Value : 0.51429          
        Neg Pred Value : 0.87651          
            Prevalence : 0.16076          
        Detection Rate : 0.04905          
  Detection Prevalence : 0.09537          
     Balanced Accuracy : 0.62494          
                                          
      'Positive' Class : X1               
                                          
[1] "F1 score = 0.382978723404255" 
Area under the curve: 0.6867 
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#------------------------------ 

#C4.5/J48 dummy trainset 
#------------------------------ 
 
set.seed(1247) 
j48FitDummy <- train(x = trainHRdataDummy[, -1],  
                y = trainHRdataDummy$Attrition, 
                method = "J48", 
                metric = "ROC", 
                trControl = ctrl) 
j48FitDummy 
Outcome: 
C4.5-like Trees  
 
1103 samples 
  51 predictor 
   2 classes: 'X0', 'X1'  
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...  
Resampling results across tuning parameters: 
 
  C      M  ROC        Sens       Spec       
  0.010  1  0.5350743  0.9889551  0.03941176 
  0.010  2  0.5361838  0.9900421  0.03692810 
  0.010  3  0.5332913  0.9898200  0.03464052 
  0.255  1  0.5569126  0.9204956  0.30542484 



110 
 

  0.255  2  0.5994401  0.9239271  0.32352941 
  0.255  3  0.6115514  0.9276087  0.29418301 
  0.500  1  0.5899274  0.8817765  0.33777778 
  0.500  2  0.6163471  0.8875900  0.35032680 
  0.500  3  0.6288828  0.9016386  0.33130719 
 
ROC was used to select the optimal model using  the largest value. 
The final values used for the model were C = 0.5 and M = 3. 
 

 
#results of trained model 
trainresults$j48Fit <- trainresultsfunction(j48FitDummy, trainHRdataDummy) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 911  42 
        X1  14 136 
                                           
               Accuracy : 0.9492           
                 95% CI : (0.9346, 0.9614) 
    No Information Rate : 0.8386           
    P-Value [Acc > NIR] : < 2.2e-16        
                                           
                  Kappa : 0.7997           
 Mcnemar's Test P-Value : 0.0003085        
                                           
            Sensitivity : 0.7640           
            Specificity : 0.9849           
         Pos Pred Value : 0.9067           
         Neg Pred Value : 0.9559           
             Prevalence : 0.1614           
         Detection Rate : 0.1233           
   Detection Prevalence : 0.1360           
      Balanced Accuracy : 0.8745           
                                           
       'Positive' Class : X1               
                                           
Area under the curve: 0.9402 
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#results of trained model on test set 
testresults$j48Fit <- testresultsfunction(j48FitDummy, testHRdataDummy, "j48FitDummy") 
Outcome: 

Confusion Matrix and Statistics 
 

         Reference 

Prediction  X0  X1 

       X0 273  34 

       X1  35  25 

                                          
              Accuracy : 0.812            
                95% CI : (0.7682, 0.8507) 
   No Information Rate : 0.8392           
   P-Value [Acc > NIR] : 0.9298           
                                          
                 Kappa : 0.308            
Mcnemar's Test P-Value : 1.0000           
                                          
           Sensitivity : 0.42373          
           Specificity : 0.88636          
        Pos Pred Value : 0.41667          
        Neg Pred Value : 0.88925          
            Prevalence : 0.16076          
        Detection Rate : 0.06812          
  Detection Prevalence : 0.16349          
     Balanced Accuracy : 0.65505          
                                          
      'Positive' Class : X1               
                                          
[1] "F1 score = 0.420168067226891" 
Area under the curve: 0.6581 
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#------------------------------ 

#Rule based models: PART 
#------------------------------ 
 
set.seed(1247) 
partFit <- train(x = trainHRdata[, -1],  
                 y = trainHRdata$Attrition, 
                 method = "PART", 
                 metric = "ROC", 
                 trControl = ctrl) 
partFit 
Outcome: 
Rule-Based Classifier  
 
1103 samples 
  30 predictor 
   2 classes: 'X0', 'X1'  
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...  
Resampling results across tuning parameters: 
 
  threshold  pruned  ROC        Sens       Spec      
  0.010      yes     0.6567082  0.8940019  0.3785621 
  0.010      no      0.6303250  0.8823726  0.3749673 
  0.255      yes     0.6479434  0.8933707  0.3617647 
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  0.255      no      0.6303250  0.8823726  0.3749673 
  0.500      yes     0.6416703  0.8927092  0.3564052 
  0.500      no      0.6303250  0.8823726  0.3749673 
 
ROC was used to select the optimal model using  the largest value. 
The final values used for the model were threshold = 0.01 and pruned = ye
s. 
 

 
#results of trained model 
trainresults$partFit <- trainresultsfunction(partFit, trainHRdata) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 909  26 
        X1  16 152 
                                           
               Accuracy : 0.9619           
                 95% CI : (0.9489, 0.9724) 
    No Information Rate : 0.8386           
    P-Value [Acc > NIR] : <2e-16           
                                           
                  Kappa : 0.8561           
 Mcnemar's Test P-Value : 0.1649           
                                           
            Sensitivity : 0.8539           
            Specificity : 0.9827           
         Pos Pred Value : 0.9048           
         Neg Pred Value : 0.9722           
             Prevalence : 0.1614           
         Detection Rate : 0.1378           
   Detection Prevalence : 0.1523           
      Balanced Accuracy : 0.9183           
                                           
       'Positive' Class : X1               
                                           
Area under the curve: 0.967 

 
 

 
#results of trained model on test set 
testresults$partFit <- testresultsfunction(partFit, testHRdata, "partFit") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
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Prediction  X0  X1 
        X0 273  42 
        X1  35  17 
                                           
               Accuracy : 0.7902           
                 95% CI : (0.7449, 0.8307) 
    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.9946           
                                           
                  Kappa : 0.1833           
 Mcnemar's Test P-Value : 0.4941           
                                           
            Sensitivity : 0.28814          
            Specificity : 0.88636          
         Pos Pred Value : 0.32692          
         Neg Pred Value : 0.86667          
             Prevalence : 0.16076          
         Detection Rate : 0.04632          
   Detection Prevalence : 0.14169          
      Balanced Accuracy : 0.58725          
                                           
       'Positive' Class : X1               
                                           
Area under the curve: 0.6411 

 
 

 
#------------------------------ 

#PART Dummy 
#------------------------------ 
 
set.seed(1247) 



115 
 

partFitDummy <- train(x = trainHRdataDummy[, -1],  
                 y = trainHRdataDummy$Attrition, 
                 method = "PART", 
                 metric = "ROC", 
                 trControl = ctrl) 
partFitDummy 
Outcome: 
Rule-Based Classifier  
 
1103 samples 
  51 predictor 
   2 classes: 'X0', 'X1'  
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...  
Resampling results across tuning parameters: 
 
  threshold  pruned  ROC        Sens       Spec      
  0.010      yes     0.6411306  0.8873329  0.3524183 
  0.010      no      0.6351989  0.8812763  0.3862745 
  0.255      yes     0.6468416  0.8903693  0.3805882 
  0.255      no      0.6351989  0.8812763  0.3862745 
  0.500      yes     0.6468416  0.8903693  0.3805882 
  0.500      no      0.6351989  0.8812763  0.3862745 
 
ROC was used to select the optimal model using  the largest value. 
The final values used for the model were threshold = 0.5 and pruned = yes
. 
 

 
#results of trained model 
trainresults$partFitDummy <- trainresultsfunction(partFitDummy, trainHRdataDummy) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 921  15 
        X1   4 163 
                                           
               Accuracy : 0.9828           
                 95% CI : (0.9732, 0.9896) 
    No Information Rate : 0.8386           
    P-Value [Acc > NIR] : < 2e-16          
                                           
                  Kappa : 0.9347           
 Mcnemar's Test P-Value : 0.02178          
                                           
            Sensitivity : 0.9157           
            Specificity : 0.9957           
         Pos Pred Value : 0.9760           
         Neg Pred Value : 0.9840           
             Prevalence : 0.1614           
         Detection Rate : 0.1478           
   Detection Prevalence : 0.1514           
      Balanced Accuracy : 0.9557           
                                           
       'Positive' Class : X1               
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Area under the curve: 0.986 

 
 

 
#results of trained model on test set 
testresults$partFitDummy <- testresultsfunction(partFitDummy, testHRdataDummy, 
"partFitDummy") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 273  41 
        X1  35  18 
                                           
               Accuracy : 0.7929           
                 95% CI : (0.7478, 0.8332) 
    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.9921           
                                           
                  Kappa : 0.1997           
 Mcnemar's Test P-Value : 0.5663           
                                           
            Sensitivity : 0.30508          
            Specificity : 0.88636          
         Pos Pred Value : 0.33962          
         Neg Pred Value : 0.86943          
             Prevalence : 0.16076          
         Detection Rate : 0.04905          
   Detection Prevalence : 0.14441          
      Balanced Accuracy : 0.59572          
                                           
       'Positive' Class : X1               
                                           
Area under the curve: 0.607 
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#------------------------------ 

#Bagged Trees 
#------------------------------ 
 
set.seed(1247) 
treebagFit <- train(x = trainHRdata[, -1],  
                    y = trainHRdata$Attrition, 
                    method = "treebag", 
                    nbagg = 50, 
                    metric = "ROC", 
                    trControl = ctrl) 
treebagFit 
Outcome: 
Bagged CART  
 
1103 samples 
  30 predictor 
   2 classes: 'X0', 'X1'  
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...  
Resampling results: 
 
  ROC        Sens       Spec      
  0.7955515  0.9692871  0.2412418 
 

 
#results of trained model 
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trainresults$partFit <- trainresultsfunction(partFit, trainHRdata) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 925   2 
        X1   0 176 
                                           
               Accuracy : 0.9982           
                 95% CI : (0.9935, 0.9998) 
    No Information Rate : 0.8386           
    P-Value [Acc > NIR] : <2e-16           
                                           
                  Kappa : 0.9933           
 Mcnemar's Test P-Value : 0.4795           
                                           
            Sensitivity : 0.9888           
            Specificity : 1.0000           
         Pos Pred Value : 1.0000           
         Neg Pred Value : 0.9978           
             Prevalence : 0.1614           
         Detection Rate : 0.1596           
   Detection Prevalence : 0.1596           
      Balanced Accuracy : 0.9944           
                                           
       'Positive' Class : X1               
                                           
Area under the curve: 1 

 
 

 
#results of trained model on test set 
testresults$partFit <- testresultsfunction(partFit, testHRdata, "partFit") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 298  38 
        X1  10  21 
                                          
               Accuracy : 0.8692          
                 95% CI : (0.8304, 0.902) 
    No Information Rate : 0.8392          
    P-Value [Acc > NIR] : 0.06498         
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                  Kappa : 0.4002          
 Mcnemar's Test P-Value : 9.735e-05       
                                          
            Sensitivity : 0.35593         
            Specificity : 0.96753         
         Pos Pred Value : 0.67742         
         Neg Pred Value : 0.88690         
             Prevalence : 0.16076         
         Detection Rate : 0.05722         
   Detection Prevalence : 0.08447         
      Balanced Accuracy : 0.66173         
                                          
       'Positive' Class : X1              
                                          
[1] "F1 score = 0.466666666666667" 
Area under the curve: 0.7649 

 
 
#------------------------------ 

#Bagged Trees Dummy set 
#------------------------------ 

 
set.seed(1247) 
treebagFitDummy <- train(x = trainHRdataDummy[, -1],  
                    y = trainHRdataDummy$Attrition, 
                    method = "treebag", 
                    nbagg = 50, 
                    metric = "ROC", 
                    trControl = ctrl) 
treebagFitDummy 
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Outcome: 
Bagged CART  
 
1103 samples 
  51 predictor 
   2 classes: 'X0', 'X1'  
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...  
Resampling results: 
 
  ROC        Sens       Spec      
  0.7777671  0.9664633  0.2241176 
 
 

#results of trained model 
trainresults$treebagFitDummy <- trainresultsfunction(treebagFitDummy, trainHRdataDummy) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 925   2 
        X1   0 176 
                                           
               Accuracy : 0.9982           
                 95% CI : (0.9935, 0.9998) 
    No Information Rate : 0.8386           
    P-Value [Acc > NIR] : <2e-16           
                                           
                  Kappa : 0.9933           
 Mcnemar's Test P-Value : 0.4795           
                                           
            Sensitivity : 0.9888           
            Specificity : 1.0000           
         Pos Pred Value : 1.0000           
         Neg Pred Value : 0.9978           
             Prevalence : 0.1614           
         Detection Rate : 0.1596           
   Detection Prevalence : 0.1596           
      Balanced Accuracy : 0.9944           
                                           
       'Positive' Class : X1               
                                           
Area under the curve: 1 
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#results of trained model on test set 
testresults$treebagFitDummy <- testresultsfunction(treebagFitDummy, testHRdataDummy, 
"treebagFitDummy") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 297  41 
        X1  11  18 
                                           
               Accuracy : 0.8583           
                 95% CI : (0.8184, 0.8923) 
    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.1784           
                                           
                  Kappa : 0.3391           
 Mcnemar's Test P-Value : 5.781e-05        
                                           
            Sensitivity : 0.30508          
            Specificity : 0.96429          
         Pos Pred Value : 0.62069          
         Neg Pred Value : 0.87870          
             Prevalence : 0.16076          
         Detection Rate : 0.04905          
   Detection Prevalence : 0.07902          
      Balanced Accuracy : 0.63469          
                                           
       'Positive' Class : X1               
                                           
[1] "F1 score = 0.409090909090909" 
Area under the curve: 0.7632 
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#------------------------------ 

#Random Forests 
#------------------------------ 
 

mtryValues <- c(2, 10, 15, 20, 25, 31) 
set.seed(1247) 
rfFit <- train(x = trainHRdata[, -1],  
               y = trainHRdata$Attrition, 
               method = "rf", 
               ntree = 1000, 
               tuneGrid = data.frame(mtry = mtryValues), 
               importance = TRUE, 
               metric = "ROC", 
               trControl = ctrl) 
rfFit 
Outcome: 
Random Forest  
 
1103 samples 
  30 predictor 
   2 classes: 'X0', 'X1'  
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...  
Resampling results across tuning parameters: 
 
  mtry  ROC        Sens       Spec       
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   2    0.8274313  0.9971926  0.07973856 
  10    0.8182447  0.9894016  0.16816993 
  15    0.8160469  0.9861547  0.18732026 
  20    0.8135821  0.9820547  0.19967320 
  25    0.8120986  0.9792380  0.22111111 
  31    0.8102681  0.9768630  0.22777778 
 
ROC was used to select the optimal model using  the largest value. 
The final value used for the model was mtry = 2. 
 

