
1

An Evaluation of Predictive Models for
Individual-Level Employee Voluntary
Turnover

Student Name:
ANR:
Student nr. :

Robbin Stigter
602969
1247025

Abstract

Human capital is becoming a more important part of organizations, and employee

voluntary turnover has been identified as a key issue. To contribute, this study’s focus

is on the prediction of individual-level voluntary employee turnover. Accurate

predictions enable organizations to act for retention or succession planning of

employees. To find the most appropriate predictive model for voluntary leave; sixteen

models were evaluated based on their ROC curves. It was found that voluntary

employee turnover can be linearly separated, and the most appropriate model is the

Support Vector Machine (SVM). To evaluate the predictive performance, and since the

data is not in balance (only 16% of the cases is labeled as leaving the organization);

altered cutoff values, and the sampling methods up-sampling, and synthetic minority

over-sampling technique (SMOTE), are applied and the resulting models evaluated

based on the F1 score and balanced accuracy. Sampling was found to not provide

significantly better models. The best performing model is a SVM with a F1 score and

balanced accuracy of respectively, 0.86 and 0.77. Further, based on employee

voluntary turnover literature, eight hypotheses were formed and tested based on

logistic regression. And last, the relationships between the most important and

significant predictors and voluntary turnover are identified. The top 10 most important

and significant predictors found are: Overtime, Environment Satisfaction, Number of

Companies Worked for, Job Satisfaction, Business Travel, Job Involvement, Years

Since Last Promotion, Distance from Home, Age, and relationship status Single. The

results are based on a publicly available dataset provided by IBM (McKinley, 2015). In

accordance with (Rubenstein, Eberly, Lee, & Mitchell, 2017), the author wants to

highlight the context-sensitive nature of individual-level voluntary leave; and advises

practitioners to analyze their own data to find, and be able to react to, the predictors

that are important and significant in their organization.

Keywords: turnover prediction; voluntary turnover; employee turnover; attrition;

machine learning; class imbalance; sampling; Human Resource Analytics;

2

Table of Contents
1. Introduction .. 4

2. Data description ... 6

2.1 Data exploratory analysis .. 9

2.2 Data validity check .. 9

3. Literature review .. 10

3.1 Individual-level employee voluntary turnover .. 11

4. Dataset creation ... 13

4.1 Pre-processing procedures ... 14

4.1.1 Centering and Scaling ... 14

4.1.2 Box-cox transformation ... 14

5. Machine learning algorithms .. 15

5.1 Linear classification ... 16

5.1.1 Logistic regression .. 16

5.1.2 Linear Discriminant Analysis ... 16

5.1.3 Penalized logistic regression ... 16

5.2 Nonlinear classification models ... 17

5.2.1 Neural Networks .. 17

5.2.2 Flexible Discriminant Analysis ... 18

5.2.3 Support Vector Machines .. 18

5.2.4 K-Nearest Neighbors ... 18

5.2.5 Naïve Bayes .. 19

5.3 Classification Trees and Rule-Based Models .. 19

5.3.1 Classification trees (CART, and C4.5) .. 20

5.3.2 Rule-Based Models: PART ... 21

5.3.3 Bagged Trees.. 21

5.3.4 Random Forests .. 21

5.3.5 Boosting .. 21

6. Model Validation technique .. 23

6.1 Resampling method .. 23

7. Model evaluation metrics ... 23

7.1 Accuracy ... 23

7.2 Sensitivity and specificity ... 24

7.3 Positive predictive value .. 24

7.4 Balanced Accuracy .. 25

3

7.5 F score .. 25

7.6 Receiver Operating Characteristic (ROC) Curve ... 25

8. Remedies for severe class imbalance.. 26

8.1 Alternated Cutoffs .. 26

8.2 Sampling Methods ... 27

9. Results of predictive modeling ... 28

9.1 Measurement error .. 28

9.1.1 Measurement error in the outcome ... 28

9.1.2 Measurement error in the predictors ... 28

9.2 Comparison of the models .. 29

9.3 Comparison of models after implementation of class imbalance remedies 31

9.3.1 Comparison of models with altered cutoffs based on test set 35

10. Results Predictor Importance and Significance .. 35

10.1 Evaluation Goodness of Fit ... 36

10.1.1 Likelihood ratio tests ... 37

10.1.2 Hosmer-Lemeshow test .. 37

10.2 Hypothesis test results .. 38

10.3 Other significant predictors .. 41

11. Related work ... 43

12. Discussion and conclusion.. 46

12.1 Discussion ... 46

12.2 Conclusion... 47

12.3 Future work ... 47

Acknowledgements .. 48

13. References: .. 49

Appendix A .. Error! Bookmark not defined.

4

1. Introduction
The corporate landscape has changed dramatically over the past few decades. These

changes are due to globalization, information availability, and the requirements of a

high-tech economy. One specific change that has been noticed relates to the assets

held by a company. Whereas in the 1970s, more than 95% of a company’s assets

could be attributed to tangible holdings, by the early 2000s that number had reduced

to less than 30%(King, 2016; Mcclure, 2003). This means that more than 70% of a

firm’s total worth is due to intangible assets, including human capital.

Human resource management (HRM) is the main department within organizations that

manages human capital. The function of HRM is to motivate employees and enhance

workforce effectiveness. According to (King, 2016), integrating information

technologies and HRM will provide smarter work. Turnover can be considered as a

subgroup of HRM, and is the focus of the current study. This paper is a machine

learning approach for prediction of quit among staff.

Researchers and HRM have focused on employee turnover for decades because it

negatively affects organizations’ performance (Glebbeek et al., 2014; Hancock, Allen,

& Bosco, 2013; Shaw, 2011). Employee retention is one of the main challenges in

organizations, especially for those with a long lead time to hire a new employee. Also,

organizations are complex and dynamic environments. (Akkermans, 2014) found that

a shorter hiring and capacity delay have positive effects for new product development

introduction projects, and can even avoid tipping point behavior for product

success/failure. In accordance with Akkermans, (Kacmar, Andrews, & System, 2006)

found that employee turnover is both costly and disruptive to the organizational

function.

Turnover causes many different types of costs for organizations. These costs can be

divided between direct and indirect costs (Ongori, 2010). Direct costs activities such

as advertising the position, replacement, recruitment and selection, temporary staff,

and management time. Indirect costs are morale related costs, pressure on remaining

staff, costs of learning, product/service quality, and organizational memory. Research

suggests that 15-30 percent of turnover costs are direct and about 70-85 percent of

turnover costs are hidden costs such as lost productivity and opportunity (Boles,

Dudley, Onyemah, Rouziès, & Weeks, 2012). (Sagie, Birati, & Tziner, 2002) found that

a high-tech firm lost 2.8 million US dollars or 16.5% of before-tax annual income

because of employee turnover. Since voluntary turnover is expensive, companies do

not want their employees to voluntarily leave (Allen, Bryant, & Vardaman, 2010).

Among the reasons for termination, voluntary turnover is one of the major ones,

accounting for 26% (X. Zhu, 2016). And compared to the other types of turnover,

voluntary turnover is harder for companies to control. Understanding and forecasting

turnover at the firm and departmental levels is essential for reducing it (Kacmar et al.,

2006), as well as for effectively planning, budgeting, and recruiting in the human

resource field.

Fortunately for companies, due to fast pace of developments in artificial intelligence

(AI) and the decreasing prices of storage and computing power; machine learning (ML)

capabilities have become increasingly more accessible (Shmueli, Patel, & Bruce,

5

2010; Witten, Frank, Hall, & Pal, 2016). Besides the increase in computing power and

storage, also the volume of data that companies collect and is freely available has

drastically increased (Goodfellow, Bengio, & Courville, 2016; Shmueli et al., 2010). It

has been estimated that the amount of data stored in the world’s databases doubles

every 20 months (Witten et al., 2016). Machine learning algorithms feed on this data.

It is what they use to learn, figure out patterns, and spot trends.

Every year Gardner proposes a top 10 of strategic technology trends. They indicated

that AI and ML have reached a critical tipping point. According to them, AI and ML will

increasingly augment and extend virtually every technology enabled service, thing or

application. Creating intelligent systems that learn, adapt and potentially act

autonomously rather than simply execute predefined instructions is primary

battleground for technology vendors through at least 2020. (Panetta, 2016)

Analytics in human resource management has been around for years. For example,

the notion of measurement in human resources can be traced back to the early 1900s

(Kaufman, 2014). Even though it has been discussed for many years, with only 16%

of organizations reporting adoption, HR Analytics represents a new innovation

according to (Marler & Boudreau, 2017).

So, since HR Analytics represents a new innovation, human capital is becoming an

increasingly more important part of organizations (King, 2016; Mcclure, 2003),

employee turnover is an important part of HRM and expensive for organizations

(Glebbeek et al., 2014; Hancock et al., 2013; Sagie et al., 2002; Shaw, 2011), and the

machine learning opportunity of the percent (Panetta, 2016); this study’s objective is

to examine the machine learning opportunities present today and apply these on an

employee attrition (i.e. employees who voluntarily quit their job) dataset. This leads to

the following four key questions:

1. What machine learning algorithm is most appropriate for predicting employee

voluntary leave?

2. Does sampling of the dataset increase the predictive performance of the

models?

3. What results can be expected from predictive modeling of employee voluntary

turnover?

4. What are the significant predictors for determining employee voluntary leave?

For this study the open-source program R is used for analysis. The appendix includes

all R code and corresponding outcomes. A random set seed of 1247 was used to make

the results reproducible.

To answer the key questions, first, chapter 2 will provide the reader with a thorough

description and analysis of the publicly available dataset used in this study (McKinley,

2015). Chapter 3 will provide the reader with the context to place this study in, as well

as forming some hypotheses based on individual-level voluntary turnover literature. In

chapter 4 the process of creating the datasets is described. This is related to chapter

5, which provides the reader with a concise description of the machine learning

algorithms used, in that not one dataset is appropriate for all methods. Next, in chapter

6 and 7, the model validation and evaluation techniques and metrics get described.

6

Some remedies for severe class imbalances get discussed in chapter 8. This brings

us to part one of the results, chapter 9, where the results related to the predictive

models are represented. More specifically, the 16 different models (described in

chapter 5) are compared on effectiveness of modelling voluntary turnover; and the

performance of the predictive models, after applying the methods to counter the severe

class imbalance, are compared. Chapter 10 can be considered as part two of the

results, this chapter will present the results related to predictor importance and

significance. In chapter 11 the current study is compared to similar studies conducted

in this area. This to provide the reader with better context of the contribution of the

current study. The paper will end with a discussion of the results, a conclusion, and

identification of areas of further research (Chapter 12).

2. Data description
Employee turnover analytics is an understudied subject in research. One likely

explanation for the lack of employee turnover research is the difficulty associated with

obtaining data. This data is hard to obtain, because once it becomes public it is prone

to legal/privacy issues, and can be bad for an organization’s reputation. In 2015 IBM

uploaded an employee attrition dataset which was originally intended to be used in

combination with their product Watson. This publicly available dataset is used in this

paper and can be found at: https://www.ibm.com/communities/analytics/watson-

analytics-blog/hr-employee-attrition/ (McKinley, 2015).

The dataset contains 1470 records, 34 predictor variables, and one outcome variable,

namely whether employee attrition (i.e. voluntary leave) took place. The predictor

variables include information about employee’s demographic, satisfaction and

performance, and some financial measures. The dataset does not include a full

description of all the predictors. Therefore, based on the knowledge of an HR

professional from Accenture, definitions for each of the predictors were created. The

list of predictors and definitions used in this paper are included in the Table 1.

The use of this open dataset has some negative side effects. First, since it is an open

dataset the company background is unknown and the author is unable to speak to

subject matter experts (SME) within the client company. This is a common an important

step in obtaining the underlying structure and relations between predictors and

outcome. Second, since it is unknown how the dataset is created the external validity

and construct validity of the results might be in jeopardy. Third, the dataset has only

1470 records which can limit the effectiveness of some of the machine learning

algorithms used. It is probable that a dataset provided by a real client contains more

records. However, datasets of similar previous studies contain even less records,

namely 731 (X. Zhu, 2016) and 881 (Chang, 2009). On the other hand, using an open

dataset has positive side effects as well. First, since the dataset is anonymized,

financial data related to the employees are included; often these are excluded from the

dataset. Second, since the dataset is open and available to everyone the internal

validity of this study is greatly enhanced.

https://www.ibm.com/communities/analytics/watson-analytics-blog/hr-employee-attrition/
https://www.ibm.com/communities/analytics/watson-analytics-blog/hr-employee-attrition/

7

Table 1 Predictors with corresponding definition and metric

Predictor Definition Metric

Demographics

EmployeeNumber Unique identifier for individual #

Age Chronological number of years an individual has lived. (Rubenstein
et al., 2017)

Gender Biologically based categories. (Rubenstein et al., 2017) Male/ Female

MaritalStatus Relationship status of employee. Single/ Married/ Divorced

NumCompaniesWorked Number of companies an individual has worked for. #

EmployeeCount Count of employee #

Over18 Indication whether an individual is over 18 years of age Y/N

Internal measurements

TotalWorkingYears Time employed since end of one’s study (measured in years). #

YearsAtCompany (i.e.
Tenure)

Time employed with one’s current organization (measured in years).
(Rubenstein et al., 2017)

YearsInCurrentRole Number of years an individual practices the same role. #

YearsSinceLastPromotion Number of years since an individual got last promoted. #

YearsWithCurrManager Number of years under last manager. #

TrainingTimesLastYear Number of trainings an individual took last year. #

Financial related
measures

DailyRate Income of one day hire out of individual. #

HourlyRate Income of one hour hire out of individual. #

MonthlyRate Income of one month hire out of individual. #

MonthlyIncome (i.e. Pay) Amount of money an individual receives for the job each month.
(Rubenstein et al., 2017)

PercentSalaryHike Percentage of salary increase coming year. #

StandardHours Number of standard hours for an individual. #

StockOptionLevel Number indicating amount of monthly income goes to buying stock at
a discount.

0/ 1/ 2/ 3, assumed 3
indicating higher monthly
amount

8

OverTime Indication of whether an individual gets compensated for extra hours. Yes/No

Individual attributes

Education An individual’s maximum level of education attained. (Rubenstein et
al., 2017)

1 'Below College', 2 'College',
3 'Bachelor', 4 'Master', and 5
'Doctor'

EducationField Individual’s main education field 6 unique classes

Department The department the individual works for. Human Resources/
Research & Development/
Sales

JobLevel Individual’s job level 1-5, 5 being the higher job
level

BusinessTravel Amount of travel the individual does for the organization Non-Travel/ Travel_Rarely/
Travel_Frequently

DistanceFromHome Travel distance from individual’s home to work location, measured in
Km.

Individual ratings

PerformanceRating Grade given as indication of individual’s performance 1-4, 4 indicating outstanding

JobInvolvement Degree to which an individual identifies with his or her job.
(Rubenstein et al., 2017)

1-4, 4 indicating very high

EnvironmentSatisfaction Degree to which an individual likes his or her work environment. 1-4, 4 indicating very high

JobSatisfaction Degree to which an individual likes his or her job. (Rubenstein et al.,
2017)

1-4, 4 indicating very high

RelationshipSatisfaction Degree to which an individual likes his or her job related relationships. 1-4, 4 indicating very high

9

2.1 Data exploratory analysis
Within this dataset only 16%, 237 out of 1470, was labeled as having left the

organization. The rate of interest is thus under represented. Even the basic rule ‘each

employee is predicted to stays with the organization’ will result in an expected accuracy

of 84% (100%-16%). This could negatively affect the performance of some of the

predictive models. However, some methods exist to counter this, these will be

discussed in chapter 8 (p.26). The age lies between 18 and 60 with an average age of

36,92 years old. Within this dataset 60% is male and 40% female. The total working

years range from 0 to 40 with an average of 11.28 years. Monthly income range from

1009 to 19999 with an average income of 6503 a month. The performance rating is a

grade given between 1 and 4, the former indicating bad performance and the latter

good. This dataset only contains the performance ratings of 3 and 4, indicating that

only the good performers are included in this dataset. Further, three departments are

included in this dataset, namely, Human Resources, Research and Development, and

Sales, where the bulk of employees is in the Research and Development department.

Also, there are six job roles included in this dataset, namely, Sales Executive,

Research Scientist, Laboratory Technician, Manufacturing Director, Healthcare

Representative, and Manager, as well as a category ‘Other’. Given these departments

and roles, an educated guess of the industry this dataset was gathered from would be

the pharmaceutical industry.

2.2 Data validity check
To counter the second negative side effect discussed above, namely external validity

and construct validity, the author did some analysis on the dataset. To increase the

external validity of this study, the author first conducted some basic tests. The six basic

checks that got tested are:

• TotalWorkingYears >= YearsAtCompany,

• YearsAtCompany >= YearsInCurrentRole,

• YearsAtCompany >= YearsSinceLastPromotion,

• YearsAtCompany >= YearsWithCurrManager,

• MonthlyRate >= DailyRate,

• and DailyRate >= HourlyRate.

No indication for low internal dataset validity were found.

Next, the author searched the forum of IBM to get a statement about the external

validity of the dataset. A similar question was asked, namely “Is the sample HR

employee attrition dataset completely fabricated or is it an anonymized dataset of

actual employee information?”. The response of the Watson Analytics Support: “The

HR Employee Attrition data set is based of real data with all personal identifiers

removed. The data was also tweaked so that it performs better in telling a story about

attrition in the HR department.”. (Watson Analytics Support, 2015)

According to the HR professional from Accenture, almost all predictors are commonly

measured within organizations. For the rates, however, it was thought to be more

common for organizations to use daily rate and calculated the other rates based on

this variable. So, hourly rate is daily rate divided by eight, and monthly rate is equal to

10

daily rate times 20. Based on this, one would expect to find a strong correlation

between these variables. However, this was not the case in this dataset.

Another questionable variable was NumCompaniesWorked. The HR professional

indicated that in general organizations do not measure this variable. However, we

agreed it could be informative for employee attrition, and the statistic can be easily

acquired based on the employee’s CV. Therefore, it was decided to leave this predictor

in the dataset. If this variable is found to be significant and important in the predictive

models it will be an indication to start acquiring this statistic.

In conclusion, external validity establishes how generalizable the relationship is.

Construct validity investigates whether measurement of the key constructs is sufficient

to adequately assess the relationship (Marler & Boudreau, 2017). Based on some

basic internal checks, information from IBM Watson Analytics Support, and an internal

meeting with an HR professional; the author concludes the dataset to be representative

to actual organizational data. The external validity of this study is therefore high. The

construct validity is harder to assess, but there are no indications that this validity is in

jeopardy.

3. Literature review
Human Resource Analytics (HRA) is a relatively new term. (Marler & Boudreau, 2017)

conducted an evidence-based review of HR analytics. According to their research of

major databases, HR analytics first appeared in the HR published literature in 2003–

2004.

By bringing various definitions used throughout literature together, (Marler & Boudreau,

2017) defined HR Analytics as: “A HR practice enabled by information technology that

uses descriptive, visual, and statistical analyses of data related to HR processes,

human capital, organizational performance, and external economic benchmarks to

establish business impact and enable data-driven decision-making”. According to

(Marler & Boudreau, 2017) HR analytics have five characteristics. First, HR Analytics

is not HR Metrics. It involves more sophisticated analysis of HR-related data. Second,

HR Analytics does not focus exclusively on HR functional data, and involves integrating

data from different internal functions and data external to the firm. Third, HR Analytics

involves using information technology to collect, manipulate, and report data. Fourth,

HR Analytics is about supporting people related decisions. Finally, HR Analytics is

about linking HR decisions to business outcomes and organizational performance.

Based on this definition and these characteristics, the current study can be labeled as

HR Analytics research.

In conducting their review of the literature on HR Analytics, and despite evidence of a

growing interest in this innovation, (Marler & Boudreau, 2017) found very little and

limited scientific evidence to aid decision-making concerning whether to adopt HR

Analytics. They further state that there are two notable paradoxes. First is that despite

the popularity of HR Analytics there is very limited high-quality scientific evidence-

based research on this topic. The second paradox is the apparently limited adoption

of HR Analytics when the available research seems frequently to suggest that it is

associated with positive organizational outcomes. Also, much of the literature on the

11

topic of HR analytics has been focused on normative questions of what should be done

rather than analytical questions of how it can be done, in what contexts, and with what

results (Angrave, Charlwood, Kirkpatrick, & Stuart, 2016). With this article it is intended

to contribute to the high quality scientific evidence-based research in HRA, and is

focused on a more applied direction of HRA, as suggested by (King, 2016).

3.1 Individual-level employee voluntary turnover
Employee turnover is a general term referring to the loss of employees resulting from

a wide range of causes, such as retirement, death, quitting, termination, promotion,

and reassignment. Each of these turnover modes has different foundational causes

and may be more or less prevalent during different points in one’s career (X. Zhu,

2016). In this study, in accordance with (Sikaroudi, Ghousi, & EsmaieeliSikaroudi,

2015), we consider turnover as the rate of employees’ leave and replacement in a

predefined period of time. Turnover has various forms. It can be voluntary or

involuntary, functional or dysfunctional, avoidable or unavoidable.

In this study, we focus on employee voluntary turnover, also known as attrition.

Employee voluntary turnover is part of the overall employee turnover, and is accounted

for when an employee voluntarily leaves the organization. Among the reasons for

termination, voluntary turnover is one of the major ones accounting for 26% of the total

turnover (X. Zhu, 2016). Compared to the other types, employee voluntary turnover is

more problematic for companies to control. Employee voluntary turnover is often

dysfunctional and can be avoidable.

Many researchers have attempted to identify turnover factors to prevent and reduce

turnover. This study attributes by testing some of the suggested turnover factors.

Nearly two decades ago (Griffeth, Hom, & Gaertner, 2000) conducted the broadest

meta-analysis of the turnover literature. Since then, however, a sizable number of

primary studies have been published, also seeking to understand this phenomenon.

This year (Rubenstein et al., 2017) present an update and holistic picture of how the

studied constructs operate within the turnover literature. Similar to this study, their

focus is on individual voluntary turnover. In their study they include 57 predictors across

1800 effect sizes, which is a 27% increase in constructs and a 114% increase in effects

compared to (Griffeth et al., 2000).

The author formed hypotheses based on the findings of (Rubenstein et al., 2017) and

the predictors in the current dataset. A total of 8 predictors were found to be similar as

the ones studied in the past. These are age, education, marital status, sex, tenure,

pay, job involvement, and job satisfaction. However, although marital status is

measured in this study, the measurement is somewhat unconventual as it indicates

the three categories married, divorced, and single, while the conventual measure

would be, unmarried, married. Therefore, marital status in this study was found to be

unfit to compare with previous studies.

The relationship between age and voluntary turnover has been investigated in many

different studies (k =121). Among individual attributes, age (𝜌 = -0.21) falls in the group

that demonstrate the strongest effects. Here 𝜌 indicates the sample size weighted

average correlation corrected for measurement error in the predictors. The effect can

12

be interpreted as older workers are less likely to quit, which leads to the following

hypothesis:

Hypothesis 1: Age is negatively related to voluntary turnover.

In this study the education level of the employee is indicated by a number between 1

and 5, 1 indicating below college, and 5 indicating doctor. In their meta-analysis 51

studies investigated the relationship between education and voluntary turnover. The 𝜌

is equal to 0.04, indicating only a moderate effect. Which leads to the following

hypothesis:

Hypothesis 2: Education is a significant predictor of voluntary turnover.

Sex is a predictor found to be significant in predicting voluntary turnover. With a 𝜌 = -

0.01, which can be interpreted as males are less likely to voluntary leave, although it’s

effect on voluntary turnover is only moderate. Sex is in the current study denoted as

gender. This leads to the following hypothesis:

Hypothesis 3: Sex is a significant predictor of voluntary turnover.

Among the individual attributes, tenure was found to have the strongest effect with a 𝜌

= -2.7, which can be interpreted as employees that have been working for the current

organization for a longer time are less likely to leave. In the current study tenure is

denoted as ‘YearsAtCompany’. This leads to the following hypothesis:

Hypothesis 4: Tenure is negatively related to voluntary turnover.

Pay has been found to significantly affect voluntary turnover with an effect of 𝜌 = -0.17,

indicating that employees which receive more monetary compensation are less likely

to leave. In the current study pay is denoted as MonthlyIncome. This leads to the

following hypothesis:

Hypothesis 5: Pay is negatively related to voluntary turnover.

Job involvement was found to have an even greater effect when including more current

studies compared to the analysis done by (Griffeth et al., 2000). It now has a 𝜌 = –0.19

which indicates that more job involvement will lead to less voluntary turnover. This

leads to the following hypothesis:

Hypothesis 6: Job involvement is negatively related to voluntary turnover.

As job involvement, job satisfaction has also been found to have even greater effects

compared to the older meta-analysis study. With a 𝜌 = –0.28 it has a strong effect on

voluntary turnover. This leads to the following hypothesis:

Hypothesis 7: Job satisfaction is negatively related to voluntary turnover.

And lastly, Employee performance is found to be significantly negatively correlated to

employee voluntary turnover, with a 𝜌 = –0.21. In this study the performance is rated

on a 4 point scale, and only performance ratings of 3 and 4 are present in the dataset.

This leads to the following hypothesis:

Hypothesis 8: Employee performance is negatively related to voluntary turnover.

13

The hypotheses are tested by fitting a logistic regression model to the data. The results

get discussed in chapter 10 (p. 35).

4. Dataset creation
One of the first steps in the model building process is to transform, or encode, the

original data structure into a form that is most informative for the model (i.e. feature

engineering). This encoding process is critical and must be done with foresight into the

analyses that will be performed so that appropriate predictors can be elucidated from

the original data. A consequence of not appropriately formatting the predictors is the

development of ineffective predictive models.

During the initial check of the data, first all predictors were transformed to their correct

data type. Next, the data got checked for missing values, and predictors with near zero

variances (i.e. containing close to only 1 unique value). No missing values were found,

and three predictors got identified having low variances, namely Over18,

EmployeeCount, and StandardHours, and got removed.

Some machine learning (ML) algorithms only work with numeric data; therefore, two

dummy sets were created. During this process the categories are reencoded into

smaller bits of information called “dummy variables”. Each category gets its own

dummy variable that is a zero/one indicator for that group. A variable with four

categories can be transformed into only 3 new binary variables, since the fourth can

be inferred. However, for interpretation purposes it can be useful to include all dummy

variables. Some ML algorithms, such as simple linear regression, would have

numerical issues if each dummy variable was included in the model. The reason is

that, for each sample, these variables all add up to one and this would provide the

same information as the intercept. Other ML algorithms are unaffected by this (e.g.

tree based models). That is why two dummy sets were created, one containing all

dummy categories (HRdataDummy with 52 columns), and one with # of categories -1

(HRdataDummyFullRank with 46 columns).

A correlation matrix can only handle numeric variables. Some ML algorithms have a

significant performance decrease if the data is highly correlated, as indicated in the

paragraph above. To check for correlations and the structure within this dataset a

correlation matrix was created. It was created based on the dataset

HRdataDummyFullRank, and is shown in Figure 1. A few strong correlations can be

spotted. Next, the predictors with a minimum correlation of 0.75 got identified and

removed. Five were found namely, JobLevel, YearsAtCompany,

Department.Research & Development, Department.Sales, and

BusinessTravel.Travel_Rarely. The author created a new dataset excluding these five

variables, called HRdataDummyFullRankLowCorr with 41 columns.

During the first impression analysis, the predictor EmployeeNumber stood out. The

author decided that there is no causal link between EmployeeNumber and attrition.

And since uninformative predictors can decrease the performance of some models

(Kuhn & Johnson, 2016), this variable is deleted from the datasets.

14

Figure 1 Correlation Matrix HRdataDummyFullRank, method spearman

4.1 Pre-processing procedures
In addition to the already created data sets, for some ML algorithms additional pre-

processing procedures got conducted. Some models produce better results when the

data is preprocessed. For example, centering and scaling will positively affect K-

Nearest Neighbors (KNN), but will only hinder the interpretability of tree based models.

The preprocessing procedures used in this study are centering, scaling, and box-cox

transformation, and will be discussed next.

4.1.1 Centering and Scaling

The most straightforward and common data transformation is to center and scale the

predictor variables. These are preprocessing procedures done for some of the models.

To center a predictor variable, the average predictor value is subtracted from all the

values. This results in the predictor having a zero mean. To scale a predictor variable,

each value of the predictor variable is divided by its standard deviation. Scaling the

data coerces the values to have a common standard deviation of one. These

manipulations are generally used to improve the numerical stability of some

calculations. Some models, benefit from the predictors being on a common scale

(Kuhn & Johnson, 2016). The only real downside to these transformations is a loss of

interpretability of the individual values, since the data is no longer in the original units.

4.1.2 Box-cox transformation

Another preprocessing step used in this study is a transformation proposed by (Box &

Cox, 1964). The purpose of this transformation, in this study, is to remove the

distributional skewness in the predictors. An un-skewed distribution is one that is

15

roughly symmetric. This means that the probability of falling on either side of the

distribution’s mean is roughly equal. A right-skewed distribution has a large number of

points on the left side of the distribution (smaller values) than on the right side (larger

values).

The formula for the sample skewness statistic is:

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
∑(𝑥𝑖 − �̅�)3

(𝑛 − 1)𝑣
3

2⁄

𝑤ℎ𝑒𝑟𝑒 𝑣 =
∑(𝑥𝑖 − �̅�)2

(𝑛 − 1)

where x is the predictor variable, n is the number of values, and x̄ is the sample mean

of the predictor. If the predictor distribution is roughly symmetric, the skewness values

will be close to zero. As the distribution becomes more right skewed, the skewness

statistic becomes larger. Similarly, as the distribution becomes more left skewed, the

value becomes negative.

Replacing the data with the log, square root, or inverse may help to remove the skew.

A statistical method used to empirically identify an appropriate transformation is the

(Box & Cox, 1964) method. They propose a family of transformations that are indexed

by a parameter, denoted as λ:

𝑥∗ = {
𝑥𝜆 − 1

𝜆
 𝑖𝑓 𝜆 ≠ 0

log(𝑥) 𝑖𝑓 𝜆 = 0

}

In addition to the log transformation, this family can identify square transformation (λ =

2), square root (λ =0 .5), inverse (λ = −1), and others in between. λ is estimated by

using the maximum likelihood estimation of the predictor. This procedure would be

applied independently to each predictor data that contain values greater than zero.

For the HRdataDummyFullRankLowCorr data, 26 predictors were not transformed due

to zero or negative values. From the remaining 13, 4 predictors had λ estimates within

1 ± 0.2, and for these 4 no transformation was applied. The remaining 9 predictors had

λ estimates between -1.3 and 1.6. For λ estimates within 0 ± 0.2 a log transformation

is found to be reasonable.

5. Machine learning algorithms
In this chapter the machine learning algorithms used to make the predictive models

are described. The descriptions will be concise. For a comprehensive explanation of

the mathematics behind the models used in this study the author refers the reader to

(Hastie, Tibshirani, & Friedman, 2009), and to the references used in text. This chapter

is split into the three subchapters: Linear classification, nonlinear classification, and

classification trees and rule based models. In each of these subchapters the

corresponding machine learning algorithms get described.

16

5.1 Linear classification
In this section, the linear classification models used are being described, as well as the

tuning parameters used to get to the optimal model. All the models in this section are

trained based on the HRdataDummyFullRankLowCorr dataset.

5.1.1 Logistic regression

The logistic regression model is one of the basic linear models for classification. The

model is very popular due to its simplicity and ability to make inferential statements

about model terms. Logistic regression is a specific category of regression best used

to predict for binary or categorical dependent variables. Logistic regression finds

parameter values that maximizes the binomial likelihood function. Even though the

equation used in logistic regression is nonlinear, it produces linear classification

boundaries.

For logistic regression, formal statistical hypothesis tests can be conducted to assess

whether the slope coefficients for each predictor are statistically significant. This

application of logistic regression will also be used to check the hypotheses stated in

chapter 3 (p. Error! Reference source not found.). A Z statistic is commonly used for t

hese models, and is essentially a measure of the signal-to-noise ratio: the estimated

slope is divided by its corresponding standard error. Using this statistic, the predictors

can be ranked to understand which terms had the largest effect on the model (Kuhn &

Johnson, 2016).

5.1.2 Linear Discriminant Analysis

Linear Discriminant Analysis is explained as deriving a z-score, which is a linear

combination of two or more independent variables that will discriminate best between

two (or more) different categories or groups. The z-scores calculated using the

discriminant functions is then used to estimate the probabilities that an observation

belongs to a class. Linear discriminant analysis could be formulated as a model that

minimizes the total probability of misclassification. In this analysis, it is assumed that

the predictors in each class shared a common covariance structure. The consequence

of this assumption is that the class boundaries are linear functions of the predictors.

(Hastie et al., 2009)

5.1.3 Penalized logistic regression

Some classification models utilize penalties (or regularization) to improve the fit to the

data (Kuhn & Johnson, 2016). In this paper, a penalty term for the logistic regression

model is included. Recall that logistic regression finds parameter values that

maximizes the binomial likelihood function.

The method used for regularizing linear regression models in this paper is the Lasso

and Elastic-Net Regularized Generalized Linear Models(glmnet). This glmnet model

uses ridge and lasso penalties simultaneously and structures the penalty in the

following way (Friedman, Hastie, & Tibshirani, 2010):

log 𝐿(𝑝) − 𝜆 [(1 − 𝑎)
1

2
 ∑ 𝛽𝑗

2 + 𝛼 ∑|𝛽𝑗|

𝑃

𝑗=1

𝑃

𝑗=1

]

17

Here, the α value is the “mixing proportion” that toggles between the pure lasso penalty

(when α = 1) and a pure ridge-regression-like penalty (α = 0). The other tuning

parameter λ controls the total amount of penalization.

The model was tuned over a α from 0-1 divided into 10 equal steps, and a λ between

0.01 and 0.2 divided into 40 equal steps. The final model had a α of 0, and a λ 0.01,

which suggests a small amount of penalization on a pure ridge-regression-like penalty.

5.2 Nonlinear classification models
The previous section described models that were intrinsically linear—the structure of

the model would produce linear class boundaries. This section deals with some

intrinsically nonlinear models. There are other nonlinear models that use trees or rules

for modeling the data, these are discussed in the next section. All models in this section

are trained based on the HRdataDummyFullRankLowCorr dataset.

5.2.1 Neural Networks

Neural networks (NN) are powerful nonlinear regression techniques inspired by

theories about how the brain works (Goodfellow et al., 2016). The two classes (attrition

yes/no) can be encoded into two binary columns of dummy variables and then used

as the outcomes for the model. The outcome is modeled by an intermediary set of

unobserved variables called hidden units. These hidden units are linear combinations

of the original predictors. Each hidden unit is a linear combination of some or all of the

predictor variables.

The structure of the model described here is the simplest neural network architecture:

a single-layer feed-forward network. There are many other kinds (Goodfellow et al.,

2016), such as models where there are more than one layer of hidden units (i.e., there

is a layer of hidden units that models the other hidden units), or the model architectures

have loops going both directions between layers.

Neural networks for classification have a significant potential for over-fitting. When

optimizing the entropy, weight decay attenuates the size of the parameter estimates.

This can lead to much smoother classification boundaries. Also, model averaging helps

reduce over-fitting (Kuhn & Johnson, 2016). In this case, the class probability estimates

would be averaged across networks and these average values would be used to

classify samples. In this study both single NN’s and averaged NN’s are being tested.

(Kuhn & Johnson, 2016) found that spatial sign transformation can have a significant

positive impact on the performance of neural networks. For these data that was also

the case, so the results of the NN and Averaged NN are based on data pre-processed

including the spatial sign transformation (Serneels, De Nolf, & Van Espen, 2006).

The models were tuned over the number of units in the hidden layer ranging from 1 to

10, as well as a of weight decay between 0 and 2 (λ = 0, 0.1, 1, 2). The best NN used

only one hidden unit with a λ = 0.1. The averaged NN was the average of 10 single NN

and similar as the single NN used only one hidden units and a λ = 0.1. In both these

models only a single hidden unit is found to be optimal, which suggests the outcome

can be linearly separated.