 
#results of trained model 
trainresults$rfFit <- trainresultsfunction(rfFit, trainHRdata) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 925   0 
        X1   0 178 
                                      
               Accuracy : 1           
                 95% CI : (0.9967, 1) 
    No Information Rate : 0.8386      
    P-Value [Acc > NIR] : < 2.2e-16   
                                      
                  Kappa : 1           
 Mcnemar's Test P-Value : NA          
                                      
            Sensitivity : 1.0000      
            Specificity : 1.0000      
         Pos Pred Value : 1.0000      
         Neg Pred Value : 1.0000      
             Prevalence : 0.1614      
         Detection Rate : 0.1614      
   Detection Prevalence : 0.1614      
      Balanced Accuracy : 1.0000      
                                      
       'Positive' Class : X1          
                                      
Area under the curve: 1 

 
 

 
#results of trained model on test set 
testresults$rfFit <- testresultsfunction(rfFit, testHRdata, "rfFit") 
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Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 308  49 
        X1   0  10 
                                           
               Accuracy : 0.8665           
                 95% CI : (0.8274, 0.8996) 
    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.08614          
                                           
                  Kappa : 0.2551           
 Mcnemar's Test P-Value : 7.025e-12        
                                           
            Sensitivity : 0.16949          
            Specificity : 1.00000          
         Pos Pred Value : 1.00000          
         Neg Pred Value : 0.86275          
             Prevalence : 0.16076          
         Detection Rate : 0.02725          
   Detection Prevalence : 0.02725          
      Balanced Accuracy : 0.58475          
                                           
       'Positive' Class : X1               
                                           
[1] "F1 score = 0.289855072463768" 
Area under the curve: 0.7839 

 
 

#------------------------------ 
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#Random Forests Dummy set 
#------------------------------ 
 
mtryValuesDummy <- c(2, 10, 20, 30, 40, 52) 
set.seed(1247) 
rfFitDummy <- train(x = trainHRdataDummy[, -1],  
               y = trainHRdataDummy$Attrition, 
               method = "rf", 
               ntree = 1000, 
               tuneGrid = data.frame(mtry = mtryValuesDummy), 
               importance = TRUE, 
               metric = "ROC", 
               trControl = ctrl) 
rfFitDummy 
Outcome: 
Random Forest  
 
1103 samples 
  51 predictor 
   2 classes: 'X0', 'X1'  
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...  
Resampling results across tuning parameters: 
 
  mtry  ROC        Sens       Spec       
   2    0.8282182  0.9991351  0.05143791 
  10    0.8120767  0.9900397  0.16150327 
  20    0.8046020  0.9822604  0.19189542 
  30    0.8006318  0.9794530  0.20535948 
  40    0.7989807  0.9772838  0.21098039 
  52    0.7975457  0.9740486  0.20862745 
 
ROC was used to select the optimal model using  the largest value. 
The final value used for the model was mtry = 2. 
 

 
#results of trained model 
trainresults$rfFitDummy <- trainresultsfunction(rfFitDummy, trainHRdataDummy) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 925  25 
        X1   0 153 
                                           
               Accuracy : 0.9773           
                 95% CI : (0.9667, 0.9853) 
    No Information Rate : 0.8386           
    P-Value [Acc > NIR] : < 2.2e-16        
                                           
                  Kappa : 0.9112           
 Mcnemar's Test P-Value : 1.587e-06        
                                           
            Sensitivity : 0.8596           
            Specificity : 1.0000           
         Pos Pred Value : 1.0000           
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         Neg Pred Value : 0.9737           
             Prevalence : 0.1614           
         Detection Rate : 0.1387           
   Detection Prevalence : 0.1387           
      Balanced Accuracy : 0.9298           
                                           
       'Positive' Class : X1               
                                           
Area under the curve: 1 

 
 

 
#results of trained model on test set 
testresults$rfFitDummy <- testresultsfunction(rfFitDummy, testHRdataDummy, "rfFitDummy") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 308  52 
        X1   0   7 
                                           
               Accuracy : 0.8583           
                 95% CI : (0.8184, 0.8923) 
    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.1784           
                                           
                  Kappa : 0.1843           
 Mcnemar's Test P-Value : 1.522e-12        
                                           
            Sensitivity : 0.11864          
            Specificity : 1.00000          
         Pos Pred Value : 1.00000          
         Neg Pred Value : 0.85556          
             Prevalence : 0.16076          
         Detection Rate : 0.01907          
   Detection Prevalence : 0.01907          
      Balanced Accuracy : 0.55932          
                                           
       'Positive' Class : X1               
                                           
[1] "F1 score = 0.212121212121212" 
Area under the curve: 0.7859 
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#------------------------------ 

#Boosting: Gradient Boosting Machines 
#------------------------------ 
 
gbmGrid <- expand.grid(interaction.depth = c(1, 3, 5, 7, 9), 
                       n.trees = (1:15)*100, 
                       shrinkage = c(.01, .1), 
                       n.minobsinnode = 10) 
 
#the method gbm needs the predictors to be of the same type (numeric, ordered, or factor). 
That is why gbm is only executed on the dummy training set. 
 
#------------------------------ 

#Gradient Boosting Machines dummy set 
#------------------------------ 
 
set.seed(1247) 
gbmFitDummy <- train(x = trainHRdataDummy[, -1],  
                y = trainHRdataDummy$Attrition, 
                method = "gbm", 
                tuneGrid = gbmGrid, 
                metric = "ROC", 
                verbose = FALSE, 
                trControl = ctrl) 
gbmFitDummy 
Outcome: 
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Stochastic Gradient Boosting  
 
1103 samples 
  51 predictor 
   2 classes: 'X0', 'X1'  
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...  
Resampling results across tuning parameters: 
 
  shrinkage  interaction.depth  n.trees  ROC        Sens       Spec       
  0.01       1                   100     0.7520932  1.0000000  0.00000000 
  0.01       1                   200     0.7744828  0.9993502  0.01555556 
  0.01       1                   300     0.7881055  0.9976204  0.03790850 
  0.01       1                   400     0.8009539  0.9956732  0.06496732 
  0.01       1                   500     0.8114195  0.9943782  0.08307190 
  0.01       1                   600     0.8179557  0.9937260  0.11104575 
  0.01       1                   700     0.8234029  0.9937237  0.12901961 
  0.01       1                   800     0.8278312  0.9935086  0.15026144 
  0.01       1                   900     0.8312533  0.9917789  0.17169935 
  0.01       1                  1000     0.8339333  0.9904839  0.19091503 
  0.01       1                  1100     0.8364020  0.9896143  0.21895425 
  0.01       1                  1200     0.8384327  0.9887447  0.25052288 
  0.01       1                  1300     0.8409396  0.9883146  0.26189542 
  0.01       1                  1400     0.8425855  0.9867952  0.28444444 
  0.01       1                  1500     0.8436796  0.9867976  0.29222222 
  0.01       3                   100     0.7805504  0.9995676  0.01555556 
  0.01       3                   200     0.8010011  0.9939364  0.07601307 
  0.01       3                   300     0.8123053  0.9922066  0.12895425 
  0.01       3                   400     0.8187787  0.9902595  0.16267974 
  0.01       3                   500     0.8244944  0.9885297  0.19307190 
  0.01       3                   600     0.8279645  0.9876671  0.22568627 
  0.01       3                   700     0.8311173  0.9874497  0.25150327 
  0.01       3                   800     0.8333486  0.9861477  0.27176471 
  0.01       3                   900     0.8364593  0.9850678  0.28862745 
  0.01       3                  1000     0.8375149  0.9833333  0.30091503 
  0.01       3                  1100     0.8385839  0.9831159  0.31437908 
  0.01       3                  1200     0.8395808  0.9822511  0.32222222 
  0.01       3                  1300     0.8402667  0.9807293  0.33568627 
  0.01       3                  1400     0.8412079  0.9794320  0.34241830 
  0.01       3                  1500     0.8419168  0.9783497  0.34346405 
  0.01       5                   100     0.7954710  0.9991328  0.02568627 
  0.01       5                   200     0.8119993  0.9943735  0.10300654 
  0.01       5                   300     0.8199939  0.9913394  0.17071895 
  0.01       5                   400     0.8265990  0.9889575  0.21235294 
  0.01       5                   500     0.8308797  0.9878775  0.24712418 
  0.01       5                   600     0.8331628  0.9863604  0.27189542 
  0.01       5                   700     0.8344650  0.9852828  0.29098039 
  0.01       5                   800     0.8359463  0.9839808  0.30660131 
  0.01       5                   900     0.8366358  0.9828962  0.31117647 
  0.01       5                  1000     0.8379351  0.9820243  0.32013072 
  0.01       5                  1100     0.8385342  0.9800795  0.32901961 
  0.01       5                  1200     0.8393080  0.9792146  0.33013072 
  0.01       5                  1300     0.8393487  0.9774848  0.33803922 
  0.01       5                  1400     0.8393068  0.9761851  0.33575163 
  0.01       5                  1500     0.8393676  0.9761851  0.34254902 
  0.01       7                   100     0.7995776  0.9982702  0.02673203 
  0.01       7                   200     0.8151414  0.9926414  0.11973856 
  0.01       7                   300     0.8233312  0.9900397  0.19666667 
  0.01       7                   400     0.8275936  0.9880902  0.22549020 
  0.01       7                   500     0.8312094  0.9876578  0.26156863 
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  0.01       7                   600     0.8333506  0.9852805  0.27954248 
  0.01       7                   700     0.8351079  0.9835484  0.29653595 
  0.01       7                   800     0.8359870  0.9822534  0.30895425 
  0.01       7                   900     0.8365397  0.9813838  0.31679739 
  0.01       7                  1000     0.8363373  0.9803039  0.32124183 
  0.01       7                  1100     0.8366863  0.9790112  0.32228758 
  0.01       7                  1200     0.8370614  0.9781463  0.32450980 
  0.01       7                  1300     0.8374840  0.9764165  0.32679739 
  0.01       7                  1400     0.8372265  0.9753343  0.32673203 
  0.01       7                  1500     0.8374652  0.9757667  0.33013072 
  0.01       9                   100     0.8016337  0.9984853  0.03679739 
  0.01       9                   200     0.8144669  0.9926344  0.13901961 
  0.01       9                   300     0.8222977  0.9891748  0.19862745 
  0.01       9                   400     0.8269018  0.9876625  0.23470588 
  0.01       9                   500     0.8288386  0.9852805  0.26372549 

Note: the list was reduced! 
 
Tuning parameter 'n.minobsinnode' was held constant at a value of 10 
ROC was used to select the optimal model using  the largest value. 
The final values used for the model were n.trees = 600, interaction.depth 
= 1, shrinkage = 0.1 
 and n.minobsinnode = 10. 
 

 
#results of trained model 
trainresults$gbmFitDummy <- trainresultsfunction(gbmFitDummy, trainHRdataDummy) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 911  62 
        X1  14 116 
                                           
               Accuracy : 0.9311           
                 95% CI : (0.9145, 0.9453) 
    No Information Rate : 0.8386           
    P-Value [Acc > NIR] : < 2.2e-16        
                                           
                  Kappa : 0.7143           
 Mcnemar's Test P-Value : 6.996e-08        
                                           
            Sensitivity : 0.6517           
            Specificity : 0.9849           
         Pos Pred Value : 0.8923           
         Neg Pred Value : 0.9363           
             Prevalence : 0.1614           
         Detection Rate : 0.1052           
   Detection Prevalence : 0.1179           
      Balanced Accuracy : 0.8183           
                                           
       'Positive' Class : X1               
                                           
Area under the curve: 0.9394 
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#results of trained model on test set 
testresults$gbmFitDummy <- testresultsfunction(gbmFitDummy, testHRdataDummy, 
"gbmFitDummy") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 291  33 
        X1  17  26 
                                           
               Accuracy : 0.8638           
                 95% CI : (0.8244, 0.8972) 
    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.11193          
                                           
                  Kappa : 0.4329           
 Mcnemar's Test P-Value : 0.03389          
                                           
            Sensitivity : 0.44068          
            Specificity : 0.94481          
         Pos Pred Value : 0.60465          
         Neg Pred Value : 0.89815          
             Prevalence : 0.16076          
         Detection Rate : 0.07084          
   Detection Prevalence : 0.11717          
      Balanced Accuracy : 0.69274          
                                           
       'Positive' Class : X1               
                                           
[1] "F1 score = 0.509803921568627" 
Area under the curve: 0.8154 
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#------------------------------ 

#C5.0 
#------------------------------ 
 
c50Grid <- expand.grid(trials = c(1:9, (1:10)*10), 
                       model = c("tree", "rules"), 
                       winnow = c(TRUE, FALSE)) 
 
c50Fit <- train(x = trainHRdata[, -1],  
                y = trainHRdata$Attrition, 
                method = "C5.0", 
                tuneGrid = c50Grid, 
                metric = "ROC", 
                verbose = FALSE, 
                trControl = ctrl) 
 
#Running this model produces the error: "either a tree or rules must be provided" 
#Since these are provided, it is concluded that c5.0 does not work on trainHRdata dataset. 
 
#------------------------------ 

#C5.0 dummy set 
#------------------------------ 
 
c50FitDummy <- train(x = trainHRdataDummy[, -1],  
                y = trainHRdataDummy$Attrition, 
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                method = "C5.0", 
                tuneGrid = c50Grid, 
                metric = "ROC", 
                verbose = FALSE, 
                trControl = ctrl) 
c50FitDummy 
Outcome: 
C5.0  
 
1103 samples 
  51 predictor 
   2 classes: 'X0', 'X1'  
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...  
Resampling results across tuning parameters: 
 