18

5.2.2 Flexible Discriminant Analysis

In the previous section, the motivation for classical linear discriminant analysis was

based on minimizing the total probability of misclassification. It turns out that the same

model can be derived in a completely different manner. (Hastie, Tibshirani, & Buja,

1994) describe a process where, for C classes, a set of C linear regression models

can be fit to binary class indicators and show that the regression coefficients from these

models can be post-processed to derive the discriminant coefficients. This allows the

idea of linear discriminant analysis to be extended in a number of ways (Kuhn &

Johnson, 2016). First, models such as the lasso, ridge regression, or MARS, can be

extended to create discriminant variables. For example, MARS can be used to create

a set of hinge functions that result in discriminant functions that are nonlinear

combinations of the original predictors. As another example, the lasso can create

discriminant functions with feature selection. This conceptual framework is referred to

as flexible discriminant analysis (FDA).

An FDA model was tuned and trained with a first-degree MARS hinge functions where

the number of retained terms ranged from 1 to 30 and with a degree 1 and 2. The

optimal model had 29 retained terms with a degree of 1.

5.2.3 Support Vector Machines

Support vector machines are a class of statistical models first developed in the mid-

1960s by Vladimir Vapnik. In later years, the model has evolved considerably into one

of the most flexible and effective machine learning tools available (Kuhn & Johnson,

2016). A support vector machine constructs a hyperplane or set of hyperplanes in

higher dimensional space for achieving class separation. The intuition here is that a

good separation is achieved by the hyperplane that has the largest distance to the

nearest training data points of any class- the larger the margin the lower the

generalization error of the classifier. For this reason, it is also referred to as maximum

margin classifier (Kuhn & Johnson, 2016).

Alternate versions of the support vector machine model also exist (Kuhn & Johnson,

2016), such as least squares support vector machines (Suykens & Vandewalle, 1999),

relevance vector machines (Tipping, 2001), and import vector machines (J. Zhu &

Hastie, 2005). There are several approaches to using SVMs. In this paper, we

evaluated the radial basis function kernel. It should be noted that support vector

machines can be negatively affected by including non-informative predictors in the

model. The equation for this kernel is:

𝐾(𝑥, 𝑥′) = exp (−𝛾‖𝑥 − 𝑥‖2)

The radial basis function kernel was tuned over a cost of 2 with a power ranging from

-4 till 4. The optimal model results in σ = 0.009475476 and a cost of 2.

5.2.4 K-Nearest Neighbors

K-Nearest Neighbors (KNN) uses a sample’s geographic neighborhood to predict the

sample’s classification. KNN for classification predicts a new sample using the K

closest samples from the training set. “Closeness” is determined by a distance metric,

and the choice of metric depends on predictor characteristics. For any distance metric,

it is important to recall that the original measurement scales of the predictors affect the

19

resulting distance calculations. This implies that if predictors are on widely different

scales, the distance value between samples will be biased towards predictors with

larger scales. (Kuhn & Johnson, 2016)

The neighborhood range evaluated for tuning was between 1 and 451. The optimal

model was found to have a neighborhood of 151, which is quite large. A large number

of neighbors stimulates underfitting and a drop in corresponding predictive

performance will be the result.

5.2.5 Naïve Bayes

Bayes’ Rule answers the question “based on the predictors that we have observed,

what is the probability that the outcome is class C?” Thus, Bayes’ Rule is essentially a

probability statement. The underlying logic to using the Bayes’ rule for machine

learning is as follows: To train a target function fn: X → Y, which is the same as, P

(Y|X), we use the training data to learn estimates of P (X|Y) and P(Y). Using these

estimated probability distributions and Bayes’ rule new X samples could then be

classified. (Kuhn & Johnson, 2016)

The Naïve Bayes model simplifies the probabilities of the predictor values by assuming

that all of the predictors are independent of the others. This is an extremely strong

assumption. For most applications, it would be difficult to claim that this assumption is

realistic. However, the assumption of independence yields a significant reduction in

the complexity of the calculations.

These predictors were modeled using either a normal distribution or a nonparametric

density (the density type was treated as a tuning parameter), and a Laplace correction

ranging between 0 and 2. The Laplace correction is a smoothing technique which

counters the effect of the predictor not having a training sample, and thus no posterior

probability. For this dataset, the best tuned model had a Laplace of 0 and used the

nonparametric density distribution.

5.3 Classification Trees and Rule-Based Models
Classification trees fall within the family of tree-based models and consist of nested if-

then statements. Some benefits of trees are: they can be highly interpretable, can

handle many types of predictors as well as missing data. Some weaknesses are: they

suffer from model instability, and may not produce optimal predictive performance.

For tree models, the splitting procedure may be able to make more dynamic splits of

the data, such as groups of two or more categories on either side of the split (Kuhn &

Johnson, 2016). However, to do this, the algorithm must treat the categorical predictors

as an ordered set of bits. Therefore, when fitting trees and rule-based models, a choice

must be made regarding the treatment of categorical predictor data:

1. Each categorical predictor can be entered into the model as a single entity so

that the model decides how to group or split the values. In this study this refers

to using the HRdata set.

2. Categorical predictors are first decomposed into binary dummy variables. In this

way, the resulting dummy variables are considered independently, forcing

20

binary splits for the categories. In this study this refers to using the

HRdataDummy set.

Which approach is more appropriate depends on the data and the model. For example,

if a subset of the categories are highly predictive of the outcome, the first approach is

probably best. However, this choice can have a significant effect on the complexity of

the model, and the performance. Although the trees are identifying similarly important

information, the independent category tree is much easier to interpret than the grouped

category tree. In this study, models will be created using both approaches described

above.

5.3.1 Classification trees (CART, and C4.5)

The aim of classification trees is to partition the data into smaller, more homogeneous

groups. Homogeneity in this context means that the nodes of the split are more pure

(i.e. contain a larger proportion of one class in each node). A simple way to define

purity in classification is by maximizing accuracy or equivalently by minimizing

misclassification error. However, accuracy as a measure of purity can be misleading,

since the measure’s focus is on partitioning the data in a way that minimizes

misclassification rather than a focus on partitioning the data in a way that place

samples primarily in one class (Kuhn & Johnson, 2016). Two alternative measures, the

Gini index and cross-entropy shift the focus from accuracy to purity. Here Gini is equal

to:

𝐺 = ∑ �̂�𝑚𝑘 (1 − �̂�𝑚𝑘)

𝐾

𝐾=1

 ,

And the cross-entropy equation:

𝐷 = − ∑ �̂�𝑚𝑘 log (�̂�𝑚𝑘)

𝐾

𝐾=1

Where �̂�𝑚𝑘 is the proportion of training observations in the 𝑚𝑡ℎ region that belongs to

the 𝑘𝑡ℎ class. If the �̂�𝑚𝑘 is close to zero or one, then G and D will be small.

Gini is the criterion used by Classification and Regression Trees (CART) model. In this

model pruning is applied via the cost of complexity. And the cross-entropy criterion is

used by the C4.5 model. Both models are likely to overfit the data. CART uses a cost

function as pruning method; and C4.5 uses either a simple elimination of a sub-tree,

or raising a sub-tree so that it replaces a node further up the tree. Both these models

are used in this study. While CART and C4.5 classification trees are the most widely

used, there has been extensive research on and many other proposals for tree based

models (Kuhn & Johnson, 2016).

The CART model was tuned over 30 different trees with different complexity parameter

(cp) values. Any split that does not decrease the overall lack of fit by a factor of cp is

not attempted. The C4.5 like tree was trained using the standard tuning parameters

ranging the confidence factor between 0.01 and 0.5 and a minimum number of

instances ranging between 1 and 3. The best tuned CART model had a cp of

0.0009040424 and 0.007232339, for the HRdata and HRdataDummy respectively.

21

And the best tuned C4.5 model had a confidence factor of 0.255 and 0.5, for the

HRdata and HRdataDummy respectively, and both had a minimum number of

instances of three.

5.3.2 Rule-Based Models: PART

(Frank & Witten, 1998) describe a rule model called PART. Here, a pruned C4.5 tree

is created from the data and the path through the tree that covers the most samples is

retained as a rule. The samples covered by the rule are discarded from the data set

and the process is repeated until all samples are covered by at least one rule. Although

the model uses trees to create the rules, each rule is created separately and has more

potential freedom to adapt to the data.

Since this model uses C4.5 trees, the same tuning parameters are used. The final

model had a cp of 0.01 and 0.5 for the HRdata and HRdataDummy respectively, and

in both cases the model was pruned.

5.3.3 Bagged Trees

Bagging trees for classification uses an unpruned classification tree for modeling, in

this case, the two classes of attrition. Each model in the ensemble is used to predict

the class of the new sample. Each model has equal weight in the ensemble, and can

be thought of as casting a vote for the class it thinks the new sample belongs to. The

total number of votes within each class are then divided by the total number of models

in the ensemble (M) to produce a predicted probability vector for the sample. The new

sample is then classified into the group that has the most votes, and therefore the

highest probability. (Kuhn & Johnson, 2016)

According to (Kuhn & Johnson, 2016), bagging performance often plateaus with about

50 trees, so 50 was selected as the number of trees for each of these models. Both of

these ROC curves are smoother than curves produced with CART or C4.5, which is

an indication of bagging’s ability to reduce variance via the ensemble. Additionally,

both bagging models have better AUCs than either of the previous tree models.

5.3.4 Random Forests

Random forests are quite similar to bagging, each tree in the forest casts a vote for the

classification of a new sample, and the proportion of votes in each class across the

ensemble is the predicted probability vector. However, the type of tree changes in the

algorithm, and the tuning parameter of number of randomly selected predictors to

choose from at each split (denoted as mtry) is now added (Breiman, 2002). The idea

behind randomly sampling predictors during training is to de-correlate the trees in the

forest.

To tune mtry, (Kuhn & Johnson, 2016) recommend starting with five values that are

somewhat evenly spaced across the range from 2 to P, where P is the number of

predictors. They also recommend starting with an ensemble of 1,000 trees and

increasing that number if performance is not yet close to a plateau. This is applied to

the HRdata and HRdataDummy sets, and resulted in mtry of 2 for both datasets.

5.3.5 Boosting

The idea behind boosting is to combine many weak classifiers (e.g., a classifier that

predicts marginally better than random) into a strong classifier. Boosting can be applied

22

to any classification technique, but classification trees are a popular method for

boosting, since these can be made into weak learners by restricting the tree depth to

create trees with few splits. Since classification trees are a low bias/high variance

technique, the ensemble of trees helps to drive down variance, producing a result that

has low bias and low variance. There are many species of boosting algorithms, and in

this paper two major ones Stochastic Gradient Boosting and C5.0, are used. (Kuhn &

Johnson, 2016)

5.3.5.1 Stochastic Gradient Boosting

(Friedman, J., Hastie, T., & Tibshirani, 2000) worked to provide statistical insight of the

AdaBoost algorithm. For the classification problem, they showed that it could be

interpreted as a forward stagewise additive model that minimizes an exponential loss

function (Kuhn & Johnson, 2016). This framework led to algorithmic generalizations

such as Real AdaBoost, Gentle AdaBoost, and LogitBoost. These generalizations

were put into a unifying framework called gradient boosting machines. The basic

principles of gradient boosting are as follows: given a loss function (e.g., shrinkage)

and a weak learner (e.g., classification trees), the algorithm seeks to find an additive

model that minimizes the loss function. The gradient (e.g., residual) is calculated, and

a model is added to the previous model, and the procedure continues for a user-

specified number of iterations (Kuhn & Johnson, 2016).

When trees are used as the base learner, as in this study, basic gradient boosting has

two tuning parameters: tree depth (or interaction depth) and number of iterations. Also,

the model can be tuned over a loss function, in this case shrinkage is implemented. In

this study a tuning parameter grid was constructed where interaction depth ranged

from 1 to 9, number of trees ranged from 100 to 2,000, and shrinkage ranged from

0.01 to 0.1. This grid was applied to constructing a boosting model for the

HRdataDummy and resulted in a model with: interaction depth of 1, 600 trees, and a

shrinkage of 0.1.

5.3.5.2 C5.0

C5.0 is a more advanced version of the C4.5 classification model, and has additional

features. It is claimed to be faster, use memory more efficient, gets similar results with

smaller trees, offers support for boosting, allows the user to give the classes different

weights, and offers winnowing (i.e. removal of unhelpful predictors). (Kuhn & Johnson,

2016)

In this study, several variations of the C5.0 model were evaluated:

- Single tree- and rule-based models

- Tree and rules with boosting (up to 100 iterations)

- Using all predictors and using the winnowed set

The final best tuned model based on the HRdataDummy set is a rule based model with

90 iterations where winnowing was not used.

23

6. Model Validation technique
It is inappropriate to validate the models on the same data the model is trained with,

since the data is not new to the predictive model the results will be biased and show

an over optimistic performance of the model. So, to properly validate the trained

predictive models there is need for a test set (i.e. a set which the predictive model has

not seen before). The author chose to split the data into a training and test set of 75%

and 25% respectively. Since the rate of interest is under represented, stratified random

sampling is used to split the data. This will ensure that the proportions of attrition are

equal in each set. The number of recorders for the training set and test set are 1103

and 367 respectively.

6.1 Resampling method
Additionally, to increase the reliability of the training process outcomes the practitioner

can choose to use a resampling technique. Generally during the resampling process a

subset of samples are used to fit a model, and the remaining samples are used to

estimate the efficacy of the model. The resampling technique try to improve the bias

and variance properties of the trained models. Here the bias is the difference between

the estimated and true value of performance, and variance is the certainty of the bias.

For example, an unbiased and high variance method may produce very different

results when repeated. Some of the more common resampling techniques are: K-fold

cross-validation, Leave-one-out cross-validation, repeated k-fold cross-validation,

generalized cross-validation, repeated training/test splits, and bootstrap.

No resampling method is uniformly better than another. Several factors should be

considered before making the choice. In this case the sample size is small. For a small

sample size (Kuhn & Johnson, 2016) suggests using repeated 10-fold cross-validation

for several reasons: the bias and variance properties are good and, given the sample

size, the computational costs are not large. The author chose for 5 repeats of a 10-fold

cross-validation as the validation method used during this study.

7. Model evaluation metrics
Although many machine learning techniques can be used both for regression and

classification, the model evaluation metric is very different. Metrics like RMSE and R2

are not appropriate in the context of classification. Some metrics that are useful for

classification are accuracy, sensitivity, specificity, Positive predictive value, balanced

accuracy, F1 score, and Receiver Operating Characteristic (ROC). To improve the

interpretability of the evaluation metrics, Table 2 shows a confusion matrix and its basic

measures (e.g. TP, FP, FN, and TN) as well as the relationship with the evaluation

metrics used in this study. These will be explained next.

7.1 Accuracy
Accuracy is one of the simplest metrics. It reflects the agreement between the

observed and predicted classes, and has the most straightforward interpretation.

However, in situations where the costs are different, accuracy may not measure the

important model characteristics. Also, the natural frequencies of each class must be

taken into consideration. For example, in the current case a simple rule stating that all

24

employees will stay at the company will already result in an accuracy of 84%. Although

84% can be considered high in other predictive modeling applications, it is the base

rate in our study. If the class imbalance would be even more severe, it could be the

case that a predictive model can achieve almost perfect accuracy with only one rule.

The formula for Accuracy is:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

Table 2 Confusion Matrix including evaluation metrics used in current study

 True Condition

Condition
Positive

Condition
Negative

Predicted
condition

Predicted
Condition
Positive

True
positive
(TP)

False
positive
(FP)

PPV (or Precision)
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Predicted
Condition
Negative

False
negative
(FN)

True
negative
(TN)

 Sensitivity
(or Recall)

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Specificity

𝑇𝑁

𝑇𝑁 + 𝐹𝑃

 Balanced
Accuracy
1

2

∗ (
𝑆e𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑡𝑦
)

 F1 score
2

∗
𝑃𝑃𝑉 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑃𝑉 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

7.2 Sensitivity and specificity
For two class classification problems sensitivity and specificity are two additional

statistics that can be relevant. The sensitivity (or recall) of the model is the rate that the

event of interest is predicted correctly for all samples having the event, or

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑎𝑛𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑜 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡

𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

The sensitivity is sometimes considered the true positive rate since it measures the

accuracy in the event population. Conversely, the specificity is defined as the rate

that nonevent samples are predicted as non events, or

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑎𝑛𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑛𝑜𝑛𝑒𝑣𝑒𝑛𝑡𝑠

𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡
=

𝑇𝑁

𝑇𝑁 + 𝐹𝑃

7.3 Positive predictive value
Like sensitivity and specificity, the positive predictive value (PPV), also known as

precision, can be calculated using the confusion matrix. One often overlooked aspect

25

of sensitivity and specificity is that they are conditional measures. Sensitivity is the

accuracy rate for only the event population (and specificity for the nonevents).

Intuitively, if the event is rare, this should be reflected in the answer. The PPV takes

this into account and is an unconditional measure for the positive condition. The

formula is:

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(Kuhn & Johnson, 2016)

7.4 Balanced Accuracy
Since the accuracy can be a misleading performance measure (as described in the

accuracy section), it may falsely suggest above-chance generalizability. To safeguards

against reporting an optimistic accuracy estimate the balanced accuracy is introduced.

The balanced accuracy can be defined as the average accuracy obtained on either

class. Based on a confusion matrix the balanced accuracy is given by:

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

2
∗ (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑡𝑦) =

1

2
∗ (

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
)

If the classifier performs equally well on either class, this term reduces to the

conventional accuracy. In contrast, if the conventional accuracy is high only because

the classifier takes advantage of an imbalanced test set, then the balanced accuracy

will drop to chance.

(Brodersen, Ong, Stephan, & Buhmann, 2010)

7.5 F score
The F1 score is a measure of a test’s accuracy for binary classification problems. It

considers both the sensitivity (or recall) and PPV (or precision). The F1 score can be

interpreted as a weighted average of these two measures. The F1 score will result in

a grade between 1 and 0 where 1 is considered best. The formula is:

𝐹1 = 2 ∗
𝑃𝑃𝑉 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑃𝑉 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

Note, however, that the F1 score does not directly consider the true negatives in its

calculation.

(Yang & Liu, 1999)

7.6 Receiver Operating Characteristic (ROC) Curve
The ROC curve is created by evaluating the class probabilities for the model across a

continuum of thresholds. For each candidate threshold, the resulting true-positive rate

(i.e., the sensitivity) and the false-positive rate (one minus the specificity) are plotted

against each other. The default threshold is 50%, which is also the threshold used to

indicate the results. This threshold can be changed to choose a new sensitivity and

specificity trade-off, as discussed in the previous section.

26

The ROC curve can also be used for a quantitative assessment of the model. A perfect

model that completely separates the two classes would have 100% sensitivity and

specificity. Graphically, the ROC curve would be a single step between (0, 0) and (0,

1) and remain constant from (0, 1) to (1, 1). The area under the ROC curve for such a

model would be one. A completely ineffective model would result in an ROC curve with

an area under the ROC curve of 0.5.

One advantage of using ROC curves to characterize models is that, since it is a

function of sensitivity and specificity, the curve is insensitive to disparities in the class

proportions (Fawcett, 2006). Since altered cutoff values can completely change the

other metrics described above, performance metrics that are independent of probability

cutoffs (such as the area under the ROC curve) are likely to produce more meaningful

contrasts between models. That is why this metric is chosen to select the best model

on during the training process.

8. Remedies for severe class imbalance
When modeling discrete classes, the relative frequencies of the classes can have a

significant impact on the effectiveness of the model. An imbalance occurs when one

or more classes have very low proportions in the training data as compared to the other

classes. This is the case in the current dataset. Several remedies for severe class

imbalances exist. In this study the two remedies altered cutoff value and sampling are

being implemented. Some other remedies include, e.g. model tuning on minority case

accuracy, adjusting prior probabilities, cost-sensitive training, and unequal case

weights (Kuhn & Johnson, 2016).

8.1 Alternated Cutoffs
When there are two possible outcome categories, a method for increasing the

prediction accuracy of the minority class samples is to determine alternative cutoffs for

the predicted probabilities which effectively changes the definition of a predicted event.

The most straightforward approach is to use the ROC curve, since it calculates the

sensitivity and specificity across a continuum of cutoffs. Using this curve, an

appropriate balance between sensitivity and specificity can be determined.

Several techniques exist for determining a new cutoff. First, if there is a specific target

that must be met for the sensitivity, or specificity, this point can be found on the ROC

curve and the corresponding cutoff can be determined. Another approach is to find the

point on the ROC curve that is closest (i.e. the shortest distance) to the perfect model

(a model with 100% sensitivity and 100% specificity), which is associated with the

upper left corner of the plot. Another approach for determining the cutoff uses Youden’s

J index, which measures the proportion of correctly predicted samples for both the

event and nonevent groups. This index can be computed for each cutoff that is used

to create the ROC curve. Youden and the upper left corner approach often result in

very similar results. During this study the upper left corner approach is implemented.

It is worth noting that changing the cutoff does not change the core of the model, i.e.

the same model parameters are being used. Changing the cutoff to increase the

sensitivity does not increase the overall predictive effectiveness of the model. The main

27

impact that an alternative cutoff has is to make trade-offs between particular types of

errors. For example, in a confusion matrix (Table 2), alternate cutoffs can only move

samples up and down rows of the matrix. Thus, using an alternative cutoff does not

induce further separation between the classes.

In our analysis, the alternate cutoff values were determined only for the most promising

models. The alternate cutoff value was derived from the training set, since, if the test

set was used it will no longer be an unbiased source to judge the model performance.

However, using the training set does has it downsides, e.g. the results on the training

are likely to have an optimistic bias and can thus lead to an inaccurate assessment of

the sensitivity and specificity. However, these effects are being mitigated by using

validation methods (described in chapter 6 p.23). A better estimation of the altered

cutoff value would be by creating an additional evaluation set (i.e. an extra dataset not

used during the training process), estimate the optimal cutoff value based on this

dataset (validation set), assess the performance of the model using the test set.

8.2 Sampling Methods
When using alternated cutoff values, there is almost always a decrease in either

sensitivity or specificity as one is increased. Unlike alternate cutoff values, sampling

approaches have the benefit of enabling better trade-offs between sensitivity and

specificity. There are several methods of sampling, and in this study the methods

oversampling and synthetic minority over-sampling technique (SMOTE) are being

evaluated.

Two general post hoc approaches are down-sampling and up-sampling the data. Up-

sampling is any technique that simulates or imputes additional data points to improve

balance across classes, while down-sampling refers to any technique that reduces the

number of samples to improve the balance across classes. (Ling & Li, 1998) provide

one approach to up-sampling in which cases from the minority classes are sampled

with replacement until each class has approximately the same number. The training

set in this study contain 178 cases of attrition and 925 cases of non-attrition. Applying

up-sampling resulted in adding 747 randomly chosen replacement samples.

The synthetic minority over-sampling technique (SMOTE) (Chawla, Bowyer, Hall, &

Kegelmeyer, 2002) is a data sampling procedure that uses both up-sampling and

down-sampling and can be considered a hybrid sampling approach. This approach

has three operational parameters: the amount of up-sampling, the amount of down-

sampling, and the number of neighbors that are used to impute new cases. To up-

sample for the minority class, SMOTE synthesizes new cases. To do this, a data point

is randomly selected from the minority class and its K-nearest neighbors (KNNs) are

determined, in this study we used a k equal to five. The new synthetic data point is a

random combination of the predictors of the randomly selected data point and its

neighbors. While the SMOTE algorithm adds new samples to the minority class via up-

sampling, it also can down-sample cases from the majority class via random sampling

in order to help balance the training set. Implementing this approach using both up and

down sampling resulted in a training set with 534 cases of attrition and 712 cases of

non-attrition.

28

It should be noted that when using modified versions of the training set, resampled

estimates of model performance can become biased. For example, if the data are up-

sampled, resampling procedures are likely to have the same sample in the cases that

are used to build the model as well as the holdout set, leading to optimistic results.

Despite this, resampling methods can still be effective at tuning the models.

9. Results of predictive modeling
The results of this study are split into two parts. In part 1 (this chapter) the results of

the machine learning algorithms will be presented. Part 2 (Chapter 10, p.35) represents

the results of the hypotheses and additional HR voluntary attrition findings. In this

chapter, the author will provide the reader with a better context for interpreting the

results by explaining the concept of measurement error. Next, we will discuss the

results of the predictive models. This chapter will end with an evaluation of the severe

class imbalance remedies.

9.1 Measurement error
The better we understand the measurement system and its limits, as well as the

relationship between predictors and the response, the better we can foresee the limits

of the model performance. To set expectations for the predictive modeling performance

the author wants to inform the reader about two types of errors namely, measurement

error in the outcome and measurement error in the predictors.

9.1.1 Measurement error in the outcome

During the modeling process the goal is to eliminate the model error. However, there

is a component that cannot be eliminated through the modeling process. This is the

case when the outcome contains significant measurement noise. As noise increases,

the models used become virtually indistinguishable in terms of their predictive

performance. This means that the advantages that some of the more complex models

bring are only advantageous when the measurement system error is relatively low.

(Kuhn & Johnson, 2016)

Some aspects that can increase the measurement error in the outcome is right

censoring and left truncation (Carrión, Solano, Gamiz, & Debón, 2010). Simply put,

each dataset can be thought of as an observation window in time. Here left truncation

is the periods on the left of this observation window. This period will also include cases

of voluntary leave, but these will remain unobserved, and only the cases for which

attrition did not happen are included in the dataset. The opposite of this phenomenon

happens during right censoring, this is the period on the right side of the observation

window. In this study, it can be interpreted as the non-attrition cases in the observation

window (i.e. dataset) that eventually did leave the organization after the observation

window ended.

9.1.2 Measurement error in the predictors

Measurement errors in the predictors can cause considerable issues when building

models, especially in terms of reproducibility of the results on future data sets. Although

it is often assumed that predictors are measured without errors, this is not always the

case. The effect of error in measurement in the predictors can be drastic. The effect

29

depends on several factors namely: The amount of randomness, the importance of the

predictors, the type of models being used, as well as others. Future results may be

poor because the underlying predictor data are different than the values used in the

training set. (Kuhn & Johnson, 2016)

The dataset used in this study contains 34 different predictors. Although some

predictors are expected to have low measurement error in the predictors, like for

example age, gender, total work years, etc. Others are expected to include some noise,

for example job satisfaction, work life balance, performance rating, etc.. The latter are

expected to have noise, since there may be a difference in how people perceive the

object (rater-to-rater noise). Also, it can be imagined that not all employees are totally

honest when filling in these types of surveys for personal reasons. As noted before,

the effect of these predictors on the model depend on several factors. And it is

important for the reader to keep these in mind while interpreting the model. Also,

although these predictors have noise, this does not mean they are unable to provide

additional information about the outcome.

9.2 Comparison of the models
In this section the results of the models used in this study will be compared. As

discussed in the chapter 7 (p.23), model metrics can be severely influenced by the

cutoff value used; so, in this section the ROC, which is insensitive to the cutoff value,

is chosen to compare the models. The results of the modeling process validated based

on the test set are shown in Table 3.

For the linear classification models the results are all very similar with an approximate

area under the ROC curve (AUC) of 0,83. This result is good compared to the other

type of models, indicating attrition can be linearly separated.

The non-linear classification models include the best model based on AUC namely the

support vector machine. However, the other non-linear classification models performed

worse compared to the linear classification models, further confirming the linear

relationship.

Classification trees and rule based models were expected to have difficulty with the

class imbalance. Compared to the other two groups, the classification trees and rule

based models had the worst performance. The more complex models did improve the

AUC over the simpler tree and rule based models, with gradient boost machine

performing the best with a AUC of 0.82.

To better compare the models Figure 2 was created which shows the 95% confidence

interval of the AUC for each of the models represented in Table 3. This figure can be

used to compare the effectiveness and performance of the models. The bars represent

95% confidence intervals of the AUC that were derived using 2000 stratified bootstrap

replicates.

Based on this figure it can be inferred that the simpler tree and rule based models

together with KNN, and Naïve Bayes perform significantly worse than the other

models. Also for the tree and rule based models the dataset used (dummy or non-

dummy) did not result in significantly different models, indicating the dummy dataset

might be preferred due to being more interpretable.

30

Table 3 The test set results of the modeling process based on the normal training set.

Model Accuracy Sensitivity Specificity PPV F1 Score Balanced
Accuracy

AUC

Linear Classification
Models

Logistic Regression 0.8719 0.38983 0.96429 0,77876 0,49462 0.67706 0.8303
Linear Discriminant Analysis 0.8692 0.42373 0.95455 0,64103 0.51020 0.68914 0.8397
Penalized logistic regression 0.8692 0.32203 0.97403 0.70370 0.44186 0.64803 0.8319
Non-linear Classification
Models

Neural Network 0.8692 0.37288 0.96429 0.66667 0.47826 0.66858 0.828
Average Neural Network 0.8556 0.35593 0.95130 0.58333 0.44211 0.65362 0.8259
Flexible Discriminant Analysis 0.8801 0.44068 0.96429 0.70270 0.54167 0.70248 0.7972
Support Vector Machine 0.8856 0.38983 0.98052 0.79310 0.52273 0.68517 0.8489

KNN 0.8392 0 1 NA NA 0.5000 0.7644
Naïve Bayes 0.8392 0 1 NA NA 0.5000 0.7595
Classification Trees and
Rules based models

RPART (Gini based) 0.8147 0.32203 0.90909 0.40426 0.35849 0.61556 0.6901
RPART Dummy 0.8556 0.33898 0.95455 0.58824 0.43011 0.64676 0.7145
J48 (cross-entropy based) 0.842 0.30508 0.94481 0.40426 0.35849 0.62494 0.6867
J48 Dummy 0.812 0.42373 0.88636 0.58824 0.43011 0.6581 0.6581
PART 0.7902 0.28814 0.88636 0.51429 0.38298 0.58725 0.6411
PART Dummy 0.7929 0.30508 0.88636 0.41667 0.42017 0.59572 0.607
Bagged Trees 0.8692 0.35593 0.96753 0.67742 0.46667 0.66173 0.7649
Bagged Trees Dummy 0.8583 0.30508 0.96429 0.62069 0.40909 0.63469 0.7632
Random Forest 0.8665 0.2551 1 1 0.28986 0.58475 0.7839
Random Forest Dummy 0.8583 0.11864 1 1 0.21212 0.55932 0.7859
GBM Dummy 0.8638 0.44068 0.94481 0.60465 0.50980 0.69274 0.8154
C5.0 Dummy 0.8774 0.35593 0.97727 0.75000 0.48276 0.66660 0.7912

31

The more complex trees AUCs all significantly overlap, indicating that the simpler

random forest might be preferred over the more complex C5.0 model. GBM seems to

slightly outperform the other tree based models.

The confidence intervals of AUC for the linear and more complex non-linear

classification models all significantly overlap, indicating that the outcome can be

linearly separated and that the less complex logistic regression model might be

preferred over the more complex neural network. From these models the SVM seems

to slightly outperform the rest.

Figure 2 A plot of the test set ROC AUCs and their associated 95% confidence intervals. Here, the upper part of the graph
represents the tree and rule based models, from ‘c5.0 dummy’ – ‘RPART’; the middle with the non linear classification models,
from ‘NaiveBayes’ – ‘nnet’; and the lower part the linear classification models, from ‘PenalizedLR’ – ‘logisticReg’.

9.3 Comparison of models after implementation of class imbalance remedies
Based on the previous results some models were selected to compare the results

based on sampling and alternate cutoff value methods. The results of sampling are not

expected to outperform the base case models based on the AUC, since the training

set is sampled and is thus less comparative to the test set results. The implementation

of these methods are, however, expected to result in more optimal sensitivity and

specificity tradeoffs; and as a result in higher F1 scores and balanced accuracies. The

alternate cutoff values are selected based on the point most close to the top left corner

of the ROC based on the training set, as described in section 8.1 (p.26); and the

results, represented in Table 4Table 3, are validated on the test set, and are

representative for the models actual performance.

32

Table 4 Results most promising models base case vs. altered cutoff value vs. sampling results

Model Accuracy Sensitivity Specificity PPV F1 Score Balanced Accuracy AUC

Logistic Regression 0.8719 0.38983 0.96429 0,77876 0,49462 0.67706 0.8303
Altered Cutoff 0.7901907 0.7288136 0.8019481 0.93916 0.82072 0.7654

Logistic Regression UpSampled 0.7629 0.7288 0.7695 0.3772 0.49711 0.7491 0.8168
Logistic Regression SMOTE 0.7902 0.6949 0.8084 0.4100 0.51572 0.7517 0.815
Neural Network 0.8692 0.37288 0.96429 0.66667 0.47826 0.66858 0.828

Altered Cutoff 0.8174387 0.6949153 0.6949153 0.93501 0.79728 0.69492

Neural Network UpSampled 0.8338 0.50847 0.89610 0.48387 0.49587 0.70229 0.7925
Neural Network SMOTE 0.8065 0.61017 0.84416 0.42857 0.50350 0.72716 0.7676

Flexible Discriminant Analysis 0.8801 0.44068 0.96429 0.70270 0.54167 0.70248 0.7972

Altered Cutoff 0.7329700 0.6610169 0.7467532 0.92000 0.76930 0,70389
FDA UpSampled 0.782 0.6949 0.7987 0.3981 0.50617 0.7468 0.7729
FDA SMOTE 0.8338 0.47458 0.90260 0.48276 0.47863 0.68859 0.7569
Support Vector Machines 0.8856 0.38983 0.98052 0.79310 0.52273 0.68517 0.8489

Altered Cutoff 0.7574932 0.7796610 0.7532468 0.94694 0.85520 0.76645

Support Vector Machines UpSampled 0.8638 0.44068 0.94481 0.60465 0.50980 0.69274 0.7753
Support Vector Machines SMOTE 0.8283 0.44068 0.90260 0.46429 0.45217 0.67164 0.7581
Random Forests Dummy 0.8583 0.11864 1 1 0.21212 0.55932 0.7859
Altered Cutoff 0.8801090 0.3050847 0.9902597 0.88150 0.45329 0.64767

Random Forests Dummy UpSampled 0.8719 0.37288 0.96753 0.68750 0.48352 0.67021 0.7778
Random Forests Dummy SMOTE 0.8719 0.38983 0.96429 0.67647 0.49462 0.67706 0.7911
GBM dummy 0.8638 0.44068 0.94481 0.60465 0.50980 0.69274 0.8154
Altered Cutoff 0.8092643 0.6949153 0.8311688 0.93430 0.79702 0.76304

GBM dummy UpSampled 0.8692 0.4068 0.9578 0.6486 0.5 0.6823 0.7751
GBM dummy SMOTE 0.8338 0.44068 0.90909 0.48148 0.46018 0.67488 0.7673

33

Table 5 Results of altered cutoff values based on the test set, base case vs. sampling results

Model Threshold Accuracy Specificity Sensitivity PPV F1 score Balanced
Accuracy

Logistic Regression 0.2295564

0.8365123

0.7118644

0.8603896

0.9397163 0.81007 0.786127

Logistic Regression
UpSampled

0.5343487

0.7901907

0.7288136

0.8019481

0.9391635 0.82072 0.7653809

Logistic Regression SMOTE 0.5257691

0.8010899

0.6949153

0.8214286

0.9335793 0.79676 0.7581720

Neural Network 0.1674948

0.8147139

0.7118644

0.8344156

0.9379562 0.80942 0.77314

Neural Network UpSampled 0.1066153

0.7574932

0.7288136

0.7629870

0.9362550 0.81961 0.7459003

Neural Network SMOTE 0.3349407

0.7738420

0.6779661

0.7922078

0.9277567 0.78343 0.7350870

Support Vector Machines 0.1770735

0.7874659

0.7627119

0.7922078

0.9457364 0.84442 0.7774599

Support Vector Machines
UpSampled

0.08109166

0.72752044

0.67796610

0.73701299

0.92276423 0.781646 0.7074895

Support Vector Machines
SMOTE

0.1183862

0.6594005

0.7118644

0.6493506

0.9216590 0.80329 0.6806075

Random Forests Dummy 0.1475000

0.7411444

0.7457627

0.7402597

0.9382716 0.83101 0.7430112

34

Random Forests Dummy
UpSampled

0.2065000

0.7247956

0.7457627

0.7207792

0.9367089 0.83040 0.7332710

Random Forests Dummy
SMOTE

0.3885000

0.8174387

0.6610169

0.8474026

0.9288256 0.77237 0.75420975

GBM dummy 0.1652439 0.7792916 0.7796610 0.7792208 0.9486166 0.85588 0.7794409

GBM dummy UpSampled 0.002546103 0.754768392 0.677966102

0.769480519

0.9257813 0.78273 0.7237233

GBM dummy SMOTE 0.006469846 0.752043597 0.711864407

0.759740260

0.9322709 0.80729 0.735802334

35

For random forest the sampling did result in a better F1 score and balanced accuracy,

as compared to altered cutoff. For all other models the F1 score was found to be

optimal when altered cutoff values were used. The best performing model is Support

Vector Machine (SVM) model with a corresponding F1 score and balanced accuracy

of, respectively, 0.85520 and 0.76645. The second to best model is a Logistic

Regression model with altered cutoff value, which results are similar as the SVM. It

has a corresponding F1 score and balanced accuracy of, respectively, 0.82072 and

0.7654. Based on these metrics these two models significantly outperformed the other

tested models.