  model  winnow  trials  ROC        Sens       Spec      
  rules  FALSE     1     0.4507860  0.9470407  0.2935294 
  rules  FALSE     2     0.6116739  0.9461851  0.2923529 
  rules  FALSE     3     0.7103982  0.9329804  0.3086928 
  rules  FALSE     4     0.7396424  0.9182702  0.3708497 
  rules  FALSE     5     0.7505268  0.9446470  0.3057516 
  rules  FALSE     6     0.7586321  0.9338359  0.3496732 
  rules  FALSE     7     0.7672699  0.9506989  0.3113072 
  rules  FALSE     8     0.7723512  0.9409724  0.3596078 
  rules  FALSE     9     0.7732234  0.9524217  0.3222876 
  rules  FALSE    10     0.7786578  0.9459374  0.3458824 
  rules  FALSE    20     0.7959418  0.9554675  0.3350327 
  rules  FALSE    30     0.8048714  0.9595652  0.3403268 
  rules  FALSE    40     0.8109593  0.9632328  0.3447059 
  rules  FALSE    50     0.8119380  0.9636653  0.3368627 
  rules  FALSE    60     0.8146937  0.9651847  0.3234641 
  rules  FALSE    70     0.8157873  0.9660355  0.3268627 
  rules  FALSE    80     0.8176024  0.9658205  0.3315686 
  rules  FALSE    90     0.8183820  0.9662599  0.3337255 
  rules  FALSE   100     0.8177644  0.9660332  0.3326797 
  rules   TRUE     1     0.4326071  0.9571716  0.1675163 
  rules   TRUE     2     0.5134970  0.9586933  0.1729412 
  rules   TRUE     3     0.6601917  0.9476625  0.2389542 
  rules   TRUE     4     0.6937326  0.9520126  0.2352288 
  rules   TRUE     5     0.7031959  0.9491725  0.2475163 
  rules   TRUE     6     0.7083315  0.9511477  0.2272549 
  rules   TRUE     7     0.7143054  0.9524264  0.2431373 
  rules   TRUE     8     0.7077651  0.9524357  0.2409150 
  rules   TRUE     9     0.7170084  0.9530926  0.2443791 
  rules   TRUE    10     0.7215055  0.9550257  0.2433987 
  rules   TRUE    20     0.7363420  0.9589154  0.2486928 
  rules   TRUE    30     0.7385781  0.9563090  0.2475163 
  rules   TRUE    40     0.7432173  0.9578191  0.2438562 
  rules   TRUE    50     0.7434752  0.9591141  0.2486928 
  rules   TRUE    60     0.7428521  0.9597662  0.2385621 
  rules   TRUE    70     0.7439902  0.9604137  0.2486928 
  rules   TRUE    80     0.7458488  0.9606358  0.2452941 
  rules   TRUE    90     0.7485768  0.9601964  0.2545098 
  rules   TRUE   100     0.7497564  0.9619331  0.2521569 
  tree   FALSE     1     0.5872516  0.9256685  0.3169281 
  tree   FALSE     2     0.5678580  0.9651964  0.1943137 
  tree   FALSE     3     0.6850062  0.9243198  0.2977124 
  tree   FALSE     4     0.7079254  0.9608836  0.2235948 
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  tree   FALSE     5     0.7269227  0.9394250  0.2778431 
  tree   FALSE     6     0.7371385  0.9621529  0.2249020 
  tree   FALSE     7     0.7457089  0.9507013  0.2920915 
  tree   FALSE     8     0.7523029  0.9664914  0.2157516 
  tree   FALSE     9     0.7587161  0.9545956  0.2854248 
  tree   FALSE    10     0.7620169  0.9675713  0.2429412 
  tree   FALSE    20     0.7849037  0.9727489  0.2416340 
  tree   FALSE    30     0.7975436  0.9744811  0.2507190 
  tree   FALSE    40     0.8031911  0.9746891  0.2472549 
  tree   FALSE    50     0.8057415  0.9753343  0.2302614 
  tree   FALSE    60     0.8078063  0.9757644  0.2360131 
  tree   FALSE    70     0.8085484  0.9762015  0.2392157 
  tree   FALSE    80     0.8107055  0.9770617  0.2458824 
  tree   FALSE    90     0.8114283  0.9772838  0.2470588 
  tree   FALSE   100     0.8124837  0.9764165  0.2449020 
  tree    TRUE     1     0.5475425  0.9396774  0.1969935 
  tree    TRUE     2     0.4984825  0.9651706  0.1532026 
  tree    TRUE     3     0.6443040  0.9334035  0.2338562 
  tree    TRUE     4     0.6751334  0.9604231  0.1956209 
  tree    TRUE     5     0.6878512  0.9439925  0.2361438 
  tree    TRUE     6     0.6960811  0.9664656  0.1943791 
  tree    TRUE     7     0.7047369  0.9556615  0.2358824 
  tree    TRUE     8     0.7111375  0.9662576  0.1976471 
  tree    TRUE     9     0.7135427  0.9560916  0.2245098 
  tree    TRUE    10     0.7165999  0.9651683  0.1998039 
  tree    TRUE    20     0.7275286  0.9640977  0.2078431 
  tree    TRUE    30     0.7332628  0.9666924  0.2047059 
  tree    TRUE    40     0.7387336  0.9673469  0.2014379 
  tree    TRUE    50     0.7416204  0.9679874  0.2126144 
  tree    TRUE    60     0.7392242  0.9679944  0.2103922 
  tree    TRUE    70     0.7390053  0.9701543  0.2080392 
  tree    TRUE    80     0.7395830  0.9692824  0.2103268 
  tree    TRUE    90     0.7411626  0.9686396  0.2103268 
  tree    TRUE   100     0.7437485  0.9699369  0.2114379 
 
ROC was used to select the optimal model using  the largest value. 
The final values used for the model were trials = 90, model = rules and w
innow = FALSE.  
 

 
#results of trained model 
trainresults$c50FitDummy <- trainresultsfunction(c50FitDummy, trainHRdataDummy) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 925   0 
        X1   0 178 
                                      
               Accuracy : 1           
                 95% CI : (0.9967, 1) 
    No Information Rate : 0.8386      
    P-Value [Acc > NIR] : < 2.2e-16   
                                      
                  Kappa : 1           
 Mcnemar's Test P-Value : NA          
                                      
            Sensitivity : 1.0000      
            Specificity : 1.0000      
         Pos Pred Value : 1.0000      
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         Neg Pred Value : 1.0000      
             Prevalence : 0.1614      
         Detection Rate : 0.1614      
   Detection Prevalence : 0.1614      
      Balanced Accuracy : 1.0000      
                                      
       'Positive' Class : X1          
                                      
Area under the curve: 1 

 
 
#results of trained model on test set 
testresults$c50FitDummy <- testresultsfunction(c50FitDummy, testHRdataDummy, 
"c50FitDummy") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 301  38 
        X1   7  21 
                                           
               Accuracy : 0.8774           
                 95% CI : (0.8394, 0.9091) 
    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.02456          
                                           
                  Kappa : 0.4231           
 Mcnemar's Test P-Value : 7.744e-06        
                                           
            Sensitivity : 0.35593          
            Specificity : 0.97727          
         Pos Pred Value : 0.75000          
         Neg Pred Value : 0.88791          
             Prevalence : 0.16076          
         Detection Rate : 0.05722          
   Detection Prevalence : 0.07629          
      Balanced Accuracy : 0.66660          
                                           
       'Positive' Class : X1               
                                           
[1] "F1 score = 0.482758620689655" 
Area under the curve: 0.7912 
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Compare the model resluts.  
 
#make function to get the Confidence Interval values of the ROC 
 
ROCCItestfunction <- function(xx){ 
  RocTest <- roc(response = xx$outcome, predictor = xx$X1, levels = 
rev(levels(xx$outcome))) 
  ROCCITest <- ci.auc(RocTest, method = "b", boot.n = 2000, boot.stratified = TRUE ) 
  print(ROCCITest) 
  return(ROCCITest) 
} 
 
#collect value in dataframe 
ROCCI <- NULL 
 
ROCCI$logisicReg <- ROCCItestfunction(testresults$logisticReg) 
ROCCI$LDA <- ROCCItestfunction(testresults$ldaFit) 
ROCCI$PenalizedLR <- ROCCItestfunction(testresults$glmnTuned) 
ROCCI$nnet <- ROCCItestfunction(testresults$nnetFit) 
ROCCI$AvrgNnet <- ROCCItestfunction(testresults$nnetFit2) 
ROCCI$FDA <- ROCCItestfunction(testresults$fdaFit) 
ROCCI$SVM <- ROCCItestfunction(testresults$svmFit) 
ROCCI$KNN <- ROCCItestfunction(testresults$knnFit) 
ROCCI$NaiveBayes <- ROCCItestfunction(testresults$nbFit) 
ROCCI$RPART <- ROCCItestfunction(testresults$rpartFit) 
ROCCI$RPARTDummy <- ROCCItestfunction(testresults$rpartFitDummy) 
ROCCI$J48 <- ROCCItestfunction(testresults$j48Fit) 
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ROCCI$J48Dummy <- ROCCItestfunction(testresults$j48FitDummy) 
ROCCI$PART <- ROCCItestfunction(testresults$partFit) 
ROCCI$PARTDummy <- ROCCItestfunction(testresults$partFitDummy) 
ROCCI$BaggedTrees <- ROCCItestfunction(testresults$treebagFit) 
ROCCI$BaggedTreesDummy <- ROCCItestfunction(testresults$treebagFitDummy) 
ROCCI$RF <- ROCCItestfunction(testresults$rfFit) 
ROCCI$RFDummy <- ROCCItestfunction(testresults$rfFitDummy) 
ROCCI$GBMDummy <- ROCCItestfunction(testresults$gbmFitDummy) 
ROCCI$C5.0Dummy <- ROCCItestfunction(testresults$c50FitDummy) 
 
ROCCI <- data.frame(ROCCI) 
 
ROCCI <- melt(ROCCI) 
 
#plot the values 
stripplot(variable ~ value, 
          data = ROCCI,  
          groups = variable, 
          type = "l") 
Outcome: 

 
 

#Sampling Methods 
 
#upsampling, downsampling, and the hybrid from: synthetic minority over-sampling 
technique (SMOTE) 
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trainHRdata$Attrition <- as.factor(trainHRdata$Attrition) 
summary.default(trainHRdata$Attrition) 
Outcome: 
X0  X1  
925 178 
 

 
#downsampling would result in a training set of 178x2= 356 
#this is to low to expect good results 
 

#apply upsampling 
set.seed(1247) 
trainHRdataDummyFullRankLowCorrUpSampled <- 
upSample(trainHRdataDummyFullRankLowCorr, 
trainHRdataDummyFullRankLowCorr$Attrition) 
summary.default(trainHRdataDummyFullRankLowCorrUpSampled$Attrition) 
Outcome: 
X0  X1  
925 925  
 

 
set.seed(1247) 
trainHRdataUpSampled <- upSample(trainHRdata, trainHRdata$Attrition) 
 
set.seed(1247) 
trainHRdataDummyUpSampled <- upSample(trainHRdataDummy, 
trainHRdataDummy$Attrition) 
 
set.seed(1247) 
trainHRdataDummyFullRankUpSampled <- upSample(trainHRdataDummyFullRank, 
trainHRdataDummyFullRank$Attrition) 
 

#apply SMOTE 
set.seed(1247) 
trainHRdataSMOTE <- SMOTE(Attrition ~., data = trainHRdata, perc.over = 100, k = 5, 
perc.under = 100) 
#Does not work on this dataset, since the predictors should be of the same type.  
 
set.seed(1247) 
trainHRdataDummySMOTE <- SMOTE(Attrition ~., data = trainHRdataDummy, perc.over = 
200, k = 5, perc.under = 200) 
summary.default(trainHRdataDummySMOTE$Attrition) 
Outcome: 
X0  X1  
712 534  
 

 
set.seed(1247) 
trainHRdataDummyFullRankSMOTE <- SMOTE(Attrition ~., data = 
trainHRdataDummyFullRank, perc.over = 200, k = 5, perc.under = 200) 
 
set.seed(1247) 
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trainHRdataDummyFullRankLowCorrSMOTE <- SMOTE(Attrition ~., data = 
trainHRdataDummyFullRankLowCorr, perc.over = 200, k = 5, perc.under = 200) 
 
#----------------------------------------------- 

#Use newly created datasets to train models 
#----------------------------------------------- 
 
#------------------------------------- 

#Logistic Regression 
#------------------------------------- 
 

#Logistic Regression UpSampled 
 
trainHRdataDummyFullRankLowCorrUpSampled$Class<-NULL 
 
set.seed(1247) 
logisticRegUpSampled <- train(trainHRdataDummyFullRankLowCorrUpSampled[ , -1], y = 
trainHRdataDummyFullRankLowCorrUpSampled$Attrition,  method = "glm", preProc = 
c("BoxCox", "center", "scale"), metric = "ROC", trControl = ctrl) 
logisticRegUpSampled 
Outcome: 
Generalized Linear Model  
 
1850 samples 
  39 predictor 
   2 classes: 'X0', 'X1'  
 
Pre-processing: Box-Cox transformation (13), centered (39), scaled (39)  
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 1664, 1664, 1664, 1665, 1666, 1665, ...  
Resampling results: 
 
  ROC        Sens       Spec      
  0.8623527  0.7625877  0.7701753 
 

 
trainresultsSampling <- NULL 
testresultsSampling <- NULL 
 
#results of trained model 
trainresultsSampling$logisticRegUpSampled <- trainresultsfunction(logisticRegUpSampled, 
trainHRdataDummyFullRankLowCorrUpSampled) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 718 189 
        X1 207 736 
                                           
               Accuracy : 0.7859           
                 95% CI : (0.7665, 0.8044) 
    No Information Rate : 0.5              
    P-Value [Acc > NIR] : <2e-16           
                                           
                  Kappa : 0.5719           
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 Mcnemar's Test P-Value : 0.3929           
                                           
            Sensitivity : 0.7957           
            Specificity : 0.7762           
         Pos Pred Value : 0.7805           
         Neg Pred Value : 0.7916           
             Prevalence : 0.5000           
         Detection Rate : 0.3978           
   Detection Prevalence : 0.5097           
      Balanced Accuracy : 0.7859           
                                           
       'Positive' Class : X1               
                                           
Area under the curve: 0.8758 

 
 

 
#results of trained model on test set 
testresultsSampling$logisticRegUpSampled <- testresultsfunction(logisticRegUpSampled, 
testHRdataDummyFullRankLowCorr, "logisticRegUpSampled") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 237  16 
        X1  71  43 
                                          
               Accuracy : 0.7629          
                 95% CI : (0.716, 0.8055) 
    No Information Rate : 0.8392          
    P-Value [Acc > NIR] : 0.9999          
                                          
                  Kappa : 0.3619          
 Mcnemar's Test P-Value : 7.064e-09       
                                          
            Sensitivity : 0.7288          
            Specificity : 0.7695          
         Pos Pred Value : 0.3772          
         Neg Pred Value : 0.9368          
             Prevalence : 0.1608          
         Detection Rate : 0.1172          
   Detection Prevalence : 0.3106          
      Balanced Accuracy : 0.7491          
                                          
       'Positive' Class : X1              
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[1] "F1 score = 0.497109826589595" 
Area under the curve: 0.8168 

 
 

 

#Logistic Regression SMOTE 
 
set.seed(1247) 
logisticRegSMOTE <- train(trainHRdataDummyFullRankLowCorrSMOTE[ , -1], y = 
trainHRdataDummyFullRankLowCorrSMOTE$Attrition,  method = "glm", preProc = 
c("BoxCox", "center", "scale"), metric = "ROC", trControl = ctrl) 
logisticRegSMOTE 
Outcome: 
Generalized Linear Model  
 
1246 samples 
  39 predictor 
   2 classes: 'X0', 'X1'  
 
Pre-processing: Box-Cox transformation (14), centered (39), scaled (39)  
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 1121, 1121, 1121, 1122, 1121, 1122, ...  
Resampling results: 
 
  ROC       Sens       Spec      
  0.891164  0.8376135  0.7744654 
 

 
#results of trained model 
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trainresultsSampling$logisticRegSMOTE <- trainresultsfunction(logisticRegSMOTE, 
trainHRdataDummyFullRankLowCorrSMOTE) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 606 111 
        X1 106 423 
                                           
               Accuracy : 0.8258           
                 95% CI : (0.8036, 0.8465) 
    No Information Rate : 0.5714           
    P-Value [Acc > NIR] : <2e-16           
                                           
                  Kappa : 0.644            
 Mcnemar's Test P-Value : 0.786            
                                           
            Sensitivity : 0.7921           
            Specificity : 0.8511           
         Pos Pred Value : 0.7996           
         Neg Pred Value : 0.8452           
             Prevalence : 0.4286           
         Detection Rate : 0.3395           
   Detection Prevalence : 0.4246           
      Balanced Accuracy : 0.8216           
                                           
       'Positive' Class : X1               
                                           
Area under the curve: 0.9078 

 
 

 
#results of trained model on test set 
testresultsSampling$logisticRegSMOTE <- testresultsfunction(logisticRegSMOTE, 
testHRdataDummyFullRankLowCorr, "logisticRegSMOTE") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 249  18 
        X1  59  41 
                                           
               Accuracy : 0.7902           
                 95% CI : (0.7449, 0.8307) 
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    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.9946           
                                           
                  Kappa : 0.393            
 Mcnemar's Test P-Value : 5.154e-06        
                                           
            Sensitivity : 0.6949           
            Specificity : 0.8084           
         Pos Pred Value : 0.4100           
         Neg Pred Value : 0.9326           
             Prevalence : 0.1608           
         Detection Rate : 0.1117           
   Detection Prevalence : 0.2725           
      Balanced Accuracy : 0.7517           
                                           
       'Positive' Class : X1               
                                           
[1] "F1 score = 0.515723270440252" 
Area under the curve: 0.815 

 
 