9.3.1 Comparison of models with altered cutoffs based on test set

To further investigate the results of sampling, Table 5 represents the results of the

models build on: the original dataset, up sampled data, and SMOTE data, with altered

cutoff values selected based on the test set. So, the results may not be interpreted as

actual results, since they will likely be over optimistic. However, the alternative cutoff

values can be used as an evaluation method between the sampled and the base case

to check whether actual predictive performance gains are likely to have been made.

These results indicate that based on F1 score up-sampling could potentially outperform

the normal dataset (logistic regression and NN), although the scores are very similar.

And based on the balanced accuracy, applying sampling did not result in better

predictive performance.

10. Results Predictor Importance and Significance
As indicated on the beginning of the previous chapter, this section can be considered

part two of the results. In this chapter the hypotheses stated in section 3.1 (p.11) are

tested. Also, some of the other significant predictors will be discussed. The logistic

regression method was used to evaluate the significance, as this model provided,

compared to all parametric models, the best results according to previous chapter.

Notice that during the dataset creation some of the hypothesized predictors got

removed from the dataset, due to high correlations with the other predictors. To be

able to test the hypotheses, the author reentered these variables into the dataset,

which is only used for this chapter, and deleted their corresponding correlation

counterparts. All hypothesis tests are based on an alpha of 0.05. A list of predictors

that are significant at the 0.05 level is presented below, ordered by their relative

importance.

Figure 3 provides the reader with a visual representation of the relative importance of

all predictors used in the model. In addition to the already found relevance of logistic

regression in the previous chapter; this chapter will start with two goodness of fit

evaluations for logistic regression. Next, based on the results of the model, the

hypotheses will be tested. And this chapter will end with an evaluation and discussion

of the other significant predictors related to voluntary turnover.

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.462e+01 1.284e+01 -1.917 0.055257 .

OverTime.Yes -1.993e+00 1.936e-01 -10.295 < 2e-16 ***

36

EnvironmentSatisfaction 4.390e-01 8.280e-02 5.302 1.15e-07 ***

NumCompaniesWorked -1.945e-01 3.769e-02 -5.161 2.46e-07 ***

JobSatisfaction 4.009e-01 8.153e-02 4.918 8.75e-07 ***

BusinessTravel.Travel_Frequently -1.020e+00 2.109e-01 -4.837 1.32e-06 ***

JobInvolvement 3.452e-01 7.965e-02 4.334 1.46e-05 ***

YearsSinceLastPromotion -1.667e-01 4.178e-02 -3.991 6.58e-05 ***

DistanceFromHome -3.464e-01 8.854e-02 -3.912 9.14e-05 ***

Age 7.463e-01 2.122e-01 3.517 0.000436 ***

MaritalStatus.Single -1.173e+00 3.448e-01 -3.403 0.000666 ***

RelationshipSatisfaction 2.588e-01 8.247e-02 3.138 0.001699 **

MonthlyIncome 9.037e-01 2.924e-01 3.090 0.001999 **

YearsWithCurrManager 1.391e-01 4.607e-02 3.020 0.002527 **

YearsInCurrentRole 1.199e-01 4.466e-02 2.685 0.007245 **

`JobRole.Sales Representative` -1.481e+00 5.524e-01 -2.681 0.007338 **

TrainingTimesLastYear 1.909e-01 7.293e-02 2.618 0.008850 **

WorkLifeBalance 1.885e-01 7.240e-02 2.604 0.009208 **

`JobRole.Sales Executive` -1.050e+00 4.469e-01 -2.349 0.018812 *

`JobRole.Laboratory Technician` -1.068e+00 4.799e-01 -2.225 0.026107 *

Gender.Male -3.949e-01 1.845e-01 -2.141 0.032271 *

Signif. codes: ‘***’= 0.001, ‘**’= 0.01, ‘*’= 0.05

Figure 3 A graphical indication of the relative importance of all predictors.

10.1 Evaluation Goodness of Fit
Discrimination in linear regression models is generally measured using R2. Since this

has no direct analog in logistic regression, various methods can be used instead to

evaluated the goodness of fit of the model. In this study the methods likelihood ratio

test and Hosmer-Lemeshow test are conducted, and will be discussed next.

37

10.1.1 Likelihood ratio tests

In linear regression analysis, one is concerned with partitioning variance via the sum

of squares calculations. Variance in the criterion is essentially divided into variance

accounted for by the predictors and residual variance. In logistic regression analysis,

deviance is used instead of sum of squares calculations. Deviance is analogous to the

sum of squares calculations in linear regression and is a measure of the lack of fit to

the data in a logistic regression model like (Hosmer D.W. and Lemeshow, 1980).

If the distribution of the likelihood ratio Λ corresponding to a particular null and

alternative hypothesis can be explicitly determined, then it can directly be used to form

decision regions (to accept/reject the null hypothesis). In most cases, however, the

exact distribution of the likelihood ratio corresponding to specific hypotheses is very

difficult to determine. (Wilks, 1938) found that as the sample size approaches ∞, the

test statistic −2log (Λ) for a nested model will be asymptotically chi-squared distributed

(𝜒2) with degrees of freedom equal to the difference in dimensionality. This means that

for a great variety of hypotheses, a practitioner can compute the likelihood ratio Λ for

the data and compare −2log (Λ) to the 𝜒2 value corresponding to a desired statistical

significance as an approximate statistical test.

For the logistic model the null deviance and residual deviance are provided. With the

null deviance defined as:

𝐷 𝑛𝑢𝑙𝑙 = −2 ln
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑛𝑢𝑙𝑙 𝑚𝑜𝑑𝑒𝑙

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙

And with the residual deviance defined as:

𝐷 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = −2 ln
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑚𝑜𝑑𝑒𝑙

Here the null model estimates only one parameter to explain the data, the saturated

model is a model that assumes each data point has its own parameter, and the

proposed model assumes that the data points can be explained with p parameters +

an intercept term.

Based on these two statistics, their corresponding degrees of freedom, and the findings

of (Wilks, 1938) the following hypothesis can be tested:

𝐻1 = 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑙𝑜𝑔𝑖𝑡𝑖𝑐 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑠 𝑎𝑛 𝑎𝑑𝑒𝑞𝑢𝑎𝑡𝑒 𝑓𝑖𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎.

With a p-value = 0 the null hypothesis can be rejected. So, no evidence was found that

the model fits the data inadequately.

10.1.2 Hosmer-Lemeshow test

The Hosmer–Lemeshow test is another statistical test for goodness of fit for logistic

regression models. The test assesses whether or not the observed event rates match

expected event rates in subgroups of the model population. Logistic regression models

provide an estimate of the probability of an outcome. It is desirable that the estimated

probability of success is close to the true probability.

38

In a 1980 paper Hosmer and Lemeshow showed by simulation that, given that the

predictors +1 is smaller than the number of groups (g), their test statistic approximately

followed a chi-squared distribution 𝜒2 on g−2 degrees of freedom, when the model is

correctly specified (Hosmer D.W. and Lemeshow, 1980). This means that given our

fitted model, the p-value can be calculated as the right hand tail probability of the

corresponding 𝜒2 distribution using the calculated test statistic. If the p-value is small,

this is indicative of poor fit. Applying the Hosmer–Lemeshow test to our model resulted

in: 𝜒2 equal to -4.32, degrees of freedom equal to 8, and a p-value equal to 1, indicating

a good fit of the current model.

10.2 Hypothesis test results
Eight hypotheses are formed at the beginning of this study (p.11). Each of these will

be discussed in turn. But first, the consequences of the preprocessing step box-cox

will be explained.

A box-cox transformation was used as a preprocessing step to better handle the

skewness in the data. Due to this transformation, the results give a better estimate of

actual predictor importance and significance. Consequently however, the relationship

between predictor and outcome becomes less interpretable. Out of 39 predictors 13

were considered to be transformed. From the significant predictors, the following

predictors got transformed using this method: Age, Monthly income, Distance from

home, Job involvement, and Work life balance. To present the relationship of these

predictors with the outcome, plots were created with the y-ass representing the logistic

model outcome, and the x-ass representing the original units (pre-box-cox

transformation). In these plots, all other variables are held at a constant equal to their

corresponding means.

Hypothesis 1: Age is negatively related to voluntary turnover.

Evidence was found to reject this null hypothesis. Although age is found to be a

significant predictor for employee attrition (p < 0.001), in this dataset as age goes up

so does the likelihood of attrition. However, it should be kept in mind that this evidence

can be found due to the left truncation effect described at the beginning of the previous

chapter. Age is one of the significant predictors that got transformed using the box-cox

method, this hinders the interpretation of the estimate. Figure 4 shows the plot created

as an indication of the effect of age on the outcome. As age goes up, so does the

likelihood of attrition.

Hypothesis 2: Education is a significant predictor of voluntary turnover.

For this dataset employee education is not a significant indicator for employee

voluntary turnover, and the null hypothesis cannot be rejected. Based on Figure 3,

employee education level is not only insignificant it is also at the bottom of the list of

relative importance to the outcome. This indicates that employee’s voluntary leave

behavior is similar regardless of their education level.

39

Figure 4 Effect Age on model Outcome with all other predictors held equal to their respective means

Hypothesis 3: Sex is a significant predictor of voluntary turnover.

Gender is found to be a significant predictor for employee voluntary turnover (p < 0.05),

and thus, the null hypothesis can be rejected. In this dataset if the employee is a male

the odds ratio of voluntary leave is 0.67(exp(-3.949e-01)) indicating that the voluntary

turnover odds decrease with 33% if the employee is male compared to female. This

hypothesis is thus found to be true. However, out of all significant predictors, gender is

at the bottom of the list of importance to the outcome.

Hypothesis 4: Tenure is negatively related to voluntary turnover.

Tenure in this dataset is indicated as years at company. Although years at company

was found to be negatively related to voluntary turnover; with a p = 0.051 it is not

significant and therefore the null hypothesis cannot be rejected.

Hypothesis 5: Pay is negatively related to voluntary turnover.

In this dataset pay is denoted as monthly income. There is no evidence to reject the

null hypothesis. Although monthly income is found to be a significant predictor for

voluntary turnover with a p < 0.01, the relation that was positive rather than negative,

implying that as monthly income increases, so does the likelihood of employee

voluntary turnover. Since monthly income is transformed by the box-cox procedure the

results are, similar as age, hard to interpret. Figure 5 shows the relationship between

pay and the outcome.

40

Figure 5 Effect Monthly Income on model Outcome with all other predictors held equal to their respective means

Hypothesis 6: Job involvement is negatively related to voluntary turnover.

Job involvement was found to be a significant indicator for voluntary turnover with a p

< 0.001. However, contrary to the hypothesis as job involvement increases so does

voluntary turnover. Like age and monthly income, job involvement is transformed by

the box-cox procedure. A similar graph was plotted and is shown in Figure 6.

Hypothesis 7: Job satisfaction is negatively related to voluntary turnover.

Job satisfaction was found to be a significant predictor to voluntary turnover with a p <

0.001. However, contrary to the hypothesis it was found that as job satisfaction

increases so does the likelihood of voluntary turnover. With an estimate equal to

0.4009 (= 4.009e-01) as job satisfaction increases with one the odds of voluntary

turnover increase with 49% (1- exp(0.4009)).

Hypothesis 8: Employee performance is negatively related to voluntary turnover.

For this dataset employee performance is not a significant predictor for voluntary

turnover, thus we cannot reject the null hypothesis. However, it should be stated that

although employee performance is grade between 1 and 4, the former indicating bad

performance the latter good; all employees in the current dataset had a performance

of either 3 or 4. Employee performance could still be a significant predictor for voluntary

turnover within a dataset containing the full spectrum of employee performance

grades. However, when it comes to voluntary turnover, practitioners are probably

mostly interested in the good performing employees.

41

Figure 6 Effect of Job Involvement on model Outcome with all other predictors held equal to their respective means

10.3 Other significant predictors
In the current study overtime is by far the most important predictor for voluntary

turnover and is also significant with a p< 0.001. As indicated in Table 1, overtime is

equal to either yes or no, and indicates whether an employee is allowed to write and

get payed for the extra hours he/she makes. The odds ratio for overtime is equal to

0.14, indicating if overtime is equal to ‘yes’ the turnover odds decreases with 86%.

Usually in organizations lower career levels equal to employee overtime: yes, and

higher career levels equal to overtime: no. Assuming this is true, in the case study

organization higher career level employees are leaving the organization. This

conclusion is in alignment with the relationships with voluntary turnover found in the

hypotheses about age, and pay. In fact, during the initial creation of the datasets

(Chapter 4 p.13) some predictors got deleted due to being highly correlated with others;

and job level was found to have a 0.95 correlation with monthly income. The author

suspects that the voluntary leave behavior for certain job levels will significantly differ

from others.

Another important and significant predictor for voluntary turnover is environment

satisfaction, with a p<0.001. Contrary to common sense, the odds ratio for environment

satisfaction is equal to 1.55, indicating if environment satisfaction is increased by 1 the

voluntary turnover odds increase by 55%.

Next in the list of important and significant predictors is the number of companies the

employee has worked for in the past, with a p<0.001. Employees who worked for a

larger number of companies are less likely to voluntarily leave the organization. The

odds ratio is equal to 0.82, indicating that if number of companies is increased by one

the odds for voluntary turnover decrease by 18%.

42

Employees that worked for many companies in the past can be considered more

experienced. They will have better understanding of the differences between

organizations, and will eventually settle in an organization and role which is most

aligned with their own values. This settlement in the organization and in the role the

employee wants to fulfil is likely to be associated with the ‘years since last promotion’

predictor, which is another important and significant predictor with a p<0.001. Here

more years since last promotion reduces the likelihood of attrition. An increase of one

year in years since last promotion decreases the odds ratio with 15%. It should be

noted that this effect could be influenced by the left truncation effect, i.e. a high number

of years since last promotion is likely to be over represented in the dataset compared

to lower years since last promotion.

Another important and significant predictor for voluntary turnover is business travel,

with a p<0.001. More specific, it was found that employees who travel frequently are

less likely to voluntary leave, with a decrease in odds of 64% compared with employees

that do not travel or travel rarely.

Next, distance from home was found to be a significant predictor to voluntary turnover,

with a p<0.001. As the distance from home increases the likelihood of voluntary

turnover decreases. Distance from home yet another predictor that is transformed by

the box-cox procedure. A plot was created in a similar fashion as the other cases, and

is shown in Figure 7.

Figure 7 Effect of Distance from Home on model Outcome with all other predictors held equal to their respective means

43

Although marital status was found to be incomparable with previous studies, in this

study single employees were found to be significantly different (p<0.001) from married

or divorced employees. More specifically, the odds ratio is equal to 0.31; indicating an

odd decrease of 69% when an employee is single.

The most important and significant predictors were discussed. Some other less

important but still significant predictors are: relationship satisfaction, years with current

manager, years in current role, job role, training times last year, and work life balance.

Here relationship satisfaction, years with current manager, years in current role, and

training times are positively related to voluntary turnover. And the job roles: sales

representative, sales executive, and laboratory technician, were found to be

significantly different from the other job roles and are all negatively related to voluntary

turnover.

11. Related work
In their study, (X. Zhu et al., 2017) made a summary of previous research on employee

turnover forecasting. It contains references dating back from 1982 until 2015. From

these, the studies classified as response variable equal to probability are considered

related to this study. Next, the author searched for related research after 2015 and

found two additional paper. The author was unable to get access to the paper

(Nagadevara, Srinivasan, & Valk, 2008), and is thus excluded from the table. Table 6

provides an overview of comparable studies and some characteristics of these studies.

Some characteristics that differentiates the current study from previous studies are:

the number of methods used, number of samples, number of predictors, class-

imbalance resolution, and the combination of model accuracy and predictor

significance. In this study, multiple machine learning algorithms get compared. The

sample size is greater than any of the other studies, indicating this study’s outcome to

be more robust. The dataset includes many predictors, including predictors such as

monthly salary and monthly rate which are often excluded. This enabled the author to

analyze the significance of multiple predictors related to voluntary turnover, improve

the performance of the predictive models, and for practitioners the results give a better

indication of actual model performance. Also, previous studies did often not address

the class imbalance which exists in all datasets. In addition, the current study, contrary

to previous studies, uses a publicly available dataset which makes the results 100%

reproducible.

44

Table 6 Previous studies predicting voluntary turnover

Authors Data
Acquisition

Methods #
Samples
(N)

Predictors
(P)

Test
Set

Validation
Method

Class-
Imbalance
Resolution

Model
Accuracy
Calculation

Predictor
Significance
Calculation

(Ng, Cram, &
Jenkins, 1991)

Survey Hazard
proportional
model

1002 8 No No No No Yes

(Balfour & Neff,
1993)

Employee
records

Logistic
regression

171 7 No No No No Yes

(Feeley &
Barnett, 1997)

Survey Social network,
logistic
regression

166 3 No No No No Yes

(Sexton,
McMurtrey,
Michalopoulos,
& Smith, 2005)

Employee
records

Multiple
versions of NN

447 18 No 10-fold
cross-
validation

No Yes No

(Hong, Wei, &
Chen, 2007)

Survey Logistic
regression, and
probit
regression

132 6 32% No No No Yes

(Saradhi &
Palshikar, 2011)

Employee
records

SVM, Random
Forest, Naïve
Bayes

1363 32 20% No Weighting Yes No

(Tews, Stafford,
& Michel, 2014)

Survey Logistic
regression

290 10 No No No No Yes

(X. Zhu, 2016)
Chapter 4

Employee
records

Logistic
regression,
classification
tree

731 8 40% No No No Yes

(Ribes, Touahri,
& Perthame,
2017)

Employee
records

SVM, RF, LDA,
bagged trees

1000 11 20% 10-fold
cross-
validation

Down-
sampling,
Up-
sampling,
Weighting,

Yes No

45

SMOTE,
and ROSE

Current Study Employee
records

Logistic
regression,
LDA, penalized
logistic
regression, NN,
FDA, SVM,
KNN, Naïve
Bayes, Simple
decision trees
and rule based
models, bagged
trees, random
forest,
Stochastic
Gradient
Boosting, and
C5.0

1470 31 25% 5 repeats
of 10-fold
cross-
validation

Up-
sampling,
SMOTE,
and altered
cutoffs

Yes Yes

46

12. Discussion and conclusion
This chapter will provide the reader with a discussion of the results, the conclusion of

this papers, and areas for future research.