 
#-------------------------------------------- 

#Neural Networks 
#-------------------------------------------- 
 
#create grid 
nnetGrid <- expand.grid(.size = 1:10, .decay = c(0, .1, 1, 2)) 
 
maxSize <- max(nnetGrid$.size) 
numWts <- 1*(maxSize * (length(trainHRdataDummyFullRankLowCorr) ) + maxSize + 1) 
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#Neural Networks UpSampled 
 
#spatialSign increases the predictive performance 
set.seed(1247) 
nnetFitUpSampled <- train(trainHRdataDummyFullRankLowCorrUpSampled[ , -1], 
trainHRdataDummyFullRankLowCorrUpSampled$Attrition, method = "nnet", metric = "ROC", 
preProc = c("BoxCox", "center", "scale", "spatialSign"), tuneGrid = nnetGrid, trace = FALSE, 
maxit = 2000, MaxNWts = numWts, trControl = ctrl) 
nnetFitUpSampled 
Outcome: 
Neural Network  
 
1850 samples 
  39 predictor 
   2 classes: 'X0', 'X1'  
 
Pre-processing: Box-Cox transformation (13), centered (39), scaled (39), s
patial sign transformation (39)  
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 1664, 1664, 1664, 1665, 1666, 1665, ...  
Resampling results across tuning parameters: 
 
  size  decay  ROC        Sens       Spec      
   1    0.0    0.8373854  0.8212062  0.7880902 
   1    0.1    0.8690010  0.8196540  0.7584853 
   1    1.0    0.8682373  0.7939154  0.7749299 
   1    2.0    0.8650401  0.7863558  0.7799135 
   2    0.0    0.8861367  0.7951403  0.8533754 
   2    0.1    0.8969714  0.7889855  0.8244367 
   2    1.0    0.8780763  0.8038710  0.7784011 
   2    2.0    0.8656446  0.7803109  0.7799088 
   3    0.0    0.9125570  0.8313020  0.8981814 
   3    0.1    0.9191268  0.8220360  0.8940790 
   3    1.0    0.8801631  0.8045348  0.7831557 
   3    2.0    0.8661533  0.7818280  0.7805610 
   4    0.0    0.9241239  0.8396470  0.9168186 
   4    0.1    0.9336959  0.8298083  0.9291024 
   4    1.0    0.8800960  0.8051870  0.7844530 
   4    2.0    0.8654821  0.7781557  0.7816386 
   5    0.0    0.9290908  0.8434409  0.9419986 
   5    0.1    0.9396955  0.8456194  0.9643268 
   5    1.0    0.8799024  0.8047546  0.7848831 
   5    2.0    0.8655372  0.7770734  0.7822908 
   6    0.0    0.9362701  0.8511641  0.9647288 
   6    0.1    0.9477583  0.8516550  0.9783731 
   6    1.0    0.8798791  0.8047546  0.7855283 
   6    2.0    0.8653264  0.7753389  0.7837985 
   7    0.0    0.9377642  0.8507924  0.9672814 
   7    0.1    0.9588392  0.8661875  0.9881089 
   7    1.0    0.8798790  0.8045418  0.7855283 
   7    2.0    0.8652587  0.7744764  0.7827232 
   8    0.0    0.9419095  0.8507340  0.9846237 
   8    0.1    0.9621525  0.8661501  0.9933029 
   8    1.0    0.8798977  0.8047592  0.7855283 
   8    2.0    0.8652844  0.7753436  0.7844437 
   9    0.0    0.9419214  0.8548995  0.9857340 
   9    0.1    0.9671956  0.8668046  0.9950257 
   9    1.0    0.8798653  0.8045442  0.7855283 
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   9    2.0    0.8652568  0.7742590  0.7827232 
  10    0.0    0.9445508  0.8583614  0.9965498 
  10    0.1    0.9713717  0.8782515  0.9971950 
  10    1.0    0.8799071  0.8045418  0.7855283 
  10    2.0    0.8651381  0.7736115  0.7831533 
 
ROC was used to select the optimal model using  the largest value. 
The final values used for the model were size = 10 and decay = 0.1. 
 

 
#results of trained model 
trainresultsSampling$nnetFitUpSampled <- trainresultsfunction(nnetFitUpSampled, 
trainHRdataDummyFullRankLowCorrUpSampled) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 923   0 
        X1   2 925 
                                           
               Accuracy : 0.9989           
                 95% CI : (0.9961, 0.9999) 
    No Information Rate : 0.5              
    P-Value [Acc > NIR] : <2e-16           
                                           
                  Kappa : 0.9978           
 Mcnemar's Test P-Value : 0.4795           
                                           
            Sensitivity : 1.0000           
            Specificity : 0.9978           
         Pos Pred Value : 0.9978           
         Neg Pred Value : 1.0000           
             Prevalence : 0.5000           
         Detection Rate : 0.5000           
   Detection Prevalence : 0.5011           
      Balanced Accuracy : 0.9989           
                                           
       'Positive' Class : X1               
                                           
Area under the curve: 1 

 
 

 
#results of trained model on test set 
testresultsSampling$nnetFitUpSampled <- testresultsfunction(nnetFitUpSampled, 
testHRdataDummyFullRankLowCorr, "nnetFitUpSampled") 
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Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 276  29 
        X1  32  30 
                                           
               Accuracy : 0.8338           
                 95% CI : (0.7917, 0.8704) 
    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.6440           
                                           
                  Kappa : 0.3964           
 Mcnemar's Test P-Value : 0.7979           
                                           
            Sensitivity : 0.50847          
            Specificity : 0.89610          
         Pos Pred Value : 0.48387          
         Neg Pred Value : 0.90492          
             Prevalence : 0.16076          
         Detection Rate : 0.08174          
   Detection Prevalence : 0.16894          
      Balanced Accuracy : 0.70229          
                                           
       'Positive' Class : X1               
                                           
[1] "F1 score = 0.495867768595041" 
Area under the curve: 0.7925 
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#Neural Networks SMOTE 
 
#spatialSign increases the predictive performance 
set.seed(1247) 
nnetFitUpSMOTE <- train(trainHRdataDummyFullRankLowCorrSMOTE[ , -1], 
trainHRdataDummyFullRankLowCorrSMOTE$Attrition, method = "nnet", metric = "ROC", 
preProc = c("BoxCox", "center", "scale", "spatialSign"), tuneGrid = nnetGrid, trace = FALSE, 
maxit = 2000, MaxNWts = numWts, trControl = ctrl) 
nnetFitUpSMOTE 
Outcome: 
Neural Network  
 
1246 samples 
  39 predictor 
   2 classes: 'X0', 'X1'  
 
Pre-processing: Box-Cox transformation (14), centered (39), scaled (39), s
patial sign transformation (39)  
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 1121, 1121, 1121, 1122, 1121, 1122, ...  
Resampling results across tuning parameters: 
 
  size  decay  ROC        Sens       Spec      
   1    0.0    0.8766043  0.8792097  0.7725926 
   1    0.1    0.8976848  0.8578247  0.7734172 
   1    1.0    0.8946517  0.8479890  0.7708036 
   1    2.0    0.8887835  0.8608881  0.7562404 
   2    0.0    0.8778907  0.8668271  0.7825856 
   2    0.1    0.9142561  0.8536189  0.8052830 
   2    1.0    0.8947731  0.8477074  0.7737876 
   2    2.0    0.8896895  0.8586581  0.7554647 
   3    0.0    0.8856142  0.8783646  0.8074423 
   3    0.1    0.9257528  0.8637011  0.8431027 
   3    1.0    0.8950995  0.8491119  0.7726555 
   3    2.0    0.8896754  0.8575391  0.7550734 
   4    0.0    0.8949660  0.8861581  0.8180922 
   4    0.1    0.9378992  0.8828326  0.8700559 
   4    1.0    0.8946383  0.8468701  0.7719008 
   4    2.0    0.8895910  0.8569757  0.7557932 
   5    0.0    0.8951367  0.8772066  0.8457372 
   5    0.1    0.9484980  0.8929421  0.8884067 
   5    1.0    0.8947368  0.8471518  0.7715234 
   5    2.0    0.8895021  0.8569757  0.7557932 
   6    0.0    0.8972280  0.8904734  0.8562683 
   6    0.1    0.9528639  0.8959898  0.9086024 
   6    1.0    0.8946169  0.8471518  0.7726415 
   6    2.0    0.8894284  0.8561307  0.7554228 
   7    0.0    0.9049533  0.8949296  0.8625926 
   7    0.1    0.9565219  0.9128717  0.9131516 
   7    1.0    0.8946210  0.8474335  0.7711391 
   7    2.0    0.8893703  0.8564124  0.7550454 
   8    0.0    0.9033950  0.8926643  0.8662683 
   8    0.1    0.9611718  0.9120031  0.9258770 
   8    1.0    0.8945690  0.8477152  0.7718798 
   8    2.0    0.8893185  0.8564124  0.7550454 
   9    0.0    0.8963317  0.8847613  0.8702096 
   9    0.1    0.9640022  0.9151330  0.9389658 
   9    1.0    0.8945167  0.8477152  0.7718798 
   9    2.0    0.8892868  0.8561307  0.7557862 
  10    0.0    0.9090557  0.8937911  0.8817470 
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  10    0.1    0.9651034  0.9187676  0.9319147 
  10    1.0    0.8944221  0.8474335  0.7718798 
  10    2.0    0.8892401  0.8555673  0.7554088 
 
ROC was used to select the optimal model using  the largest value. 
The final values used for the model were size = 10 and decay = 0.1. 
 

 
#results of trained model 
trainresultsSampling$nnetFitUpSMOTE <- trainresultsfunction(nnetFitUpSMOTE, 
trainHRdataDummyFullRankLowCorrSMOTE) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 712   2 
        X1   0 532 
                                           
               Accuracy : 0.9984           
                 95% CI : (0.9942, 0.9998) 
    No Information Rate : 0.5714           
    P-Value [Acc > NIR] : <2e-16           
                                           
                  Kappa : 0.9967           
 Mcnemar's Test P-Value : 0.4795           
                                           
            Sensitivity : 0.9963           
            Specificity : 1.0000           
         Pos Pred Value : 1.0000           
         Neg Pred Value : 0.9972           
             Prevalence : 0.4286           
         Detection Rate : 0.4270           
   Detection Prevalence : 0.4270           
      Balanced Accuracy : 0.9981           
                                           
       'Positive' Class : X1               
                                           
Area under the curve: 1 

 
 

 
#results of trained model on test set 
testresultsSampling$nnetFitUpSMOTE <- testresultsfunction(nnetFitUpSMOTE, 
testHRdataDummyFullRankLowCorr, "nnetFitUpSMOTE") 
Outcome: 
Confusion Matrix and Statistics 
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          Reference 
Prediction  X0  X1 
        X0 260  23 
        X1  48  36 
                                           
               Accuracy : 0.8065           
                 95% CI : (0.7624, 0.8457) 
    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.959541         
                                           
                  Kappa : 0.3879           
 Mcnemar's Test P-Value : 0.004396         
                                           
            Sensitivity : 0.61017          
            Specificity : 0.84416          
         Pos Pred Value : 0.42857          
         Neg Pred Value : 0.91873          
             Prevalence : 0.16076          
         Detection Rate : 0.09809          
   Detection Prevalence : 0.22888          
      Balanced Accuracy : 0.72716          
                                           
       'Positive' Class : X1               
                                           
[1] "F1 score = 0.503496503496503" 
Area under the curve: 0.7676 

 
 

 
#----------------------------------------- 
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#Flexible Discriminant Analysis 
#----------------------------------------- 
 
#Train FDA over number of components from 1 to 30 and a degree of 1 and 2.  
 

#Train on upsampled trainingset. 
set.seed(1247) 
fdaFitupsampled <- train(x = trainHRdataDummyFullRankLowCorrUpSampled[ , -1], y = 
trainHRdataDummyFullRankLowCorrUpSampled$Attrition, method = "earth", metric = 
"ROC", preProc = c("BoxCox", "center", "scale"), tuneGrid = expand.grid(.nprune = 1:30, 
.degree = 1:2), trControl = ctrl) 
fdaFitupsampled 
Outcome: 
Multivariate Adaptive Regression Spline  
 
1850 samples 
  39 predictor 
   2 classes: 'X0', 'X1'  
 
Pre-processing: Box-Cox transformation (13), centered (39), scaled (39)  
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 1664, 1664, 1664, 1665, 1666, 1665, ...  
Resampling results across tuning parameters: 
  1       28      0.8799666  0.7897616  0.8207784 
  1       29      0.8834650  0.7925830  0.8220804 
  1       30      0.8830586  0.7923726  0.8227115 
  2        1      0.5000000  0.7400000  0.2600000 
  2        2      0.6100958  0.7104745  0.5620991 
  2        3      0.7193622  0.6708392  0.6646424 
  2        4      0.7422760  0.7035133  0.6490697 
  2        5      0.7622773  0.7182539  0.6722814 
  2        6      0.7778210  0.7262272  0.7033848 
  2        7      0.7886456  0.7329056  0.7117578 
  2        8      0.7967406  0.7363417  0.7212950 
  2        9      0.8079603  0.7424240  0.7424731 
  2       10      0.8182017  0.7543315  0.7457574 
  2       11      0.8232655  0.7530295  0.7522347 
  2       12      0.8319331  0.7588663  0.7609046 
  2       13      0.8395600  0.7631837  0.7721155 
  2       14      0.8426392  0.7716223  0.7768724 
  2       15      0.8468435  0.7722698  0.7908789 
  2       16      0.8516156  0.7707527  0.7958696 
  2       17      0.8543649  0.7767952  0.7978144 
  2       18      0.8575320  0.7815591  0.8036419 
  2       19      0.8606604  0.7826414  0.8090720 
  2       20      0.8648038  0.7876064  0.8142660 
  2       21      0.8684763  0.7889130  0.8131791 
  2       22      0.8716962  0.7884970  0.8216199 
  2       23      0.8739333  0.7932702  0.8237681 
  2       24      0.8756527  0.7926367  0.8250865 
  2       25      0.8785085  0.7954254  0.8294156 
  2       26      0.8796350  0.7997499  0.8298457 
  2       27      0.8811837  0.8006054  0.8311127 
  2       28      0.8826468  0.8017134  0.8354418 
  2       29      0.8843310  0.8042987  0.8343572 
  2       30      0.8856178  0.8023656  0.8363067 
 
ROC was used to select the optimal model using  the largest value. 
The final values used for the model were nprune = 30 and degree = 2.  
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#results of trained model 
trainresultsSampling$fdaFitupsampled <- trainresultsfunction(fdaFitupsampled, 
trainHRdataDummyFullRankLowCorrUpSampled) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 767 144 
        X1 158 781 
                                           
               Accuracy : 0.8368           
                 95% CI : (0.8191, 0.8533) 
    No Information Rate : 0.5              
    P-Value [Acc > NIR] : <2e-16           
                                           
                  Kappa : 0.6735           
 Mcnemar's Test P-Value : 0.4544           
                                           
            Sensitivity : 0.8443           
            Specificity : 0.8292           
         Pos Pred Value : 0.8317           
         Neg Pred Value : 0.8419           
             Prevalence : 0.5000           
         Detection Rate : 0.4222           
   Detection Prevalence : 0.5076           
      Balanced Accuracy : 0.8368           
                                           
       'Positive' Class : X1               
                                           
Area under the curve: 0.9149 

 
 

 
#results of trained model on test set 
testresultsSampling$fdaFitupsampled <- testresultsfunction(fdaFitupsampled, 
testHRdataDummyFullRankLowCorr, "fdaFitupsampled") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
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        X0 246  18 
        X1  62  41 
                                           
               Accuracy : 0.782            
                 95% CI : (0.7362, 0.8232) 
    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.9984           
                                           
                  Kappa : 0.3793           
 Mcnemar's Test P-Value : 1.528e-06        
                                           
            Sensitivity : 0.6949           
            Specificity : 0.7987           
         Pos Pred Value : 0.3981           
         Neg Pred Value : 0.9318           
             Prevalence : 0.1608           
         Detection Rate : 0.1117           
   Detection Prevalence : 0.2807           
      Balanced Accuracy : 0.7468           
                                           
       'Positive' Class : X1               
                                           
[1] "F1 score = 0.506172839506173" 
Area under the curve: 0.7729 

 
 

 

#train on SMOTE trainingset. 
#Train FDA over number of components from 25 to 30 and a degree of 1 and 2.  
set.seed(1247) 
fdaFitSMOTE <- train(x = trainHRdataDummyFullRankLowCorrSMOTE[ , -1], y = 
trainHRdataDummyFullRankLowCorrSMOTE$Attrition, method = "earth", metric = "ROC", 
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preProc = c("BoxCox", "center", "scale"), tuneGrid = expand.grid(.nprune = 25:30, .degree = 
1:2), trControl = ctrl) 
fdaFitSMOTE 
Outcome: 
Multivariate Adaptive Regression Spline  
 
1246 samples 
  39 predictor 
   2 classes: 'X0', 'X1'  
 
Pre-processing: Box-Cox transformation (14), centered (39), scaled (39)  
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 1121, 1121, 1121, 1122, 1121, 1122, ...  
Resampling results across tuning parameters: 
 
  degree  nprune  ROC        Sens       Spec      
  1       25      0.9199323  0.9283177  0.7847170 
  1       26      0.9199323  0.9283177  0.7847170 
  1       27      0.9199323  0.9283177  0.7847170 
  1       28      0.9199323  0.9283177  0.7847170 
  1       29      0.9199323  0.9283177  0.7847170 
  1       30      0.9199323  0.9283177  0.7847170 
  2       25      0.9198561  0.8923670  0.7982460 
  2       26      0.9200503  0.8957277  0.8016282 
  2       27      0.9222879  0.8929108  0.8005101 
  2       28      0.9238469  0.8963028  0.7967086 
  2       29      0.9241004  0.9005282  0.7959539 
  2       30      0.9245850  0.9008099  0.7978546 
 
ROC was used to select the optimal model using  the largest value. 
The final values used for the model were nprune = 30 and degree = 2.  
 

 
#results of trained model 
trainresultsSampling$fdaFitSMOTE <- trainresultsfunction(fdaFitSMOTE, 
trainHRdataDummyFullRankLowCorrSMOTE) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 668  79 
        X1  44 455 
                                           
               Accuracy : 0.9013           
                 95% CI : (0.8834, 0.9173) 
    No Information Rate : 0.5714           
    P-Value [Acc > NIR] : < 2.2e-16        
                                           
                  Kappa : 0.7968           
 Mcnemar's Test P-Value : 0.002172         
                                           
            Sensitivity : 0.8521           
            Specificity : 0.9382           
         Pos Pred Value : 0.9118           
         Neg Pred Value : 0.8942           
             Prevalence : 0.4286           
         Detection Rate : 0.3652           
   Detection Prevalence : 0.4005           
      Balanced Accuracy : 0.8951           
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       'Positive' Class : X1               
                                           
Area under the curve: 0.9604 

 
 

 
#results of trained model on test set 
testresultsSampling$fdaFitSMOTE <- testresultsfunction(fdaFitSMOTE, 
testHRdataDummyFullRankLowCorr, "fdaFitSMOTE") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 278  31 
        X1  30  28 
                                           
               Accuracy : 0.8338           
                 95% CI : (0.7917, 0.8704) 
    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.644            
                                           
                  Kappa : 0.3798           
 Mcnemar's Test P-Value : 1.000            
                                           
            Sensitivity : 0.47458          
            Specificity : 0.90260          
         Pos Pred Value : 0.48276          
         Neg Pred Value : 0.89968          
             Prevalence : 0.16076          
         Detection Rate : 0.07629          
   Detection Prevalence : 0.15804          
      Balanced Accuracy : 0.68859          
                                           
       'Positive' Class : X1               
                                           
[1] "F1 score = 0.478632478632479" 
Area under the curve: 0.7569 



154 
 

 
 

 
#----------------------------------------- 

# Support Vector Machines 
#----------------------------------------- 
 
#create tuning parameters 
set.seed(1247) 
sigmaRangeReduced <- sigest(as.matrix(trainHRdataDummyFullRankLowCorr[ , -1]))  
svmRGridReduced <- expand.grid(.sigma = sigmaRangeReduced[1], .C = 2^(seq(-4, 4))) 
 

# Support Vector Machines UpSampled 
 
#train the model 
set.seed(1247) 
svmFitUpSampled <- train(x = trainHRdataDummyFullRankLowCorrUpSampled[ , -1], y = 
trainHRdataDummyFullRankLowCorrUpSampled$Attrition, method = "svmRadial", metric = 
"ROC", preProc = c("BoxCox", "center", "scale"), tuneGrid = svmRGridReduced, fit = FALSE, 
trControl = ctrl) 
svmFitUpSampled 
Outcome: 
Support Vector Machines with Radial Basis Function Kernel  
 
1850 samples 
  39 predictor 
   2 classes: 'X0', 'X1'  
 
Pre-processing: Box-Cox transformation (13), centered (39), scaled (39)  
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 1664, 1664, 1664, 1665, 1666, 1665, ...  
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Resampling results across tuning parameters: 
 
  C        ROC        Sens       Spec      
   0.0625  0.8497826  0.7543432  0.7900468 
   0.1250  0.8667428  0.8030154  0.7790323 
   0.2500  0.8855392  0.8051800  0.7937331 
   0.5000  0.9027779  0.8205213  0.8250888 
   1.0000  0.9213240  0.8376017  0.8590439 
   2.0000  0.9454673  0.8682679  0.8973165 
   4.0000  0.9648639  0.8966246  0.9362225 
   8.0000  0.9753479  0.9182492  0.9582702 
  16.0000  0.9826495  0.9323095  0.9833450 
 
Tuning parameter 'sigma' was held constant at a value of 0.009475476 
ROC was used to select the optimal model using  the largest value. 
The final values used for the model were sigma = 0.009475476 and C = 16. 
 

 
#results of trained model 
trainresultsSampling$svmFitUpSampled <- trainresultsfunction(svmFitUpSampled, 
trainHRdataDummyFullRankLowCorrUpSampled) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 916   4 
        X1   9 921 
                                          
               Accuracy : 0.993           
                 95% CI : (0.988, 0.9963) 
    No Information Rate : 0.5             
    P-Value [Acc > NIR] : <2e-16          
                                          
                  Kappa : 0.9859          
 Mcnemar's Test P-Value : 0.2673          
                                          
            Sensitivity : 0.9957          
            Specificity : 0.9903          
         Pos Pred Value : 0.9903          
         Neg Pred Value : 0.9957          
             Prevalence : 0.5000          
         Detection Rate : 0.4978          
   Detection Prevalence : 0.5027          
      Balanced Accuracy : 0.9930          
                                          
       'Positive' Class : X1              
                                          
Area under the curve: 0.998 
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#results of trained model on test set 
testresultsSampling$svmFitUpSampled <- testresultsfunction(svmFitUpSampled, 
testHRdataDummyFullRankLowCorr, "svmFitUpSampled") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 291  33 
        X1  17  26 
                                           
               Accuracy : 0.8638           
                 95% CI : (0.8244, 0.8972) 
    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.11193          
                                           
                  Kappa : 0.4329           
 Mcnemar's Test P-Value : 0.03389          
                                           
            Sensitivity : 0.44068          
            Specificity : 0.94481          
         Pos Pred Value : 0.60465          
         Neg Pred Value : 0.89815          
             Prevalence : 0.16076          
         Detection Rate : 0.07084          
   Detection Prevalence : 0.11717          
      Balanced Accuracy : 0.69274          
                                           
       'Positive' Class : X1               
                                           
[1] "F1 score = 0.509803921568627" 
Area under the curve: 0.7753 
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# Support Vector Machines SMOTE 
 
#train the model 
set.seed(1247) 
svmFitSMOTE <- train(x = trainHRdataDummyFullRankLowCorrSMOTE[ , -1], y = 
trainHRdataDummyFullRankLowCorrSMOTE$Attrition, method = "svmRadial", metric = 
"ROC", preProc = c("BoxCox", "center", "scale"), tuneGrid = svmRGridReduced, fit = FALSE, 
trControl = ctrl) 
svmFitSMOTE 
Outcome: 
Support Vector Machines with Radial Basis Function Kernel  
 
1246 samples 
  39 predictor 
   2 classes: 'X0', 'X1'  
 
Pre-processing: Box-Cox transformation (14), centered (39), scaled (39)  
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 1121, 1121, 1121, 1122, 1121, 1122, ...  
Resampling results across tuning parameters: 
 
  C        ROC        Sens       Spec      
   0.0625  0.8620929  0.7173435  0.8255835 
   0.1250  0.8799273  0.8241002  0.7716212 
   0.2500  0.8959591  0.8482590  0.7757652 
   0.5000  0.9087934  0.8541510  0.7966806 
   1.0000  0.9224847  0.8687793  0.8274004 
   2.0000  0.9381621  0.8845110  0.8711670 
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   4.0000  0.9533407  0.9055829  0.8932914 
   8.0000  0.9649410  0.9190336  0.9190846 
  16.0000  0.9737213  0.9356103  0.9479804 
 
Tuning parameter 'sigma' was held constant at a value of 0.009475476 
ROC was used to select the optimal model using  the largest value. 
The final values used for the model were sigma = 0.009475476 and C = 16. 
 

 
#results of trained model 
trainresultsSampling$svmFitSMOTE <- trainresultsfunction(svmFitSMOTE, 
trainHRdataDummyFullRankLowCorrSMOTE) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 704   2 
        X1   8 532 
                                           
               Accuracy : 0.992            
                 95% CI : (0.9853, 0.9961) 
    No Information Rate : 0.5714           
    P-Value [Acc > NIR] : <2e-16           
                                           
                  Kappa : 0.9836           
 Mcnemar's Test P-Value : 0.1138           
                                           
            Sensitivity : 0.9963           
            Specificity : 0.9888           
         Pos Pred Value : 0.9852           
         Neg Pred Value : 0.9972           
             Prevalence : 0.4286           
         Detection Rate : 0.4270           
   Detection Prevalence : 0.4334           
      Balanced Accuracy : 0.9925           
                                           
       'Positive' Class : X1               
                                           
Area under the curve: 0.9999 

 
 

 
#results of trained model on test set 
testresultsSampling$svmFitSMOTE <- testresultsfunction(svmFitSMOTE, 
testHRdataDummyFullRankLowCorr, "svmFitSMOTE") 
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Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 278  33 
        X1  30  26 
                                           
               Accuracy : 0.8283           
                 95% CI : (0.7858, 0.8655) 
    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.7418           
                                           
                  Kappa : 0.3505           
 Mcnemar's Test P-Value : 0.8011           
                                           
            Sensitivity : 0.44068          
            Specificity : 0.90260          
         Pos Pred Value : 0.46429          
         Neg Pred Value : 0.89389          
             Prevalence : 0.16076          
         Detection Rate : 0.07084          
   Detection Prevalence : 0.15259          
      Balanced Accuracy : 0.67164          
                                           
       'Positive' Class : X1               
                                           
[1] "F1 score = 0.452173913043478" 
Area under the curve: 0.7581 

 
 

 
#------------------------------ 
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#Random Forests Dummy set 
#------------------------------ 
mtryValuesDummy <- c(2, 10, 20, 30, 40, 52) 
 

#Random Forests Dummy set UpSampled 
set.seed(1247) 
rfFitDummyUpSampled <- train(x = trainHRdataDummyUpSampled[, -1],  
                    y = trainHRdataDummyUpSampled$Attrition, 
                    method = "rf", 
                    ntree = 1000, 
                    tuneGrid = data.frame(mtry = mtryValuesDummy), 
                    importance = TRUE, 
                    metric = "ROC", 
                    trControl = ctrl) 
rfFitDummyUpSampled 
Outcome: 
Random Forest  
 
1850 samples 
  51 predictor 
   2 classes: 'X0', 'X1'  
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 1664, 1664, 1664, 1665, 1666, 1665, ...  
Resampling results across tuning parameters: 
 
  mtry  ROC        Sens       Spec      
   2    0.9991652  0.9485133  0.9952408 
  10    0.9994187  0.9517485  0.9976157 
  20    0.9993058  0.9441842  0.9982655 
  30    0.9991848  0.9413791  0.9987003 
  40    0.9990302  0.9392146  0.9984853 
  52    0.9989803  0.9394320  0.9984853 
 
ROC was used to select the optimal model using  the largest value. 
The final value used for the model was mtry = 10. 
 

 
#results of trained model 
trainresultsSampling$rfFitDummyUpSampled <- trainresultsfunction(rfFitDummyUpSampled, 
trainHRdataDummyUpSampled) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 925   0 
        X1   0 925 
                                     
               Accuracy : 1          
                 95% CI : (0.998, 1) 
    No Information Rate : 0.5        
    P-Value [Acc > NIR] : < 2.2e-16  
                                     
                  Kappa : 1          
 Mcnemar's Test P-Value : NA         
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            Sensitivity : 1.0        
            Specificity : 1.0        
         Pos Pred Value : 1.0        
         Neg Pred Value : 1.0        
             Prevalence : 0.5        
         Detection Rate : 0.5        
   Detection Prevalence : 0.5        
      Balanced Accuracy : 1.0        
                                     
       'Positive' Class : X1         
                                     
Area under the curve: 1 

 
 

 
#results of trained model on test set 
testresultsSampling$rfFitDummyUpSampled <- testresultsfunction(rfFitDummyUpSampled, 
testHRdataDummy, "rfFitDummyUpSampled") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 298  37 
        X1  10  22 
                                           
               Accuracy : 0.8719           
                 95% CI : (0.8334, 0.9044) 
    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.0480056        
                                           
                  Kappa : 0.4177           
 Mcnemar's Test P-Value : 0.0001491        
                                           
            Sensitivity : 0.37288          
            Specificity : 0.96753          
         Pos Pred Value : 0.68750          
         Neg Pred Value : 0.88955          
             Prevalence : 0.16076          
         Detection Rate : 0.05995          
   Detection Prevalence : 0.08719          
      Balanced Accuracy : 0.67021          
                                           
       'Positive' Class : X1               
                                           
[1] "F1 score = 0.483516483516484" 
Area under the curve: 0.7778 
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#Random Forests Dummy set SMOTE 
set.seed(1247) 
rfFitDummySMOTE <- train(x = trainHRdataDummySMOTE[, -1],  
                             y = trainHRdataDummySMOTE$Attrition, 
                             method = "rf", 
                             ntree = 1000, 
                             tuneGrid = data.frame(mtry = mtryValuesDummy), 
                             importance = TRUE, 
                             metric = "ROC", 
                             trControl = ctrl) 
rfFitDummySMOTE 
Outcome: 
Random Forest  
 
1246 samples 
  51 predictor 
   2 classes: 'X0', 'X1'  
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 1121, 1121, 1121, 1122, 1121, 1122, ...  
Resampling results across tuning parameters: 
 
  mtry  ROC        Sens       Spec      
   2    0.9801181  0.9701956  0.8487212 
  10    0.9794091  0.9558764  0.8707757 
  20    0.9781573  0.9539085  0.8696506 
  30    0.9768240  0.9508294  0.8677778 
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  40    0.9759455  0.9519444  0.8674144 
  52    0.9749527  0.9527856  0.8614326 
 
ROC was used to select the optimal model using  the largest value. 
The final value used for the model was mtry = 2. 
 