12.1 Discussion
At the start of this paper four key questions got formed, in this section each of these

will be discussed in turn. The first key question formed is: ‘What machine learning

algorithm is most appropriate for predicting employee voluntary leave?’. To answer this

question 16 different machine learning algorithms got tested, and the results were

analyzed. From this analysis, it was found that voluntary turnover can be linearly

separated; indicating that the simpler more interpretable linear classification models

might be preferable over the less interpretable nonlinear classification models.

However, the model that was found to have the best performance based on the area

under the ROC curve is the non-linear classification model Support Vector Machine.

The second key question is: ‘Does sampling of the dataset increase the predictive

performance of the models?’. A method for countering the effects of class imbalance

is to apply alternated cutoff values (see section 8.1 for more detail, p.26). The normal

cutoff value for predicting a case is 0.5. Based on the ROC curve an altered cutoff

value was found, which provides the best trade-off between sensitivity and specificity.

Notice that the model, which is based on the original data, remains unchanged. In

contrast, sampling is a technique for which the models are trained on more balanced

datasets with the aim to find even better trade-offs between sensitivity and specificity.

Training on sampled data will result in structurally different models. Two additional

datasets based on over-sampling, and synthetic minority over-sampling technique

(SMOTE) (section 8.2, p.27), where created two answer the second key question. Our

findings suggest that sampling does not significantly improve the performance of the

models for voluntary turnover. However, only two sampling approaches got tested

here, and there might still be others that will result in better performing models.

The third key question stated is: ‘What results can be expected from predictive

modeling of employee voluntary turnover?’. In this study based on the F1 score and

balanced accuracy the best performing model is the support vector machine when

applied with altered cutoff, with a F1 score and balanced accuracy of respectively, 0.86

and 0.77. This model has a corresponding sensitivity of 0.78, specificity of 0.75, and a

positive predictive value (PPV) of 0.95. These results can be interpreted as: for

sensitivity, assuming the employee is voluntary leaving the organization, this test has

an accuracy of 78%; for specificity, assuming the employee is not leaving the

organization, this test has an accuracy of 75%; and for PPV, for all employees identified

by the model as voluntary leaving the organization, this model has an accuracy of 95%.

A close second is the more interpretable logistic regression applied with altered cutoff,

with a F1 score and balanced accuracy of respectively, 0.82 and 0.77; and with

corresponding sensitivity, specificity, and PPV of, respectively, 0.73, 0.80, and 0.94. It

should be noted that the altered cutoffs were found on the ROC curves of the training

set. This may not produce optimal results on the test set, since the models are likely

47

to overfit the training data. Even better results can be expected from a model for which

the altered cutoffs are based on an additional evaluation set.

And the final question: ‘What are the significant predictors for determining employee

voluntary leave?’. The significance of predictors is evaluated by fitting a logistic

regression model to the data. The model was found to fit the data well (section 10.1

p.36). Out of 39 predictors 20 were found to be significant for predicting employee

voluntary leave. The top 10 most important and significant predictors are: Overtime,

EnvironmentSatisfaction, NumCompaniesWorked, JobSatisfaction, BusinessTravel,

JobInvolvement, YearsSinceLastPromotion, DistanceFromHome, Age, and

relationship status Single. For the full list, and interpretation of the relationship between

predictor and outcome, the author refers the reader to chapter 10 (p. 35). In section 2

of this chapter (p.38) the hypothesis formed in chapter 3 (p.11) are tested. Out of the

eight hypotheses formed, education, tenure, and employee performance where found

to be insignificantly related to voluntary turnover. However, tenure is only slightly

insignificant with a p=0.051; and this dataset did only contain employees with a

performance rating of 3-4 on a 4-point scale. Sex was found to be a significant

predictor, where males are less likely to leave compared to females. The remaining

hypotheses, age, pay, job involvement, and job satisfaction, were all found to be

significantly related to employee voluntary turnover. However, not always in the

relationship described based on literature. For these data, age, and pay were found to

be positively related to voluntary leave, indicating older successful employees are

leaving the organization. And, job involvement, and job satisfaction, were found to be

negatively related to voluntary leave, indicating employee’s that are more involved and

more satisfied with their job are leaving this organization.

12.2 Conclusion
The importance of predicting employee voluntary turnover and the application of

machine learning in building predictive models are presented in this paper. The dataset

used in this study is a publicly available dataset provided by IBM (McKinley, 2015).

The dataset was found to be valid in being representative to an organization’s actual

data. Multiple datasets were created to effectively compare the results of 16 different

machine learning methods. The support vector machine was found to produce the best

model, closely followed by logistic regression. Based on these data, it was found that

voluntary turnover can be linearly separated. Also, sampling was investigated as a

remedy for the severe class imbalance in the data. Compared to altered cutoff values,

it did not result in better performing models.

In addition, based on previous literature some hypotheses got formed. These

hypotheses, in addition with the other predictors used in this study, were tested on their

respective importance and significance. Out of 39, 20 were found to be significant for

predicting voluntary turnover. However, some of the relationships found go against

common sense and suggests areas for further research, which will be discussed next.

12.3 Future work
The results of analysis of the importance and significance of the predictors can be

counterintuitive. For example, in this dataset the older more experienced employees

are leaving the organization, which is in contrast to other studies. This does not mean

48

that this, or previous studies, are invalid. This merely means that for voluntary turnover

there is variability in the outcome. This results in some predictors being significant for

voluntary turnover in one organization, but can be found insignificant in others; or have

a contradicting relationship with the outcome.

This finding is in accordance with (Rubenstein et al., 2017) which, besides investigating

the correlation found between predictors and voluntary leave, investigated the effect

of moderating factors on the relationship between the predictors and voluntary leave.

In their study, they highlight the context-sensitive nature of individual-level voluntary

leave. This implies that it is important for practitioners to analyze their own data to find,

and be able to react to, the predictors that are important and significant in their

organization. And for researchers to come up with a framework, so organizations can

be categorized, and the results can be compared to their respective groups; as well as

investigate the meta-analytic moderators (Rubenstein et al., 2017).

In addition, (Rubenstein et al., 2017) found that by far the strongest correlation with

voluntary turnover is intent to leave. This would be an interesting variable for

organizations to measure, and will most likely increase the performance of the models.

Previous individual-level voluntary turnover predictive modeling research did not

include this predictor yet, so this is another important contribution that can be made to

literature.

Some other related avenues, future research should focus on including external

available data. For example, job market opportunities, macro-economic factors,

unemployment rate, activity of employee on work related social media site (e.g.

LinkedIn in the Netherlands), etc., are all potentially interesting measures that can

possibly influence the predictive performance of the models. This was impossible to

do on the current dataset, since the dataset is anonymized and not enough is known

about its background.

It would also be interesting to see the effect of the changes of variables (e.g., job

satisfaction, or employee performance) in time on employee voluntary turnover, to see

if this can bring additional predictive information.

And last, the predictive model results presented in this study can still be improved by,

for example, feature engineering. It would be interesting to see based on these data

the optimal performance of the logistic regression model vs. the support vector

machine.

Acknowledgements
The author greatly acknowledges the constructive feedback from prof.dr.ir. H.A.M.

Daniels, and dr. E.A.M. Caron; as well as the contribution of Accenture colleagues.

More specifically I would like to thank C. Kerkdijk, R. Hendrix, E. Pupazan, and A.

Loginovskaja for providing guidance and direction, without them the author would not

have been able to successfully conduct this research.

49

13. References:
Akkermans, H. A. (Henricus A. (2014). Supply chain dynamics: mastering disruptive

change in innovation driven industries. Educatieve Uitgeversgroep.

Allen, D. G., Bryant, P. C., & Vardaman, J. M. (2010). Retaining Talent: Replacing
Misconceptions With Evidence-Based Strategies. Academy of Management
Perspectives, 24(2), 48–64. https://doi.org/10.5465/AMP.2010.51827775

Angrave, D., Charlwood, A., Kirkpatrick, I., & Stuart, M. (2016). HR and analytics: why
HR is set to fail the big data challenge; HR and analytics: why HR is set to fail the
big data challenge. Human Resource Management Journal, 26(1), 1–11.
https://doi.org/10.1111/1748-8583.12090

Balfour, D. L., & Neff, D. M. (1993). Predicting and Managing Turnover in Human
Service Agencies: A Case Study of an Organization in Crisis. Public Personnel
Management, 22(3), 473–486. https://doi.org/10.1177/009102609302200310

Boles, J. S., Dudley, G. W., Onyemah, V., Rouziès, D., & Weeks, W. A. (2012). Sales
Force Turnover and Retention: A Research Agenda. Journal of Personal Selling
and Sales Management, 32(1), 131–140. https://doi.org/10.2753/PSS0885-
3134320111

Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal
Statistical Society. Series B (Methodological, 26(2), 211–252.
https://doi.org/10.2307/2287791

Breiman, L. (2002). Manual on setting up, using, and understanding random forests
v3. 1. Technical Report, Http://oz.berkeley.edu/users/breiman, Statistics
Department University of California Berkeley, …, 29.
https://doi.org/10.2776/85168

Brodersen, K. H., Ong, C. S., Stephan, K. E., & Buhmann, J. M. (2010). The balanced
accuracy and its posterior distribution. In Proceedings - International Conference
on Pattern Recognition (pp. 3121–3124). https://doi.org/10.1109/ICPR.2010.764

Carrión, A., Solano, H., Gamiz, M. L., & Debón, A. (2010). Evaluation of the Reliability
of a Water Supply Network from Right-Censored and Left-Truncated Break Data.
Water Resources Management, 24(12), 2917–2935.
https://doi.org/10.1007/s11269-010-9587-y

Chang, H. Y. (2009). Employee turnover: A novel prediction solution with effective
feature selection. WSEAS Transactions on Information Science and Applications,
6(3), 417–426. Retrieved from
https://pdfs.semanticscholar.org/fa0f/a51a434091c5feb6e26ae9418872c67872a
4.pdf

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE:
Synthetic minority over-sampling technique. Journal of Artificial Intelligence
Research, 16, 321–357. https://doi.org/10.1613/jair.953

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters.
Pattern Recognition Letters, 27, 861–874. Retrieved from
http://www.sciencedirect.com/science/article/pii/S016786550500303X

Feeley, T. H., & Barnett, G. a. (1997). Predicting Employee Turnover From

50

Communication Networks. Human Communication Research, 23(3), 370–387.
https://doi.org/10.1111/j.1468-2958.1997.tb00401.x

Frank, E., & Witten, I. H. (1998). Generating accurate rule sets without global
optimization. Proceedings of the Fifteenth International Conference on Machine
Learning, 144–151. https://doi.org/1-55860-556-8

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive Logistic Regression: A
Statistical View of Boosting: Discussion. The Annals of Statistics, 28(2), 374–377.
Retrieved from http://projecteuclid.org/euclid.aos/1016218223

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for Generalized
Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1–
22. https://doi.org/10.1016/j.drudis.2011.09.009

Glebbeek, A. C., Bax, E. H., The, S., Journal, M., Apr, N., Journal, M., … Bax, E. H.
(2014). Is High Employee Turnover Really Harmful ? An Empirical Test Using
Company Records IS HIGH EMPLOYEE TURNOVER REALLY HARMFUL ? AN
EMPIRICAL TEST USING COMPANY RECORDS. Academy of Management
Journal, 47(2), 277–286. Retrieved from
http://amj.aom.org/content/47/2/277.short

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning (1st ed.). MIT Press.
Retrieved from http://www.deeplearningbook.org/

Griffeth, R. W., Hom, P. W., & Gaertner, S. (2000). A Meta-Analysis of Antecedents
and Correlates of Employee Turnover: Update, Moderator Tests, and Research
Implications for the Next Millennium. Journal of Management, 26(3), 463–488.
https://doi.org/10.1177/014920630002600305

Hancock, J., Allen, D., & Bosco, F. (2013). Meta-analytic review of employee turnover
as a predictor of firm performance. Journal of Management, 39(3), 573–603.
Retrieved from http://journals.sagepub.com/doi/abs/10.1177/0149206311424943

Hastie, T., Tibshirani, R., & Buja, A. (1994). Flexible Discriminant Analysis by Ooptimal
Scoring. Journal of the Amercian Statistical Association, 89(428), 1255–1270.
https://doi.org/10.1080/01621459.1994.10476866

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning
(2nd edition). https://doi.org/10.1007/978-0-387-84858-7

Hong, W., Wei, S. Y., & Chen, Y. F. (2007). A Comparative Test of Two Employee
Turnover Prediction Models. International Journal of Management. Retrieved from
http://search.proquest.com/openview/f56f89c41e7a8826ada9d02ac2f27d83/1?p
q-origsite=gscholar&cbl=5703

Hosmer D.W. and Lemeshow, S. (1980). Goodness of fit tests for the multiple logistic
regression model: Communications in Statistics. Communications in Statistics-
Theory and Methods., 9(10), 1043–1069. Retrieved from
http://www.tandfonline.com/doi/abs/10.1080/03610928008827941

Kacmar, K. M., Andrews, M. C., & System, R. (2006). SURE EVERYONE CAN BE
REPLACED . . . BUT AT WHAT COST ? TURNOVER AS A PREDICTOR OF
UNIT-LEVEL PERFORMANCE r ww ia w . n l V ua er nce si o . co n r ww ia w . n
l V ua er nce si o . co n. Academy of Management Journal, 49(1), 133–144.

51

https://doi.org/10.5465/amj.2006.20785670

Kaufman, B. E. (2014). The historical development of American HRM broadly viewed.
Human Resource Management Review, 24(3), 196–218.
https://doi.org/10.1016/j.hrmr.2014.03.003

King, K. (2016). Data Analytics in Human Resources: A Case Study and Critical
Review. Human Resource Development Review, 15(4), 487– 495. Retrieved from
http://journals.sagepub.com/doi/abs/10.1177/1534484316675818

Kuhn, M., & Johnson, K. (2016). Applied Predictive Modeling (5th ed.). New York:
Springer. https://doi.org/10.1007/978-1-4614-6849-3

Ling, C. X., & Li, C. (1998). Data mining for direct marketing: Problems and solutions.
In KDD (Vol. 98, pp. 73–79). Retrieved from
http://www.csd.uwo.ca/~cling/papers/kdd98.pdf

Marler, J. H., & Boudreau, J. W. (2017). An evidence-based review of HR Analytics.
The International Journal of Human Resource Management, 3–26.
https://doi.org/10.1080/09585192.2016.1244699

Mcclure, B. (2003). The hidden value of intangibles. Recuperado El. Retrieved from
https://scholar.google.nl/scholar?q=The+hidden+value+of+intangibles+McClure
&btnG=&hl=nl&as_sdt=0%2C5

McKinley, S. I. (2015). SAMPLE DATA: HR Employee Attrition and Performance – IBM
Analytics Communities. Retrieved July 24, 2017, from
https://www.ibm.com/communities/analytics/watson-analytics-blog/hr-employee-
attrition/

Nagadevara, V., Srinivasan, V., & Valk, R. (2008). Establishing a Link Between
Employee Turnover and Withdrawal Behaviours : Research and Practice in
Human Resource Management, 16(2), 81–100. Retrieved from
http://go.galegroup.com/ps/i.do?id=GALE%7CA200117637&sid=googleScholar&
v=2.1&it=r&linkaccess=fulltext&issn=02185180&p=AONE&sw=w

Ng, S. H., Cram, F., & Jenkins, L. (1991). A Proportional Hazards Regression Analysis
of Employee Turnover Among Nurses in New Zealand. Human Relations, 44(12),
1313–1330. https://doi.org/10.1177/001872679104401205

Ongori, H. (2010). A review of the literature on employee turnover. African Journal of
Business Management, 1(4), 49–54.
https://doi.org/10.1108/14634449710195471

Panetta, K. (2016). Gartner’s Top 10 Strategic Technology Trends for 2017 - Smarter
With Gartner. Retrieved April 10, 2017, from
http://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-
2017/

Ribes, E., Touahri, K., & Perthame, B. (2017). Employee turnover prediction and
retention policies design: a case study. Retrieved from
http://arxiv.org/abs/1707.01377

Rubenstein, A. L., Eberly, M. B., Lee, T. W., & Mitchell, T. R. (2017). Surveying the
forest: A meta-analysis, moderator investigation, and future-oriented discussion of
the antecedents of voluntary employee turnover. Personnel Psychology.

52

https://doi.org/10.1111/peps.12226

Sagie, A., Birati, A., & Tziner, A. (2002). Assessing the Costs of Behavioral and
Psychological Withdrawal: A New Model and an Empirical Illustration. Applied
Psychology, 51(1), 67–89. https://doi.org/10.1111/1464-0597.00079

Saradhi, V. V., & Palshikar, G. K. (2011). Employee churn prediction. Expert Systems
with Applications, 38(3), 1999–2006. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0957417410007621

Serneels, S., De Nolf, E., & Van Espen, P. J. (2006). Spatial sign preprocessing: A
simple way to impart moderate robustness to multivariate estimators. Journal of
Chemical Information and Modeling, 46(3), 1402–1409.
https://doi.org/10.1021/ci050498u

Sexton, R. S., McMurtrey, S., Michalopoulos, J. O., & Smith, A. M. (2005). Employee
turnover: A neural network solution. Computers and Operations Research, 32(10),
2635–2651. https://doi.org/10.1016/j.cor.2004.06.022

Shaw, J. D. (2011). Turnover rates and organizational performance. Organizational
Psychology Review, 1(3), 187–213. https://doi.org/10.1177/2041386610382152

Shmueli, G., Patel, N., & Bruce, P. (2010). Data mining for business intelligence.
Hoboken. Retrieved from
https://scholar.google.com/scholar?hl=nl&q=hmueli%2C+G.%2C+Patel%2C+N.
+R.%2C+%26+Bruce%2C+P.+C.+%282010%29.+Data+mining+for+business+in
telligence.+Hoboken.&btnG=&lr=

Sikaroudi, A. M. E., Ghousi, R., & EsmaieeliSikaroudi, A. (2015). A data mining
approach to employee turnover prediction (case study : Arak automotive parts
manufacturing) 1- Introduction. Journal of Industrial and, 8(4), 106–121. Retrieved
from http://www.jise.ir/article_10857_1428.html

Suykens, J. A. K., & Vandewalle, J. (1999). Least Squares Support Vector Machine
Classifiers. Neural Processing Letters 9, 293–300.
https://doi.org/10.1023/A:1018628609742

Tews, M. J., Stafford, K., & Michel, J. W. (2014). Life happens and people matter:
Critical events, constituent attachment, and turnover among part-time hospitality
employees. International Journal of Hospitality Management, 38, 99–105.
https://doi.org/10.1016/j.ijhm.2014.01.005

Tipping, M. (2001). {S}parse {B}ayesian {L}earning and the {R}elevance {V}ector
{M}achine. J. Mach. Learn. Res., 1, 211–244.
https://doi.org/10.1162/15324430152748236

Watson Analytics Support. (2015). HR Employee Attrition Sample Data Set Origin -
Discussions. Retrieved June 12, 2017, from
https://community.watsonanalytics.com/discussions/questions/18014/hr-
employee-attrition-sample-data-set-origin.html

Wilks, S. S. (1938). The Large-Sample Distribution of the Likelihood Ratio for Testing
Composite Hypotheses. The Annals of Mathematical Statistics, 9(1), 60–62.
https://doi.org/10.1214/aoms/1177732360

Witten, I., Frank, E., Hall, M., & Pal, C. (2016). Data Mining: Practical machine learning

53

tools and techniques. Retrieved from
https://books.google.com/books?hl=nl&lr=&id=1SylCgAAQBAJ&oi=fnd&pg=PP1
&dq=Witten,+I.+H.,+Frank,+E.,+Hall,+M.+A.,+%26+Pal,+C.+J.+(2016).+Data+Mi
ning:+Practical+machine+learning+tools+and+techniques.+Morgan+Kaufmann.
&ots=8HIJycgEx7&sig=2tUWfBEV2a-F3ycLsC4WP

Yang, Y., & Liu, X. (1999). A re-examination of text categorization methods. In
Proceedings of the 22nd annual international ACM SIGIR conference on
Research and development in information retrieval - SIGIR ’99 (pp. 42–49).
https://doi.org/10.1145/312624.312647

Zhu, J., & Hastie, T. (2005). Kernel Logistic Regression and the Import Vector Machine.
Journal of Computational and Graphical Statistics, 14(Ivm), 185–205.
https://doi.org/10.1198/106186005X25619

Zhu, X. (2016). Forecasting Employee Turnover in Large Organizations. Retrieved
from http://trace.tennessee.edu/utk_graddiss/3985/

Zhu, X., Seaver, W., Sawhney, R., Ji, S., Holt, B., Sanil, G. B., & Upreti, G. (2017).
Employee turnover forecasting for human resource management based on time
series analysis. Journal of Applied Statistics, 44(8), 1421–1440.
https://doi.org/10.1080/02664763.2016.1214242

54

Appendix A: Employee Attrition R code

Table of Contents Appendix A
Session ..55

Library Packages used during this study ...56

Dataset validity ..56

Dataset Analytics ...58

Frist dataset check ...58

Dummy variable creation ..62

PCA and correlation check ...63

Hypothesis check ...66

#Training and test set creation. ..70

Predictive Modeling ...71

#cross validation of the models ..71

#create functions to check model results ..71

#Linear classification models ...72

#Logistic Regression ...73

#Linear Discriminant Analysis ...75

#Penalized logistic regression ...78

#Nonlinear classification models ..81

#Neural Networks ...81

#Flexible Discriminant Analysis ...87

Support Vector Machines ...91

#K-Nearest Neighbors ...94

#Naive Bayes ..97

Classification Trees and Rule-Based Models ...100

#Classification Trees ...100

#Rule based models: PART ..112

#Bagged Trees ...117

#Random Forests ...122

#Boosting: Gradient Boosting Machines ...127

#C5.0 ..131

Compare the model resluts. ...135

55

#Sampling Methods ...136

#apply upsampling ...137

#apply SMOTE ...137

#Use newly created datasets to train models ...138

#Logistic Regression ...138

#Neural Networks ...142

#Flexible Discriminant Analysis ...149

Support Vector Machines ...154

#Random Forests Dummy set ..160

#Gradient Boosting Machines dummy set ...165

#Alternate Cutoff points ..170

Create alternate cutoff function ..170

#apply function on algorithms used ...171

#apply function on algorithms used based on trainingset..................................177

#Hypothesis testing ...186

#Logistic Regression predictor significance and importance calculation187

#confusion matrix and roc curve for train set. ...188

#Goodness Of Fit ..192

#Identify the box-cox transformed variables. ...192

#Create plots for the significant box-cox transformed predictors196

Session
during this study the author made use of two machines. The session information for both
are presented below.
#machine 1:
 sessionInfo()
Outcome:
R version 3.1.3 (2015-03-09)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows Server 2012 x64 (build 9200)

#machine 2:
sessionInfo()
Outcome:
R version 3.3.3 (2017-03-06)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)

56

Library Packages used during this study
the packages used to generate the results in this study are:
library("caret")
library("corrplot")
library("doSNOW")
library("e1071")
library("earth")
library("glmnet")
library("kernlab")
library("klaR")
library("mda")
library("pls")
library("pROC")
library("rpart.plot")
library("rrcov")
library("sparseLDA")
library("lattice")
library("nnet")
library("C50")
library("gbm")
library("ipred")
library("partykit")
library("randomForest")
library("RWeka")
library("stringr")
library("plyr")
library("DMwR")
library("reshape")
library("ResourceSelection")
library("rms")
library("pscl")
library("arm")

Dataset validity
#dataset validation
HRdata <- Dataset_HR_Employee_Attrition

#Check 1. TotalWorkingYears>=YearsAtCompany
extractyears <- function(x) {
 if(HRdata[x, "TotalWorkingYears"] < HRdata[x, "YearsAtCompany"]){
 return(1)
 } else{
 return(0)
 }
}
workingyearasvalidity <- NULL
for (i in 1:nrow(HRdata)){
 workingyearasvalidity <- c(workingyearasvalidity, extractyears(i))
}
unique(workingyearasvalidity)
Outcome:
[1] 0

57

#Conclusion, the validity of TotalWorkingYears>=YearsAtCompany holds.

#Check 2. YearsAtCompany>=YearsInCurrentRole
extractyears2 <- function(x) {
 if(HRdata[x, "YearsAtCompany"] < HRdata[x, "YearsInCurrentRole"]){
 return(1)
 } else{
 return(0)
 }
}
YearsRoleValidity <- NULL
for (i in 1:nrow(HRdata)){
 YearsRoleValidity <- c(YearsRoleValidity, extractyears2(i))
}
unique(YearsRoleValidity)
Outcome:
[1] 0

#Conclusion, the validity of YearsAtCompany>=YearsInCurrentRole holds.

#Check 3. YearsAtCompany>=YearsSinceLastPromotion
extractyears3 <- function(x) {
 if(HRdata[x, "YearsAtCompany"] < HRdata[x, "YearsSinceLastPromotion"]){
 return(1)
 } else{
 return(0)
 }
}
YearsPromotionValidity <- NULL
for (i in 1:nrow(HRdata)){
 YearsPromotionValidity <- c(YearsPromotionValidity, extractyears3(i))
}
unique(YearsPromotionValidity)
Outcome:
[1] 0

#Conclusion, the validity of YearsAtCompany>=YearsSinceLastPromotion holds.

#Check 4. YearsAtCompany>=YearsWithCurrManager
extractyears4 <- function(x) {
 if(HRdata[x, "YearsAtCompany"] < HRdata[x, "YearsWithCurrManager"]){
 return(1)
 } else{
 return(0)
 }
}
YearsManagerValidity <- NULL
for (i in 1:nrow(HRdata)){
 YearsManagerValidity <- c(YearsManagerValidity, extractyears4(i))
}
unique(YearsManagerValidity)
Outcome:
[1] 0

#Conclusion, the validity of YearsAtCompany>=YearsWithCurrManager holds.

#Check 5. MonthlyRate>=DailyRate

58

extractrate <- function(x) {
 if(HRdata[x, "MonthlyRate"] < HRdata[x, "DailyRate"]){
 return(1)
 } else{
 return(0)
 }
}
rateValidity <- NULL
for (i in 1:nrow(HRdata)){
 rateValidity <- c(rateValidity, extractrate(i))
}
unique(rateValidity)
Outcome:
[1] 0

#Conclusion, the validity of MonthlyRate>=DailyRate holds.

#Check 6. DailyRate>=HourlyRate
extractrate6 <- function(x) {
 if(HRdata[x, "DailyRate"] < HRdata[x, "HourlyRate"]){
 return(1)
 } else{
 return(0)
 }
}
rateValidity6 <- NULL
for (i in 1:nrow(HRdata)){
 rateValidity6 <- c(rateValidity6, extractrate6(i))
}
unique(rateValidity6)
Outcome:
[1] 0

#Conclusion, the validity of DailyRate>=HourlyRate holds.

Dataset Analytics

Frist dataset check
#check structure of the dataset
str(HRdata)
output:

59

#the results indicate that some chr string variables should become factors
#check if this is true
unique(HRdata $Attrition)
unique(HRdata $Gender)
unique(HRdata $MaritalStatus)
unique(HRdata $Over18)
unique(HRdata $OverTime)
unique(HRdata $EducationField)
unique(HRdata $Department)
unique(HRdata $BusinessTravel)
unique(HRdata $JobRole)
outcome:
> unique(HRdata$Attrition)
[1] "Yes" "No"
> unique(HRdata$Gender)
[1] "Female" "Male"
> unique(HRdata$MaritalStatus)
[1] "Single" "Married" "Divorced"
> unique(HRdata$Over18)
[1] "Y"
> unique(HRdata$OverTime)
[1] "Yes" "No"
> unique(HRdata$EducationField)
[1] "Life Sciences" "Other" "Medical" "Marketing"
"Technical Degree"
[6] "Human Resources"
> unique(HRdata$Department)
[1] "Sales" "Research & Development" "Human Resources"
> unique(HRdata$BusinessTravel)
[1] "Travel_Rarely" "Travel_Frequently" "Non-Travel"
> unique(HRdata$JobRole)
[1] "Sales Executive" "Research Scientist" "Laboratory T
echnician" "Manufacturing Director"

60

[5] "Healthcare Representative" "Manager" "Sales Repres
entative" "Research Director"
[9] "Human Resources"

#the results indicate that all of them should be factors instead of string characters.
#also Over18 seems to have only one unique value, which is uninformative related to the
outcome.

#change the chr string to factor.
HRdata$Attrition <- as.factor(HRdata$Attrition)
HRdata$Gender <- as.factor(HRdata$Gender)
HRdata$MaritalStatus <- as.factor(HRdata$MaritalStatus)
HRdata$OverTime <- as.factor(HRdata$OverTime)
HRdata$EducationField <- as.factor(HRdata$EducationField)
HRdata$Department <- as.factor(HRdata$Department)
HRdata$BusinessTravel <- as.factor(HRdata$BusinessTravel)
HRdata$JobRole <- as.factor(HRdata$JobRole)
HRdata$Over18<- as.factor(HRdata$Over18)

#Check summary of dataset for interesting results and missing data.
summary.data.frame(HRdata)
Outcome:

61

#no missing values found.
#Employee count seems also uninformative.
#PerformanceRating seems to have only two values 3 and 4. All employees in this dataset
are rated to perform good.

#handle uninformative predictors.
summary.data.frame(HRdata[, nearZeroVar(HRdata)])
Outcome:
EmployeeCount Over18 StandardHours
 Min. :1 Length:1470 Min. :80
 1st Qu.:1 Class :character 1st Qu.:80
 Median :1 Mode :character Median :80
 Mean :1 Mean :80

62

 3rd Qu.:1 3rd Qu.:80
 Max. :1 Max. :80

HRdata<-HRdata[, -nearZeroVar(HRdata)]
#nearZeroVar indicates which columns should be removed.
#The columns EmployeeCount, Over18, and StandardHours are removed.

#Next, let's transform Attrition into binary variable.
1=Yes, 0=No
extractAttrition <- function(x) {
 if(HRdata[x, "Attrition"]== "Yes"){
 return(1)
 } else{
 return(0)
 }
}
AttritionBinary <- NULL
for (i in 1:nrow(HRdata)){
 AttritionBinary <- c(AttritionBinary, extractAttrition(i))
}
#check correctness
head(AttritionBinary)
head(HRdata[, "Attrition"])
Outcome:
> head(AttritionBinary)
[1] 1 0 1 0 0 0
> head(HRdata[, "Attrition"])
[1] Yes No Yes No No No
Levels: No Yes

#transform into binary
HRdata[, "Attrition"]<-AttritionBinary

Dummy variable creation
#Create dummy variables. Is necessary for some models and correlation check.
#One with all predictors for interpretability, and one with #class -1 predictors.
#FullRank=TRUE: factors are encoded so that there are no linear dependencies induced
between the columns
DummyVars <- dummyVars(~ Gender + MaritalStatus + EducationField + Department +
BusinessTravel + JobRole, data = HRdata, levelsOnly = FALSE, fullRank = FALSE)
HRdataDummyVars <- predict(DummyVars, HRdata)
DummyVars2 <- dummyVars(~ Gender + MaritalStatus + EducationField + Department +
BusinessTravel + JobRole, data = HRdata, levelsOnly = FALSE, fullRank = TRUE)
HRdataDummyVars2 <- predict(DummyVars2, HRdata)
#All predictors
HRdataDummy<-subset(HRdata, , -c(Gender, MaritalStatus, EducationField, Department,
BusinessTravel, JobRole))
HRdataDummy<-cbind(HRdataDummy, HRdataDummyVars)
#class -1 predictors, or no linear dependencies in dummyset.
HRdataDummyFullRank<-subset(HRdata, , -c(Gender, MaritalStatus, EducationField,
Department, BusinessTravel, JobRole))
HRdataDummyFullRank<-cbind(HRdataDummyFullRank, HRdataDummyVars2)
#HRdataDummy has 52 columns
#HRdataDummyFullRank has 46 columns

63

PCA and correlation check
#Create a correlation matrix, to get a feel for the data.
#first on dummy without full rank
correlations <- cor(HRdataDummy, method = c("spearman"))
corrplot(correlations, order = "hclust")
Outcome:

#next, on dummy with full rank
correlations2 <- cor(HRdataDummyFullRank, method = c("spearman"))
corrplot(correlations2, order = "hclust")
Outcome:

64

#notice a small decrease in correlations between HRdataDummy vs.
HRdataDummyFullRank, and just couple of high correlations.

#Find highly correlated variables Full Rank.
highCorr <- findCorrelation(correlations, cutoff = .75)
length(highCorr)
Outcome:

5

#5 correlations were found with a between correlation of .75 or higher
#highCorr contains the column numbers of the highly correlated predictors
str(HRdataDummyFullRank[, highCorr])
Outcome:
'data.frame': 1470 obs. of 5 variables:
 $ JobLevel : num 2 2 1 1 1 1 1 1 3 2 ...
 $ YearsAtCompany : num 6 10 0 8 2 7 1 1 9 7 ...
 $ Department.Research & Development: num 0 1 1 1 1 1 1 1 1 1 ...
 $ Department.Sales : num 1 0 0 0 0 0 0 0 0 0 ...
 $ BusinessTravel.Travel_Rarely : num 1 0 1 0 1 0 1 1 0 1 ...

#create dataset without the correlations Full Rank
HRdataDummyFullRankLowCorr<- HRdataDummyFullRank[, -highCorr]

#Check the difference with and without Full Rank.
#Find highly correlated variables.
highCorr <- findCorrelation(correlations, cutoff = .75)
length(highCorr)
#8 correlations were found with a between correlation of .75 or higher
#Notice that the number is higher compared to Full Rank.

65

#highCorr contains the column numbers of the highly correlated predictors
str(HRdataDummyFullRank[, highCorr])
Outcome:
'data.frame': 1470 obs. of 8 variables:
 $ JobLevel : num 2 2 1 1 1 1 1 1 3 2 ...
 $ YearsAtCompany : num 6 10 0 8 2 7 1 1 9 7 ...
 $ JobRole.Laboratory Technician: num 0 0 1 0 1 1 1 1 0 0 ...
 $ JobRole.Manager : num 0 0 0 0 0 0 0 0 0 0 ...
 $ JobRole.Sales Representative : num 0 0 0 0 0 0 0 0 0 0 ...
 $ MaritalStatus.Married : num 0 1 0 1 1 0 1 0 0 1 ...
 $ EducationField.Medical : num 0 0 0 0 1 0 1 0 0 1 ...
 $ JobRole.Research Director : num 0 0 0 0 0 0 0 0 0 0 ...

#Also the except for the first two all the other variables are different

#check correlation of attrition vs all other predictors
corAttrition <- apply(HRdataDummy,2, function(col)cor(col, HRdataDummy$Attrition))
corAttrition
Outcome:

Next, principal component analysis to find out the main variance in the data.
#BoxCox corrects the skewness in the data.
#Center centers the variables.
#scale makes the scales of all variables the same.
pcaObject <- preProcess(HRdataDummyFullRankLowCorr, method = c("BoxCox", "center",
"scale", "pca"))
pcaObject
Outcome:
Created from 1470 samples and 41 variables

Pre-processing:

66

 - Box-Cox transformation (14)
 - centered (41)
 - ignored (0)
 - principal component signal extraction (41)
 - scaled (41)

Lambda estimates for Box-Cox transformation:
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.3000 0.3250 0.7500 0.6643 1.1000 1.6000

PCA needed 33 components to capture 95 percent of the variance

#out of 41 variables, 33 components were created to capture 95 percent of the varian
ce.
#still many components are needed to explain the variance in the data.

Hypothesis check
#Hypotheses basic check, and first impression.

#first let’s look at the outcome variable Attrition.
summary(HRdata$Attrition)
Outcome:
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.0000 0.0000 0.0000 0.1612 0.0000 1.0000

#make attrition a factor so basic plots can be made.
HRdata$Attrition<-as.factor(HRdata$Attrition)
summary(HRdata$Attrition)
Outcome:
 No Yes
1233 237

#Only 16,12%, 237 out of 1470, is labeled as attrition.
#The rate of interest (Attrition yes) is under represented.
#This should be kept in mind for predictive model training.

#Hypothesis 1: Employee salary is a significant predictor of voluntary turnover.