 
#results of trained model 
trainresultsSampling$rfFitDummySMOTE <- trainresultsfunction(rfFitDummySMOTE, 
trainHRdataDummySMOTE) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 712   1 
        X1   0 533 
                                      
               Accuracy : 0.9992      
                 95% CI : (0.9955, 1) 
    No Information Rate : 0.5714      
    P-Value [Acc > NIR] : <2e-16      
                                      
                  Kappa : 0.9984      
 Mcnemar's Test P-Value : 1           
                                      
            Sensitivity : 0.9981      
            Specificity : 1.0000      
         Pos Pred Value : 1.0000      
         Neg Pred Value : 0.9986      
             Prevalence : 0.4286      
         Detection Rate : 0.4278      
   Detection Prevalence : 0.4278      
      Balanced Accuracy : 0.9991      
                                      
       'Positive' Class : X1          
                                      
Area under the curve: 1 

 
 

 
#results of trained model on test set 
testresultsSampling$rfFitDummySMOTE <- testresultsfunction(rfFitDummySMOTE, 
testHRdataDummy, "rfFitDummySMOTE") 
Outcome: 
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Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 297  36 
        X1  11  23 
                                           
               Accuracy : 0.8719           
                 95% CI : (0.8334, 0.9044) 
    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.0480056        
                                           
                  Kappa : 0.4273           
 Mcnemar's Test P-Value : 0.0004639        
                                           
            Sensitivity : 0.38983          
            Specificity : 0.96429          
         Pos Pred Value : 0.67647          
         Neg Pred Value : 0.89189          
             Prevalence : 0.16076          
         Detection Rate : 0.06267          
   Detection Prevalence : 0.09264          
      Balanced Accuracy : 0.67706          
                                           
       'Positive' Class : X1               
                                           
[1] "F1 score = 0.494623655913979" 
Area under the curve: 0.7911 

 
 

 
#------------------------------ 
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#Gradient Boosting Machines dummy set 
#------------------------------ 
gbmGrid <- expand.grid(interaction.depth = c(1, 3, 5, 7, 9), 
                       n.trees = (1:15)*100, 
                       shrinkage = c(.01, .1), 
                       n.minobsinnode = 10) 
 

#Gradient Boosting Machines dummy set UpSampled 
set.seed(1247) 
gbmFitDummyUpSampled <- train(x = trainHRdataDummyUpSampled[, -1],  
                     y = trainHRdataDummyUpSampled$Attrition, 
                     method = "gbm", 
                     tuneGrid = gbmGrid, 
                     metric = "ROC", 
                     verbose = FALSE, 
                     trControl = ctrl) 
gbmFitDummyUpSampled 
Outcome: 
Stochastic Gradient Boosting  
 
1850 samples 
  51 predictor 
   2 classes: 'X0', 'X1'  
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 1664, 1664, 1664, 1665, 1666, 1665, ...  
Resampling results across tuning parameters: 
 
  shrinkage  interaction.depth  n.trees  ROC        Sens       Spec      
  0.10       7                  1200     0.9986824  0.9491748  0.9980552 
  0.10       7                  1300     0.9987454  0.9491772  0.9982726 
  0.10       7                  1400     0.9987881  0.9489621  0.9980552 
  0.10       7                  1500     0.9988163  0.9511220  0.9980552 
  0.10       9                   100     0.9877963  0.9093712  0.9755657 
  0.10       9                   200     0.9963415  0.9314142  0.9967648 
  0.10       9                   300     0.9977463  0.9394320  0.9980552 
  0.10       9                   400     0.9985339  0.9411618  0.9980552 
  0.10       9                   500     0.9986934  0.9446237  0.9976204 
  0.10       9                   600     0.9990249  0.9487307  0.9978378 
  0.10       9                   700     0.9991179  0.9500351  0.9976204 
  0.10       9                   800     0.9992227  0.9504605  0.9976204 
  0.10       9                   900     0.9992433  0.9513277  0.9976204 
  0.10       9                  1000     0.9992672  0.9528354  0.9976204 
  0.10       9                  1100     0.9993161  0.9519776  0.9976204 
  0.10       9                  1200     0.9993284  0.9539224  0.9976204 
  0.10       9                  1300     0.9993631  0.9543525  0.9976204 
  0.10       9                  1400     0.9992977  0.9537097  0.9976204 
  0.10       9                  1500     0.9993094  0.9534946  0.9976204 
Note: list was shortened! 

 
Tuning parameter 'n.minobsinnode' was held constant at a value of 10 
ROC was used to select the optimal model using  the largest value. 
The final values used for the model were n.trees = 1300, interaction.dept
h = 9, shrinkage = 0.1 
 and n.minobsinnode = 10. 
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#results of trained model 
trainresultsSampling$gbmFitDummyUpSampled <- 
trainresultsfunction(gbmFitDummyUpSampled, trainHRdataDummyUpSampled) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 925   0 
        X1   0 925 
                                     
               Accuracy : 1          
                 95% CI : (0.998, 1) 
    No Information Rate : 0.5        
    P-Value [Acc > NIR] : < 2.2e-16  
                                     
                  Kappa : 1          
 Mcnemar's Test P-Value : NA         
                                     
            Sensitivity : 1.0        
            Specificity : 1.0        
         Pos Pred Value : 1.0        
         Neg Pred Value : 1.0        
             Prevalence : 0.5        
         Detection Rate : 0.5        
   Detection Prevalence : 0.5        
      Balanced Accuracy : 1.0        
                                     
       'Positive' Class : X1         
                                     
Area under the curve: 1 

 
 

 
#results of trained model on test set 
testresultsSampling$gbmFitDummyUpSampled <- 
testresultsfunction(gbmFitDummyUpSampled, testHRdataDummy, 
"gbmFitDummyUpSampled") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 295  35 
        X1  13  24 
                                          
               Accuracy : 0.8692          
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                 95% CI : (0.8304, 0.902) 
    No Information Rate : 0.8392          
    P-Value [Acc > NIR] : 0.064977        
                                          
                  Kappa : 0.4293          
 Mcnemar's Test P-Value : 0.002437        
                                          
            Sensitivity : 0.4068          
            Specificity : 0.9578          
         Pos Pred Value : 0.6486          
         Neg Pred Value : 0.8939          
             Prevalence : 0.1608          
         Detection Rate : 0.0654          
   Detection Prevalence : 0.1008          
      Balanced Accuracy : 0.6823          
                                          
       'Positive' Class : X1              
                                          
[1] "F1 score = 0.5" 
Area under the curve: 0.7751 

 
 

 

#Gradient Boosting Machines dummy set SMOTE 
set.seed(1247) 
gbmFitDummyUpSMOTE <- train(x = trainHRdataDummySMOTE[, -1],  
                              y = trainHRdataDummySMOTE$Attrition, 
                              method = "gbm", 
                              tuneGrid = gbmGrid, 
                              metric = "ROC", 
                              verbose = FALSE, 
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                              trControl = ctrl) 
gbmFitDummyUpSMOTE 
Outcome: 
Stochastic Gradient Boosting  
 
1246 samples 
  51 predictor 
   2 classes: 'X0', 'X1'  
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 1121, 1121, 1121, 1122, 1121, 1122, ...  
Resampling results across tuning parameters: 
 
  shrinkage  interaction.depth  n.trees  ROC        Sens       Spec      
  0.10       7                  1100     0.9738368  0.9615219  0.8711950 
  0.10       7                  1200     0.9743225  0.9626448  0.8726555 
  0.10       7                  1300     0.9743821  0.9620775  0.8745563 
  0.10       7                  1400     0.9742881  0.9623592  0.8726695 
  0.10       7                  1500     0.9741201  0.9615141  0.8741929 
  0.10       9                   100     0.9643828  0.9550196  0.8554787 
  0.10       9                   200     0.9685343  0.9595305  0.8569811 
  0.10       9                   300     0.9709049  0.9586894  0.8633403 
  0.10       9                   400     0.9724274  0.9614984  0.8648498 
  0.10       9                   500     0.9727322  0.9615141  0.8640811 
  0.10       9                   600     0.9731866  0.9612363  0.8689727 
  0.10       9                   700     0.9734812  0.9617997  0.8719567 
  0.10       9                   800     0.9739389  0.9617919  0.8719357 
  0.10       9                   900     0.9741881  0.9620657  0.8734382 
  0.10       9                  1000     0.9743662  0.9609546  0.8738015 
  0.10       9                  1100     0.9747216  0.9606690  0.8749476 
  0.10       9                  1200     0.9747051  0.9615180  0.8749406 
  0.10       9                  1300     0.9748111  0.9609468  0.8734312 
  0.10       9                  1400     0.9749029  0.9615180  0.8741719 
  0.10       9                  1500     0.9750860  0.9612285  0.8753040 
Note: list was shortened 
 
Tuning parameter 'n.minobsinnode' was held constant at a value of 10 
ROC was used to select the optimal model using  the largest value. 
The final values used for the model were n.trees = 1500, interaction.dept
h = 9, shrinkage = 0.1 
 and n.minobsinnode = 10. 
 

 
#results of trained model 
trainresultsSampling$gbmFitDummyUpSMOTE <- 
trainresultsfunction(gbmFitDummyUpSMOTE, trainHRdataDummySMOTE) 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 712   0 
        X1   0 534 
                                     
               Accuracy : 1          
                 95% CI : (0.997, 1) 
    No Information Rate : 0.5714     
    P-Value [Acc > NIR] : < 2.2e-16  
                                     
                  Kappa : 1          
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 Mcnemar's Test P-Value : NA         
                                     
            Sensitivity : 1.0000     
            Specificity : 1.0000     
         Pos Pred Value : 1.0000     
         Neg Pred Value : 1.0000     
             Prevalence : 0.4286     
         Detection Rate : 0.4286     
   Detection Prevalence : 0.4286     
      Balanced Accuracy : 1.0000     
                                     
       'Positive' Class : X1         
                                     
Area under the curve: 1 

 
 

 
#results of trained model on test set 
testresultsSampling$gbmFitDummyUpSMOTE <- 
testresultsfunction(gbmFitDummyUpSMOTE, testHRdataDummy, 
"gbmFitDummyUpSMOTE") 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction  X0  X1 
        X0 280  33 
        X1  28  26 
                                           
               Accuracy : 0.8338           
                 95% CI : (0.7917, 0.8704) 
    No Information Rate : 0.8392           
    P-Value [Acc > NIR] : 0.6440           
                                           
                  Kappa : 0.3622           
 Mcnemar's Test P-Value : 0.6085           
                                           
            Sensitivity : 0.44068          
            Specificity : 0.90909          
         Pos Pred Value : 0.48148          
         Neg Pred Value : 0.89457          
             Prevalence : 0.16076          
         Detection Rate : 0.07084          
   Detection Prevalence : 0.14714          
      Balanced Accuracy : 0.67488          
                                           
       'Positive' Class : X1               
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Area under the curve: 0.7673 

 
 

 
#------------------------------------------------------ 

#Alternate Cutoff points 
#------------------------------------------------------ 
 
#compare the results with Alternate Cutoff points 
 

# Create alternate cutoff function 
AlternateCutoffs <- function(xx, yy){ 
  # xx = testresults$(Machine learning algorithm) 
  # yy = "Machine learning algorithm" 
  RocTest <- roc(response = xx$outcome, predictor = xx$X1, levels = 
rev(levels(xx$outcome)))  
   
   
  Thresh <- coords( RocTest , x = "best", ret=c("threshold", "accuracy", "specificity", 
"sensitivity", "ppv"), 
                   best.method="closest.topleft") 
print(Thresh) 
 
Thresh 
 
plot(RocTest , print.thres = c(.5, Thresh["threshold"]), type = "S", 
     print.thres.pattern = "%.3f (Spec = %.2f, Sens = %.2f)", 
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     print.thres.cex = .8, legacy.axes = TRUE) 
legend(.75, .2, 
       str_c("Testset Alternate Cutoff ", yy), 
       lwd = 1, 
       pch = 16) 
 
ThreshY <- coords(RocTest , x = "best", ret="threshold", 
                    best.method="youden") 
 
cutText <- ifelse(Thresh["threshold"] == ThreshY, 
                  "is the same as", 
                  "is similar to") 
print(cutText) 
 
Fscore <- (2*Thresh["specificity"]*Thresh["ppv"]/(Thresh["specificity"]+Thresh["ppv"])) 
 
print(paste(c("F1 score =", Fscore), collapse = " ")) 
} 
 

#apply function on algorithms used 
 
AlternateCutoffs(testresults$logisticReg, "Logistic Regression") 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.1848141   0.7901907   0.7288136   0.8019481   0.9391635  
[1] "is the same as" 
[1] "F1 score = 0.820724828065837" 

 
 

 
AlternateCutoffs(testresults$nnetFit, "Neural Network") 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.1674948   0.8147139   0.7118644   0.8344156   0.9379562  
      threshold  
"is similar to"  
[1] "F1 score = 0.809418469498706" 
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AlternateCutoffs(testresults$svmFit, "Support Vector Machines") 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.1770735   0.7874659   0.7627119   0.7922078   0.9457364  
      threshold  
"is similar to"  
[1] "F1 score = 0.844420518341921" 

 
 
 

AlternateCutoffs(testresults$rfFitDummy, "Random Forests Dummy") 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.1475000   0.7411444   0.7457627   0.7402597   0.9382716  
       threshold  
"is the same as"  
[1] "F1 score = 0.831013916500994" 
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AlternateCutoffs(testresults$gbmFitDummy, "GBM dummy") 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.1652439   0.7792916   0.7796610   0.7792208   0.9486166  
       threshold  
"is the same as"  
[1] "F1 score = 0.855880300798512" 

 
 
# Results of alternate cutoffs on Sampling 
 
AlternateCutoffs(testresultsSampling$logisticRegUpSampled, "Logistic Regression 
UpSampled") 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.5343487   0.7901907   0.7288136   0.8019481   0.9391635  
       threshold  
"is the same as"  
[1] "F1 score = 0.820724828065837" 
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AlternateCutoffs(testresultsSampling$logisticRegSMOTE, "Logistic Regression SMOTE") 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.5257691   0.8010899   0.6949153   0.8214286   0.9335793  
      threshold  
"is similar to"  
[1] "F1 score = 0.796758583608572" 

 
 
AlternateCutoffs(testresultsSampling$nnetFitUpSampled, "Neural Network UpSampled") 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.1066153   0.7574932   0.7288136   0.7629870   0.9362550  
       threshold  
"is the same as"  
[1] "F1 score = 0.819612296212183" 

 
 
AlternateCutoffs(testresultsSampling$nnetFitUpSMOTE , "Neural Network SMOTE") 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.3349407   0.7738420   0.6779661   0.7922078   0.9277567  
       threshold  
"is the same as"  
[1] "F1 score = 0.783432332637663" 
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AlternateCutoffs(testresultsSampling$svmFitUpSampled, "Support Vector Machines 
UpSampled") 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
 0.08109166  0.72752044  0.67796610  0.73701299  0.92276423  
      threshold  
"is similar to"  
[1] "F1 score = 0.781646795506392" 

 
 
AlternateCutoffs(testresultsSampling$svmFitSMOTE, "Support Vector Machines SMOTE") 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.1183862   0.6594005   0.7118644   0.6493506   0.9216590  
      threshold  
"is similar to"  
[1] "F1 score = 0.803289662427082" 

 
 
AlternateCutoffs(testresultsSampling$rfFitDummyUpSampled, "Random Forests Dummy 
UpSampled") 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.2065000   0.7247956   0.7457627   0.7207792   0.9367089  
       threshold  
"is the same as"  
[1] "F1 score = 0.830400408059169" 
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AlternateCutoffs(testresultsSampling$rfFitDummySMOTE, "Random Forests Dummy 
SMOTE") 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.3885000   0.8174387   0.6610169   0.8474026   0.9288256  
       threshold  
"is the same as"  
[1] "F1 score = 0.772365126337355" 

 
 
AlternateCutoffs(testresultsSampling$gbmFitDummyUpSampled, "GBM dummy 
UpSampled") 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
0.002546103 0.754768392 0.677966102 0.769480519 0.925781250  
      threshold  
"is similar to"  
[1] "F1 score = 0.78272716013706" 

 
 
AlternateCutoffs(testresultsSampling$gbmFitDummyUpSMOTE, "GBM dummy SMOTE") 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
0.006469846 0.752043597 0.711864407 0.759740260 0.932270916  
       threshold  
"is the same as"  
[1] "F1 score = 0.807294233612617" 

 
 
#--------------------------------------------------------------- 
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#apply function on algorithms used based on trainingset. 
#--------------------------------------------------------------- 
 
#First Create alternate cutoff function based on trainset.  
AlternateCutoffstrain <- function(xx, yy, zz){ 
  # xx = trainresults$(Machine learning algorithm) 
  # yy = "Machine learning algorithm" 
  # zz = testresults$(Machine learning algorithm) 
  RocTrain <- roc(response = xx$outcome, predictor = xx$X1, levels = 
rev(levels(xx$outcome)))  
  RocTest <- roc(response = zz$outcome, predictor = zz$X1, levels = 
rev(levels(zz$outcome)))  
   
  Threshtrain <- coords( RocTrain , x = "best", ret=c("threshold"), 
                    best.method="closest.topleft") 
  Threshtest <- coords( RocTest , x = Threshtrain, input = "threshold", ret=c("threshold", 
"accuracy", "specificity", "sensitivity", "ppv")) 
   
  print(Threshtest) 
   
  plot(RocTest , print.thres = c(.5, Threshtrain), type = "S", 
       print.thres.pattern = "%.3f (Spec = %.2f, Sens = %.2f)", 
       print.thres.cex = .8, legacy.axes = TRUE) 
  legend(.75, .2, 
         str_c("Alternate Cutoff based on Train set ", yy), 
         lwd = 1, 
         pch = 16) 
   
  ThreshY <- coords(RocTrain , x = "best", ret="threshold", 
                    best.method="youden") 
   
  cutText <- ifelse(Threshtrain == ThreshY, 
                    "is the same as", 
                    "is similar to") 
  print(cutText) 
  Fscore <- 
(2*Threshtest["specificity"]*Threshtest["ppv"]/(Threshtest["specificity"]+Threshtest["ppv"])) 
   
  print(paste(c("F1 score =", Fscore), collapse = " ")) 
   
} 
 
AlternateCutoffstrain(trainresults$logisticReg, "Logistic Regression", testresults$logisticReg) 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.1848141   0.7901907   0.7288136   0.8019481   0.9391635  
[1] "is the same as" 
[1] "F1 score = 0.820724828065837" 
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AlternateCutoffstrain(trainresults$nnetFit, "Neural Network", testresults$nnetFit) 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.1753550   0.8174387   0.6949153   0.8409091   0.9350181  
[1] "is similar to" 
[1] "F1 score = 0.797282078234102" 

 
 

 
AlternateCutoffstrain(trainresults$fdaFit, "Flexible Discriminant Analysis", testresults$fdaFit) 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.1504595   0.7329700   0.6610169   0.7467532   0.9200000  
[1] "is the same as" 
[1] "F1 score = 0.769296740994854" 
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AlternateCutoffstrain(trainresults$svmFit, "Support Vector Machines", testresults$svmFit) 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.1458358   0.7574932   0.7796610   0.7532468   0.9469388  
[1] "is the same as" 
[1] "F1 score = 0.855196730507252" 

 
 

 
AlternateCutoffstrain(trainresults$rfFitDummy, "Random Forests Dummy", 
testresults$rfFitDummy) 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.3425000   0.8801090   0.3050847   0.9902597   0.8815029  
[1] "is the same as" 
[1] "F1 score = 0.453288197167981" 
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AlternateCutoffstrain(trainresults$gbmFitDummy, "GBM dummy", testresults$gbmFitDummy) 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.2399141   0.8092643   0.6949153   0.8311688   0.9343066  
[1] "is the same as" 
[1] "F1 score = 0.797023312324398" 

 
 

 
AlternateCutoffstrain(trainresultsSampling$logisticRegUpSampled, "Logistic Regression 
UpSampled",  
                      testresultsSampling$logisticRegUpSampled) 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.4943143   0.7602180   0.7288136   0.7662338   0.9365079  
[1] "is similar to" 
[1] "F1 score = 0.819709208400646" 
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AlternateCutoffstrain(trainresultsSampling$logisticRegSMOTE, "Logistic Regression 
SMOTE",  
                      testresultsSampling$logisticRegSMOTE) 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.4240535   0.7438692   0.6949153   0.7532468   0.9280000  
          best             best            
threshold "is the same as" "is similar to" 
[1] "F1 score = 0.794719692539059" 

 
 

 
AlternateCutoffstrain(trainresultsSampling$nnetFitUpSampled, "Neural Network 
UpSampled",  
                      testresultsSampling$nnetFitUpSampled) 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.6938504   0.8610354   0.4745763   0.9350649   0.9028213  
[1] "is the same as" 
[1] "F1 score = 0.622126215090264" 
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AlternateCutoffstrain(trainresultsSampling$nnetFitUpSMOTE , "Neural Network SMOTE",  
                      testresultsSampling$nnetFitUpSMOTE) 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.4067063   0.7847411   0.6440678   0.8116883   0.9225092  
[1] "is the same as" 
[1] "F1 score = 0.758543596295113" 
 

 
 

 
AlternateCutoffstrain(trainresultsSampling$fdaFitupsampled, "FDA UpSampled",  
                      testresultsSampling$fdaFitupsampled) 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.5131750   0.7874659   0.6779661   0.8084416   0.9291045  
[1] "is the same as" 
[1] "F1 score = 0.783912478847743" 
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AlternateCutoffstrain(trainresultsSampling$fdaFitSMOTE , "FDA SMOTE",  
                      testresultsSampling$fdaFitSMOTE) 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.3949082   0.7983651   0.5593220   0.8441558   0.9090909  
[1] "is similar to" 
[1] "F1 score = 0.692549842602308" 

 
 

 
AlternateCutoffstrain(trainresultsSampling$svmFitUpSampled, "Support Vector Machines 
UpSampled", testresultsSampling$svmFitUpSampled) 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.7041408   0.8637602   0.3389831   0.9642857   0.8839286  
          best            best             
threshold "is similar to" "is the same as" 
[1] "F1 score = 0.490038361588912" 
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AlternateCutoffstrain(trainresultsSampling$svmFitSMOTE, "Support Vector Machines 
SMOTE",  
                      testresultsSampling$svmFitSMOTE) 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.7329880   0.8474114   0.3559322   0.9415584   0.8841463  
          best             best            
threshold "is the same as" "is similar to" 
[1] "F1 score = 0.507542295191266" 

 
 

 
AlternateCutoffstrain(testresultsSampling$rfFitDummyUpSampled, "Random Forests Dummy 
UpSampled",  
                      testresultsSampling$rfFitDummyUpSampled) 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.2065000   0.7247956   0.7457627   0.7207792   0.9367089  
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[1] "is the same as" 
[1] "F1 score = 0.830400408059169" 

 
 

 
AlternateCutoffstrain(testresultsSampling$rfFitDummySMOTE, "Random Forests Dummy 
SMOTE",  
                      testresultsSampling$rfFitDummySMOTE) 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.3885000   0.8174387   0.6610169   0.8474026   0.9288256  
[1] "is the same as" 
[1] "F1 score = 0.772365126337355" 

 
 

 
AlternateCutoffstrain(trainresultsSampling$gbmFitDummyUpSampled, "GBM dummy 
UpSampled",  
                      testresultsSampling$gbmFitDummyUpSampled) 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
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  0.5000121   0.8692098   0.4067797   0.9577922   0.8939394  
[1] "is the same as" 
[1] "F1 score = 0.559131293188549" 

 
 

 
AlternateCutoffstrain(trainresultsSampling$gbmFitDummyUpSMOTE, "GBM dummy 
SMOTE",  
                      testresultsSampling$gbmFitDummyUpSMOTE) 
Outcome: 
  threshold    accuracy specificity sensitivity         ppv  
  0.5000006   0.8337875   0.4406780   0.9090909   0.8945687  
[1] "is the same as" 
[1] "F1 score = 0.590477735420553" 

 
 

#Hypothesis testing 
 
#------------------------------------- 
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#Logistic Regression predictor significance and importance calculation 
#------------------------------------- 
 
#first make outcome variable a factor to be useful for classification. 
HRdataDummyFullRankLowCorr$Attrition <- 
as.factor(HRdataDummyFullRankLowCorr$Attrition) 
 
#change the name of factor, so it can be computed.  
HRdataDummyFullRankLowCorr$Attrition <- 
make.names(HRdataDummyFullRankLowCorr$Attrition, unique = FALSE, allow_ = TRUE) 
 
#Transform each X0 (= to no attrition) into X2 to make results more interpretable.  
for(i in 1:length(HRdataDummyFullRankLowCorr)){ 
  if(HRdataDummyFullRankLowCorr[i, ] == "X0"){HRdataDummyFullRankLowCorr[i, 
"Attrition"] <- "X2"} 
} 
 
#Transform each X0 (= to no attrition) into X2 to make results more interpretable.  
for(i in 1:nrow(HRdataDummyFullRankLowCorr)){ 
  if(HRdataDummyFullRankLowCorr[i, "Attrition"] == "X0"){HRdataDummyFullRankLowCorr[i, 
"Attrition"] <- "X2"} 
} 
 
#change levels of $attrition 
HRdataDummyFullRankLowCorr$Attrition <- 
factor(HRdataDummyFullRankLowCorr$Attrition) 
levels(HRdataDummyFullRankLowCorr$Attrition) 
Outcome: 
[1] "X1" "X2" 
 

 
#create dataset including years at company 
## first delete total working years 
dput(names(trainHRdataDummyFullRankLowCorr)) 
 
HRdataDummyFullRankLowCorr2 <- HRdataDummyFullRankLowCorr[ , c("Attrition", "Age", 
"NumCompaniesWorked",  
                                                               "YearsInCurrentRole", "YearsSinceLastPromotion", 
"YearsWithCurrManager",  
                                                               "TrainingTimesLastYear", "HourlyRate", "DailyRate", 
"MonthlyRate",  
                                                               "MonthlyIncome", "PercentSalaryHike", 
"StockOptionLevel", "Education",  
                                                               "DistanceFromHome", "JobInvolvement", 
"PerformanceRating", "EnvironmentSatisfaction",  
                                                               "JobSatisfaction", "RelationshipSatisfaction", 
"WorkLifeBalance",  
                                                               "Gender.Male", "MaritalStatus.Married", 
"MaritalStatus.Single",  
                                                               "OverTime.Yes", "EducationField.Life Sciences", 
"EducationField.Marketing",  
                                                               "EducationField.Medical", "EducationField.Other", 
"EducationField.Technical Degree",  
                                                               "BusinessTravel.Travel_Frequently", 
"JobRole.Human Resources",  
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                                                               "JobRole.Laboratory Technician", 
"JobRole.Manager", "JobRole.Manufacturing Director",  
                                                               "JobRole.Research Director", "JobRole.Research 
Scientist", "JobRole.Sales Executive",  
                                                               "JobRole.Sales Representative")] 
HRdataDummyFullRankLowCorr2$YearsAtCompany <- HRdata$YearsAtCompany 
 
# Next, Train the model  
set.seed(1247) 
logisticRegVarImp2 <- train(HRdataDummyFullRankLowCorr2[ , -1], y = 
HRdataDummyFullRankLowCorr2$Attrition,  method = "glm",  
                           preProc = c("BoxCox"),  
                           metric = "ROC", trControl = ctrl) 
logisticRegVarImp2 
Outcome: 
Generalized Linear Model  
 
1470 samples 
  39 predictor 
   2 classes: 'X1', 'X2'  
 
Pre-processing: Box-Cox transformation (13)  
Resampling: Cross-Validated (10 fold, repeated 5 times)  
Summary of sample sizes: 1323, 1323, 1322, 1324, 1323, 1323, ...  
Resampling results: 
 
  ROC        Sens       Spec      
  0.8379086  0.4306522  0.9644781 
 
 

#--------------------------------------------------------------------- 

#confusion matrix and roc curve for train set.  
#The basic predict call evaluates new samples, and type = "prob" returns the class 
probabilities.  
TrainPredictlogisticRegVarImp <- predict(logisticRegVarImp, 
HRdataDummyFullRankLowCorr[, -1], type = "prob") 
TrainPredictlogisticRegVarImp$class <- predict(logisticRegVarImp, 
HRdataDummyFullRankLowCorr[, -1]) 
TrainPredictlogisticRegVarImp$outcome <- HRdataDummyFullRankLowCorr$Attrition 
TrainPredictlogisticRegVarImp$outcome <- 
as.factor(TrainPredictlogisticRegVarImp$outcome) 
 
#Confusion matrix for trainset: 
cm <- confusionMatrix(data = TrainPredictlogisticRegVarImp$class, reference = 
TrainPredictlogisticRegVarImp$outcome, positive = "X1") 
cm 
Outcome: 
Confusion Matrix and Statistics 
 
          Reference 
Prediction   X1   X2 
        X1  108   30 
        X2  129 1203 
                                           
               Accuracy : 0.8918           
                 95% CI : (0.8748, 0.9073) 
    No Information Rate : 0.8388           
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    P-Value [Acc > NIR] : 3.866e-09        
                                           
                  Kappa : 0.5189           
 Mcnemar's Test P-Value : 7.731e-15        
                                           
            Sensitivity : 0.45570          
            Specificity : 0.97567          
         Pos Pred Value : 0.78261          
         Neg Pred Value : 0.90315          
             Prevalence : 0.16122          
         Detection Rate : 0.07347          
   Detection Prevalence : 0.09388          
      Balanced Accuracy : 0.71568          
                                           
       'Positive' Class : X1  
 

 
#plot ROC curve and Area under the curve statistic 
RocTrainlogisticRegVarImp <- roc(response = TrainPredictlogisticRegVarImp$outcome, 
predictor = TrainPredictlogisticRegVarImp$X1, levels = 
rev(levels(TrainPredictlogisticRegVarImp$outcome)))  
plot(RocTrainlogisticRegVarImp, type = "s", print.thres = c(.5), 
     print.thres.pch = 3, 
     print.thres.pattern = "", 
     print.thres.cex = 1.2, 
     col = "red", legacy.axes = TRUE, 
     print.thres.col = "red") 
print(auc(RocTrain)) 
Outcome: 
Area under the curve: 0.8656 

 

 
 

 
logisticRegImp <- varImp(logisticRegVarImp, scale = FALSE) 
logisticRegImp 
Outcome: 
glm variable importance 
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  only 20 most important variables shown (out of 39) 
 
                                 Overall 
OverTime.Yes                      10.295 
EnvironmentSatisfaction            5.302 
NumCompaniesWorked                 5.161 
JobSatisfaction                    4.918 
BusinessTravel.Travel_Frequently   4.837 
JobInvolvement                     4.334 
YearsSinceLastPromotion            3.991 
DistanceFromHome                   3.912 
Age                                3.517 
MaritalStatus.Single               3.403 
RelationshipSatisfaction           3.138 
MonthlyIncome                      3.090 
YearsWithCurrManager               3.020 
YearsInCurrentRole                 2.685 
`JobRole.Sales Representative`     2.681 
TrainingTimesLastYear              2.618 
WorkLifeBalance                    2.604 
`JobRole.Sales Executive`          2.349 
`JobRole.Laboratory Technician`    2.225 
Gender.Male                        2.141 
 

 
plot(logisticRegImp2) 
Outcome: 

 
 

 
#Check the variable significance for this model 
summary.glm(logisticRegVarImp2$finalModel) 
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Outcome: 
Call: 
NULL 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-3.5508   0.0990   0.2543   0.4933   1.6533   
 
Coefficients: 
                                   Estimate Std. Error z value Pr(>|z|)     
(Intercept)                      -2.462e+01  1.284e+01  -1.917 0.055257 .   
Age                               7.463e-01  2.122e-01   3.517 0.000436 *** 
NumCompaniesWorked               -1.945e-01  3.769e-02  -5.161 2.46e-07 *** 
YearsInCurrentRole                1.199e-01  4.466e-02   2.685 0.007245 **  
YearsSinceLastPromotion          -1.667e-01  4.178e-02  -3.991 6.58e-05 *** 
YearsWithCurrManager              1.391e-01  4.607e-02   3.020 0.002527 **  
TrainingTimesLastYear             1.909e-01  7.293e-02   2.618 0.008850 **  
HourlyRate                       -1.161e-03  4.412e-03  -0.263 0.792471     
DailyRate                         2.161e-03  1.558e-03   1.387 0.165538     
MonthlyRate                      -8.248e-05  2.124e-04  -0.388 0.697791     
MonthlyIncome                     9.037e-01  2.924e-01   3.090 0.001999 **  
PercentSalaryHike                 1.813e+01  1.787e+01   1.015 0.310243     
StockOptionLevel                  1.706e-01  1.553e-01   1.099 0.271832     
Education                        -2.566e-02  7.290e-02  -0.352 0.724799     
DistanceFromHome                 -3.464e-01  8.854e-02  -3.912 9.14e-05 *** 
JobInvolvement                    3.452e-01  7.965e-02   4.334 1.46e-05 *** 
PerformanceRating                -9.942e-02  3.326e-01  -0.299 0.764985     
EnvironmentSatisfaction           4.390e-01  8.280e-02   5.302 1.15e-07 *** 
JobSatisfaction                   4.009e-01  8.153e-02   4.918 8.75e-07 *** 
RelationshipSatisfaction          2.588e-01  8.247e-02   3.138 0.001699 **  
WorkLifeBalance                   1.885e-01  7.240e-02   2.604 0.009208 **  
Gender.Male                      -3.949e-01  1.845e-01  -2.141 0.032271 *   
MaritalStatus.Married            -3.873e-01  2.675e-01  -1.448 0.147677     
MaritalStatus.Single             -1.173e+00  3.448e-01  -3.403 0.000666 *** 
OverTime.Yes                     -1.993e+00  1.936e-01 -10.295  < 2e-16 *** 
`EducationField.Life Sciences`    4.417e-01  7.612e-01   0.580 0.561736     
EducationField.Marketing          1.200e-02  8.064e-01   0.015 0.988125     
EducationField.Medical            5.682e-01  7.590e-01   0.749 0.454068     
EducationField.Other              5.276e-01  8.292e-01   0.636 0.524581     
`EducationField.Technical Degree`-4.903e-01  7.836e-01  -0.626 0.531522     
BusinessTravel.Travel_Frequently -1.020e+00  2.109e-01  -4.837 1.32e-06 *** 
`JobRole.Human Resources`        -1.120e+00  6.848e-01  -1.635 0.101972     
`JobRole.Laboratory Technician`  -1.068e+00  4.799e-01  -2.225 0.026107 *   
JobRole.Manager                  -4.927e-01  6.811e-01  -0.723 0.469377     
`JobRole.Manufacturing Director` -2.737e-01  5.355e-01  -0.511 0.609300     
`JobRole.Research Director`       7.230e-01  9.455e-01   0.765 0.444497     
`JobRole.Research Scientist`     -9.713e-02  4.924e-01  -0.197 0.843634     
`JobRole.Sales Executive`        -1.050e+00  4.469e-01  -2.349 0.018812 *   
`JobRole.Sales Representative`   -1.481e+00  5.524e-01  -2.681 0.007338 **  
YearsAtCompany                   -6.665e-02  3.410e-02  -1.954 0.050655 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 1298.58  on 1469  degrees of freedom 
Residual deviance:  862.52  on 1430  degrees of freedom 
AIC: 942.52 
 
Number of Fisher Scoring iterations: 7 
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# exponentiated coefficients, indicating the odds change of one step in variable x 
exp(coef(logisticRegVarImp$finalModel)) 
Outcome: 

 
 

 
#------------------------------------------------------------- 

#Goodness Of Fit 
#--------------------------------------------------------------------- 
 
# Based on the deviances a p value for the model can be calculated 
# H0 = Logistic regression model provides an adequate fit for the data 
pvalue <- 1- pchisq(1298.58 - 862.52, df = (1469-1430)) 
pvalue 
Outcome: 
[1] 0 
 

 
# p=0, so evidence to reject the null hypothesis. 
 
#Next, goodness of fit test Hosmer-Lemeshow 
hoslem.test(as.numeric(TrainPredictlogisticRegVarImp2$class),as.numeric(TrainPredictlogist
icRegVarImp2$outcome), g = 10) 
Outcome: 
 Hosmer and Lemeshow goodness of fit (GOF) test 
 
data:  as.numeric(TrainPredictlogisticRegVarImp2$class), as.numeric(Train
PredictlogisticRegVarImp2$outcome) 
X-squared = -4.3229, df = 8, p-value = 1 
 
 

#Identify the box-cox transformed variables.  
logisticRegVarImp$preProcess$bc 
Outcome: 
Box-Cox Transformation 
 
1470 data points used to estimate Lambda 
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Input data summary: 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  18.00   30.00   36.00   36.92   43.00   60.00  
 
Largest/Smallest: 3.33  
Sample Skewness: 0.412  
 
Estimated Lambda: 0.2  
 
 
$HourlyRate 
Box-Cox Transformation 
 
1470 data points used to estimate Lambda 
 
Input data summary: 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  30.00   48.00   66.00   65.89   83.75  100.00  
 
Largest/Smallest: 3.33  
Sample Skewness: -0.0322  
 
Estimated Lambda: 0.8  
With fudge factor, no transformation is applied 
 
 
$DailyRate 
Box-Cox Transformation 
 
1470 data points used to estimate Lambda 
 
Input data summary: 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  102.0   465.0   802.0   802.5  1157.0  1499.0  
 
Largest/Smallest: 14.7  
Sample Skewness: -0.00351  
 
Estimated Lambda: 0.7  
 
 
$MonthlyRate 
Box-Cox Transformation 
 
1470 data points used to estimate Lambda 
 
Input data summary: 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
   2094    8047   14240   14310   20460   27000  
 
Largest/Smallest: 12.9  
Sample Skewness: 0.0185  
 
Estimated Lambda: 0.7  
 
 
$MonthlyIncome 
Box-Cox Transformation 
 
1470 data points used to estimate Lambda 
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Input data summary: 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
   1009    2911    4919    6503    8379   20000  
 
Largest/Smallest: 19.8  
Sample Skewness: 1.37  
 
Estimated Lambda: -0.2  
With fudge factor, Lambda = 0 will be used for transformations 
 
 
$PercentSalaryHike 
Box-Cox Transformation 
 
1470 data points used to estimate Lambda 
 
Input data summary: 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  11.00   12.00   14.00   15.21   18.00   25.00  
 
Largest/Smallest: 2.27  
Sample Skewness: 0.819  
 
Estimated Lambda: -1.3  
 
 
$Education 
Box-Cox Transformation 
 
1470 data points used to estimate Lambda 
 
Input data summary: 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  1.000   2.000   3.000   2.913   4.000   5.000  
 
Largest/Smallest: 5  
Sample Skewness: -0.289  
 
Estimated Lambda: 1.2  
 
 
$DistanceFromHome 
Box-Cox Transformation 
 
1470 data points used to estimate Lambda 
 
Input data summary: 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  1.000   2.000   7.000   9.193  14.000  29.000  
 
Largest/Smallest: 29  
Sample Skewness: 0.956  
 
Estimated Lambda: 0.1  
With fudge factor, Lambda = 0 will be used for transformations 
 
 
$JobInvolvement 
Box-Cox Transformation 
 
1470 data points used to estimate Lambda 
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Input data summary: 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
   1.00    2.00    3.00    2.73    3.00    4.00  
 
Largest/Smallest: 4  
Sample Skewness: -0.497  
 
Estimated Lambda: 1.5  
 
 
$EnvironmentSatisfaction 
Box-Cox Transformation 
 
1470 data points used to estimate Lambda 
 
Input data summary: 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  1.000   2.000   3.000   2.722   4.000   4.000  
 
Largest/Smallest: 4  
Sample Skewness: -0.321  
 
Estimated Lambda: 1.1  
With fudge factor, no transformation is applied 
 
 
$JobSatisfaction 
Box-Cox Transformation 
 
1470 data points used to estimate Lambda 
 
Input data summary: 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  1.000   2.000   3.000   2.729   4.000   4.000  
 
Largest/Smallest: 4  
Sample Skewness: -0.329  
 
Estimated Lambda: 1.1  
With fudge factor, no transformation is applied 
 
 
$RelationshipSatisfaction 
Box-Cox Transformation 
 
1470 data points used to estimate Lambda 
 
Input data summary: 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  1.000   2.000   3.000   2.712   4.000   4.000  
 
Largest/Smallest: 4  
Sample Skewness: -0.302  
 
Estimated Lambda: 1.1  
With fudge factor, no transformation is applied 
 
 
$WorkLifeBalance 
Box-Cox Transformation 
 
1470 data points used to estimate Lambda 
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Input data summary: 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  1.000   2.000   3.000   2.761   3.000   4.000  
 
Largest/Smallest: 4  
Sample Skewness: -0.551  
 
Estimated Lambda: 1.6  
 

 

#Create plots for the significant box-cox transformed predictors 
#------------------------------------------------------------- 
 
# first identify the mean of each predictor 
means <- colMeans(HRdataDummyFullRankLowCorr2[,-1]) 
means <- as.data.frame(t(means)) 
means 
# next, get estimates for model 
model <- logisticRegVarImp2$finalModel$coefficients 
model <- as.data.frame(t(model)) 
model 
str(model) 
#transform box-cox transformed variables in means 
means$Age<- ((means$Age^0.2)-1)/0.2 
means$DailyRate <- ((means$DailyRate^0.7)-1)/0.7 
means$MonthlyRate <- ((means$MonthlyRate^0.7)-1)/0.7 
means$MonthlyIncome <- log(means$MonthlyIncome) 
means$PercentSalaryHike <- ((means$PercentSalaryHike^(-1.3))-1)/(-1.3) 
means$Education <- ((means$Education^1.2)-1)/1.2 
means$DistanceFromHome <- log(means$DistanceFromHome) 
means$JobInvolvement <- ((means$JobInvolvement^1.5)-1)/1.5 
means$WorkLifeBalance <- ((means$WorkLifeBalance^1.6)-1)/1.6 
 
#create intercept in means table and right place in model 
means$`(Intercept)` <- 1 
means 
str(means) 
means <- means[, c("(Intercept)", "Age", "NumCompaniesWorked",  
                   "YearsInCurrentRole", "YearsSinceLastPromotion", "YearsWithCurrManager",  
                   "TrainingTimesLastYear", "HourlyRate", "DailyRate", "MonthlyRate",  
                   "MonthlyIncome", "PercentSalaryHike", "StockOptionLevel", "Education",  
                   "DistanceFromHome", "JobInvolvement", "PerformanceRating", "EnvironmentSatisfaction"
,  
                   "JobSatisfaction", "RelationshipSatisfaction", "WorkLifeBalance",  
                   "Gender.Male", "MaritalStatus.Married", "MaritalStatus.Single",  
                   "OverTime.Yes", "EducationField.Life Sciences", "EducationField.Marketing",  
                   "EducationField.Medical", "EducationField.Other", "EducationField.Technical Degree",  
                   "BusinessTravel.Travel_Frequently", "JobRole.Human Resources",  
                   "JobRole.Laboratory Technician", "JobRole.Manager", "JobRole.Manufacturing Director",  
                   "JobRole.Research Director", "JobRole.Research Scientist", "JobRole.Sales Executive",  
                   "JobRole.Sales Representative", "YearsAtCompany")] 
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#calculate model average outcome 
modelaverageoutcome <- means 
modelaverageoutcome <- modelaverageoutcome*model 
 
#plot Age against outcome 
plot(HRdataDummyFullRankLowCorr2$Age,  
     (sum(modelaverageoutcome[, -2])+ 
        model$Age*(((HRdataDummyFullRankLowCorr2$Age^0.2)-1)/0.2)), 
     type = "p", 
     xlab = "Age", 
     ylab = "Outcome") 
Outcome: 

 
 
#plot Monthly Income against outcome 
plot(HRdataDummyFullRankLowCorr2$MonthlyIncome,  
     (sum(modelaverageoutcome)-modelaverageoutcome$MonthlyIncome+ 
        model$MonthlyIncome*log(HRdataDummyFullRankLowCorr2$MonthlyIncome)), 
     type = "p", 
     xlab = "MonthlyIncome", 
     ylab = "Outcome" 
) 
Outcome: 
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#plot Distance from home against outcome 
plot(HRdataDummyFullRankLowCorr2$DistanceFromHome,  
     (sum(modelaverageoutcome)-modelaverageoutcome$DistanceFromHome+ 
        
model$DistanceFromHome*log(HRdataDummyFullRankLowCorr2$DistanceFromHome)), 
     type = "p", 
     xlab = "DistanceFromHome", 
     ylab = "Outcome" 
) 
Outcome: 

 
 
#plot Job involvement against outcome 
plot(HRdataDummyFullRankLowCorr2$JobInvolvement,  
     (sum(modelaverageoutcome)-modelaverageoutcome$JobInvolvement+ 
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        model$JobInvolvement*(((HRdataDummyFullRankLowCorr2$JobInvolvement^1.5)-
1)/1.5)), 
     type = "p", 
     xlab = "JobInvolvement", 
     ylab = "Outcome" 
) 
Outcome:  

 
 

 
#plot Work life balance against outcome 
plot(HRdataDummyFullRankLowCorr2$WorkLifeBalance,  
     (sum(modelaverageoutcome)-modelaverageoutcome$WorkLifeBalance+ 
        model$WorkLifeBalance*(((HRdataDummyFullRankLowCorr2$WorkLifeBalance^1.6)-
1)/1.6)), 
     type = "p", 
     xlab = "WorkLifeBalance", 
     ylab = "Outcome" 
) 
Outcome: 
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