#first create groups out of the salary.
#for this the function cut is used. This “breaks” MonthlyIncome in 5 pieces
HRdata$SalaryCut <- cut(HRdata$MonthlyIncome, breaks = 5, labels = FALSE)

#create a plot to investigate income and attrition.
table(HRdata$SalaryCut)
Outcome:
 1 2 3 4 5
714 399 166 70 121

ggplot(HRdata, aes(x = SalaryCut, fill = factor(Attrition))) +
 geom_bar() +
 xlab("SalaryCut") +
 ylab("Total Count") +

67

 labs(fill = "Attrition")
Outcome:

#The first impression confirms hypothesis 1.
#delete HRdata$SalaryCut
HRdata$SalaryCut<-NULL

#Hypothesis 2: Employee performance is a significant predictor of voluntary turnover.
#create a plot to investigate Employee performance and attrition.
ggplot(HRdata, aes(x = PerformanceRating, fill = factor(Attrition))) +
 geom_bar() +
 xlab("PerformanceRating") +
 ylab("Total Count") +
 labs(fill = "Attrition")
Outcome:

#again, the performance has only two unique values.
#only a fraction gets the performance rating 4.
#the proportion of leave for a performance rating of 3 seems only marginally more than 4.

#Hypothesis 3: Employee education level is a significant predictor of voluntary turnover.
#create a plot to investigate Employee education and attrition.
ggplot(HRdata, aes(x = Education, fill = factor(Attrition))) +
 geom_bar() +
 xlab("Education Level") +

68

 ylab("Total Count") +
 labs(fill = "Attrition")
Outcome:

#an education level of 5 seems to be informative for employee attrition
#the proportions of attrition with a level of education below 5 seem equally distributed.

#Hypothesis 4: Female employees are more likely to voluntary leave than male employees.
#create a plot to investigate gender and attrition.
ggplot(HRdata, aes(x = Gender, fill = factor(Attrition))) +
 geom_bar() +
 xlab("Gender") +
 ylab("Total Count") +
 labs(fill = "Attrition")
Outcome:

#Gender seems uninformative for attrition.
#Looking at the plot and hypothesis, the opposite seems to be more likely.

#Hypothesis 5: Age is a significant factor of voluntary turnover.
#create a plot to investigate age and attrition.
ggplot(HRdata, aes(x = Age, fill = factor(Attrition))) +
 geom_bar() +
 xlab("Age") +
 ylab("Total Count") +
 labs(fill = "Attrition")
Outcome:

69

#The dataset does not seem to contain many old/retirement employees.
#Younger staff seems to be more likely to leave compared to older staff.

#Hypothesis 6: Years of service at company is a significant factor of voluntary turnover.
#create a plot to investigate years of service and attrition.
ggplot(HRdata, aes(x = YearsAtCompany, fill = factor(Attrition))) +
 geom_bar() +
 xlab("YearsAtCompany") +
 ylab("Total Count") +
 labs(fill = "Attrition")
Outcome:

#years at company does seem informative for attrition.
#notice that the dataset is skewed to the right.

#Hypothesis 7: Work environment is a significant factor of voluntary turnover.
#create a plot to investigate work environment and attrition.
ggplot(HRdata, aes(x = EnvironmentSatisfaction, fill = factor(Attrition))) +
 geom_bar() +
 xlab("EnvironmentSatisfaction") +
 ylab("Total Count") +
 labs(fill = "Attrition")
Outcome:

70

#The environment does not seem to be informative for attrition, in this dataset.

#Next, the author decided that there is no causal link between EmployeeNumber and
attrition, since uninformative predictors can decrease the performance of some models this
variable is deleted from the datasets.
HRdata$EmployeeNumber<-NULL
HRdataDummy$EmployeeNumber<-NULL
HRdataDummyFullRank$EmployeeNumber<-NULL
HRdataDummyFullRankLowCorr$EmployeeNumber<-NULL

#Training and test set creation.
#The author chose to split the data into a training set of 75% and thus a test set of 25%.
#Since the rate of interest is under represented, stratified random sampling is used to split
the data.

#first, create a dataset of the outcome.
classes <- HRdata[, "Attrition"]

Set the random number seed so the results can be reproduced
set.seed(1247)
By default, the numbers are returned as a list. Using list = FALSE, a matrix of row numbers
is generated.
These samples are allocated to the training set.
trainingRows <- createDataPartition(classes, p = .75, list = FALSE)

Subset the data into objects for training using integer sub-setting.
trainClasses <- classes[trainingRows]
trainHRdata <- HRdata[trainingRows,]
trainHRdataDummy <- HRdataDummy[trainingRows,]
trainHRdataDummyFullRank <- HRdataDummyFullRank[trainingRows,]
trainHRdataDummyFullRankLowCorr <- HRdataDummyFullRankLowCorr[trainingRows,]
Do the same for the test set using negative integers.
testClasses <- classes[-trainingRows]
testHRdata <- HRdata[-trainingRows,]
testHRdataDummy <- HRdataDummy[-trainingRows,]
testHRdataDummyFullRank <- HRdataDummyFullRank[-trainingRows,]
testHRdataDummyFullRankLowCorr <- HRdataDummyFullRankLowCorr[-trainingRows,]

71

Predictive Modeling

#to make computations go faster multi-core training is used.
cl <- makeCluster(6, type = "SOCK")
registerDoSNOW(cl)

#Shutdown cluster
stopCluster(cl)

#cross validation of the models
#with the caret function train, predictive models can be trained and tuned.
#within this function, trControl the method of cross validation.
#next, the author will set the specifics for the traincontrol settings used in this paper.
#It was chosen to use a repeated 10-fold cross-validation.
ctrl <- trainControl(method = "repeatedcv", repeats = 5, summaryFunction =
twoClassSummary, classProbs = TRUE, savePredictions = TRUE)

#--

#create functions to check model results
#--

a = Machine learning algorithm
b = dataset

#first, the function to get trainset results

trainresultsfunction <- function(a, b){
 #confusion matrix and roc curve for train set.
 #The basic predict call evaluates new samples, and type = "prob" returns the class
probabilities.
TrainPredict <- predict(a, b[, -1], type = "prob")
TrainPredict$class <- predict(a, b[, -1])
TrainPredict$outcome <- b$Attrition
TrainPredict$outcome <- as.factor(TrainPredict$outcome)

#Confusion matrix for trainset:
cm <- confusionMatrix(data = TrainPredict$class, reference = TrainPredict$outcome, positive
= "X1")
print(cm)

#plot ROC curve and Area under the curve statistic
RocTrain <- roc(response = TrainPredict$outcome, predictor = TrainPredict$X1, levels =
rev(levels(TrainPredict$outcome)))
plot(RocTrain, type = "s", print.thres = c(.5),
 print.thres.pch = 3,
 print.thres.pattern = "",
 print.thres.cex = 1.2,
 col = "red", legacy.axes = TRUE,
 print.thres.col = "red")
print(auc(RocTrain))

return(TrainPredict)
}

72

#Second, the function to get testset results

testresultsfunction <- function(a, b, c){
 #confusion matrix and roc curve for test set.
 #The basic predict call evaluates new samples, and type = "prob" returns the class
probabilities.
 TestPredict <- predict(a, b[, -1], type = "prob")
 TestPredict$class <- predict(a, b[, -1])
 TestPredict$outcome <- b$Attrition
 TestPredict$outcome <- as.factor(TestPredict$outcome)

 #Confusion matrix for testset:
 cm <- confusionMatrix(data = TestPredict$class, reference = TestPredict$outcome, positive
= "X1")
 print(cm)
 cmbyClass <- cm$byClass
 cmbyClass <- as.data.frame(cmbyClass)

 Fscore <-
(2*cmbyClass$cmbyClass[1]*cmbyClass$cmbyClass[3]/(cmbyClass$cmbyClass[1]+cmbyCla
ss$cmbyClass[3]))

 print(paste(c("F1 score =", Fscore), collapse = " "))

 #plot ROC curve and Area under the curve statistic
 RocTest <- roc(response = TestPredict$outcome, predictor = TestPredict$X1, levels =
rev(levels(TestPredict$outcome)))
 plot(RocTest,
 type = "s",
 add = TRUE,
 print.thres = c(.5),
 print.thres.pch = 16, legacy.axes = TRUE,
 print.thres.pattern = "",
 print.thres.cex = 1.2)

 legend(.75, .2,
 c(str_c("Testset ", c), str_c("Trainset ", c)),
 lwd = c(1, 1),
 col = c("black", "red"),
 pch = c(16, 3))

 print(auc(RocTest))

 return(TestPredict)
}
#create objects to save results in
trainresults <- NULL
testresults <- NULL

#Linear classification models
#make attrition useful for model classification

#first make outcome variable a factor to be useful for classification.

73

trainHRdataDummyFullRankLowCorr$Attrition <-
as.factor(trainHRdataDummyFullRankLowCorr$Attrition)
testHRdataDummyFullRankLowCorr$Attrition <-
as.factor(testHRdataDummyFullRankLowCorr$Attrition)
#change the name of factor, so it can be computed.
trainHRdataDummyFullRankLowCorr$Attrition <-
make.names(trainHRdataDummyFullRankLowCorr$Attrition, unique = FALSE, allow_ =
TRUE)
testHRdataDummyFullRankLowCorr$Attrition <-
make.names(testHRdataDummyFullRankLowCorr$Attrition, unique = FALSE, allow_ =
TRUE)

#first make outcome variable a factor.
trainHRdataDummy$Attrition <- as.factor(trainHRdataDummy$Attrition)
testHRdataDummy$Attrition <- as.factor(testHRdataDummy$Attrition)
#change the name of factor, so it can be computed.
trainHRdataDummy$Attrition <- make.names(trainHRdataDummy$Attrition, unique = FALSE,
allow_ = TRUE)
testHRdataDummy$Attrition <- make.names(testHRdataDummy$Attrition, unique = FALSE,
allow_ = TRUE)

#Logistic Regression
set.seed(1247)
logisticReg <- train(trainHRdataDummyFullRankLowCorr[, -1], y =
trainHRdataDummyFullRankLowCorr$Attrition, method = "glm", preProc = c("BoxCox",
"center", "scale"), metric = “ROC”, trControl = ctrl)
logisticReg
Outcome:
Generalized Linear Model

1103 samples
 39 predictor
 2 classes: 'X0', 'X1'

Pre-processing: Box-Cox transformation (13), centered (39), scaled (39)
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...
Resampling results:

 ROC Sens Spec
 0.8380446 0.9615101 0.4566013

#the predictions for this analysis is contained in the sub-object pred.
head(logisticReg$pred)
Outcome:
 pred obs X0 X1 rowIndex parameter Resample
1 X1 X1 0.3289703 0.6710297002 1 none Fold01.Rep1
2 X0 X0 0.9749180 0.0250820405 6 none Fold01.Rep1
3 X1 X1 0.2889912 0.7110088106 16 none Fold01.Rep1
4 X0 X0 0.9992801 0.0007199291 17 none Fold01.Rep1
5 X1 X0 0.2274435 0.7725564938 39 none Fold01.Rep1
6 X0 X0 0.9437310 0.0562690283 42 none Fold01.Rep1

#results of trained model

74

trainresults$logisticReg <- trainresultsfunction(logisticReg,
trainHRdataDummyFullRankLowCorr)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 900 90
 X1 25 88

 Accuracy : 0.8957
 95% CI : (0.8762, 0.9132)
 No Information Rate : 0.8386
 P-Value [Acc > NIR] : 3.419e-08

 Kappa : 0.5482
 Mcnemar's Test P-Value : 2.401e-09

 Sensitivity : 0.49438
 Specificity : 0.97297
 Pos Pred Value : 0.77876
 Neg Pred Value : 0.90909
 Prevalence : 0.16138
 Detection Rate : 0.07978
 Detection Prevalence : 0.10245
 Balanced Accuracy : 0.73368

 'Positive' Class : X1

[1] "F1 score = 0.494623655913979"
Area under the curve: 0.8739

#results of trained model on test set
testresults$logisticReg <- testresultsfunction(logisticReg,
trainHRdataDummyFullRankLowCorr, "logisticReg")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 297 36
 X1 11 23

 Accuracy : 0.8719

75

 95% CI : (0.8334, 0.9044)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.0480056

 Kappa : 0.4273
 Mcnemar's Test P-Value : 0.0004639

 Sensitivity : 0.38983
 Specificity : 0.96429
 Pos Pred Value : 0.67647
 Neg Pred Value : 0.89189
 Prevalence : 0.16076
 Detection Rate : 0.06267
 Detection Prevalence : 0.09264
 Balanced Accuracy : 0.67706

 'Positive' Class : X1

Area under the curve: 0.8303

#Linear Discriminant Analysis
set.seed(1247)
ldaFit <- train(trainHRdataDummyFullRankLowCorr[, -1], y =
trainHRdataDummyFullRankLowCorr$Attrition, method = "lda", preProc = c("BoxCox",
"center", "scale"), metric = "ROC", trControl = ctrl)
ldaFit
Outcome:
Linear Discriminant Analysis

76

1103 samples
 39 predictor
 2 classes: 'X0', 'X1'

Pre-processing: Box-Cox transformation (13), centered (39), scaled (39)
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...
Resampling results:

 ROC Sens Spec
 0.8302441 0.9660519 0.4498039

#results of trained model
trainresults$ldaFit <- trainresultsfunction(ldaFit, trainHRdataDummyFullRankLowCorr)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 905 94
 X1 20 84

 Accuracy : 0.8966
 95% CI : (0.8772, 0.914)
 No Information Rate : 0.8386
 P-Value [Acc > NIR] : 2.037e-08

 Kappa : 0.5411
 Mcnemar's Test P-Value : 8.083e-12

 Sensitivity : 0.47191
 Specificity : 0.97838
 Pos Pred Value : 0.80769
 Neg Pred Value : 0.90591
 Prevalence : 0.16138
 Detection Rate : 0.07616
 Detection Prevalence : 0.09429
 Balanced Accuracy : 0.72514

 'Positive' Class : X1

Area under the curve: 0.8633

77

#results of trained model on test set
testresults$ldaFit <- testresultsfunction(ldaFit, testHRdataDummyFullRankLowCorr, "ldaFit")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 294 34
 X1 14 25

 Accuracy : 0.8692
 95% CI : (0.8304, 0.902)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.064977

 Kappa : 0.4383
 Mcnemar's Test P-Value : 0.006099

 Sensitivity : 0.42373
 Specificity : 0.95455
 Pos Pred Value : 0.64103
 Neg Pred Value : 0.89634
 Prevalence : 0.16076
 Detection Rate : 0.06812
 Detection Prevalence : 0.10627
 Balanced Accuracy : 0.68914

 'Positive' Class : X1

[1] "F1 score = 0.510204081632653"
Area under the curve: 0.8397

78

#Penalized logistic regression
Specify the tuning values for training
glmnGrid <- expand.grid(.alpha = seq(0, 1, length = 10), .lambda = seq(.01, .2, length = 40))

#train the model
set.seed(1247)
glmnTuned <- train(trainHRdataDummyFullRankLowCorr[, -1], y =
trainHRdataDummyFullRankLowCorr$Attrition, method = "glmnet", tuneGrid = glmnGrid,
preProc = c("BoxCox", "center", "scale"), metric = "ROC", trControl = ctrl)
glmnTuned
Outcome:
glmnet

1103 samples
 39 predictor
 2 classes: 'X0', 'X1'

Pre-processing: Box-Cox transformation (13), centered (39), scaled (39)
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 993, 992, 993, 993, 992, 994, ...
Resampling results across tuning parameters:

 alpha lambda ROC Sens Spec
 0.0 0.01000000 0.8388901 0.9790276 0.409411765
 0.0 0.01487179 0.8384322 0.9837821 0.394836601
 0.0 0.01974359 0.8376994 0.9865965 0.378039216

79

 0.0 0.02461538 0.8371455 0.9885414 0.352026144
 0.0 0.02948718 0.8364904 0.9894086 0.336405229
 0.0 0.03435897 0.8358813 0.9902735 0.319346405
 0.0 0.03923077 0.8351582 0.9915708 0.298954248
 0.0 0.04410256 0.8345746 0.9924381 0.282091503
 0.0 0.04897436 0.8338869 0.9930832 0.270653595
 0.0 0.05384615 0.8334509 0.9935157 0.256143791
 0.0 0.05871795 0.8332058 0.9945979 0.241568627
 0.0 0.06358974 0.8325966 0.9956802 0.222352941
 0.0 0.06846154 0.8321102 0.9963277 0.204379085
 0.0 0.07333333 0.8316511 0.9969752 0.194248366
 0.0 0.07820513 0.8310447 0.9974077 0.180718954

This list was reduced!
ROC was used to select the optimal model using the largest value.
The final values used for the model were alpha = 0 and lambda = 0.01.

#results of trained model
trainresults$glmnTuned <- trainresultsfunction(glmnTuned,
trainHRdataDummyFullRankLowCorr)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 913 99
 X1 12 79

 Accuracy : 0.8994
 95% CI : (0.8801, 0.9165)
 No Information Rate : 0.8386
 P-Value [Acc > NIR] : 4.070e-09

 Kappa : 0.5368
 Mcnemar's Test P-Value : 3.275e-16

 Sensitivity : 0.44382
 Specificity : 0.98703
 Pos Pred Value : 0.86813
 Neg Pred Value : 0.90217
 Prevalence : 0.16138
 Detection Rate : 0.07162
 Detection Prevalence : 0.08250
 Balanced Accuracy : 0.71542

 'Positive' Class : X1

Area under the curve: 0.87

80

#results of trained model on test set
testresults$glmnTuned <- testresultsfunction(glmnTuned,
testHRdataDummyFullRankLowCorr, "glmnTuned")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 300 40
 X1 8 19

 Accuracy : 0.8692
 95% CI : (0.8304, 0.902)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.06498

 Kappa : 0.3792
 Mcnemar's Test P-Value : 7.66e-06

 Sensitivity : 0.32203
 Specificity : 0.97403
 Pos Pred Value : 0.70370
 Neg Pred Value : 0.88235
 Prevalence : 0.16076
 Detection Rate : 0.05177
 Detection Prevalence : 0.07357
 Balanced Accuracy : 0.64803

 'Positive' Class : X1

[1] "F1 score = 0.441860465116279"
Area under the curve: 0.8319

81

#Create a heatmap.
plot(glmnTuned, plotType = "level")
Outcome:

#Nonlinear classification models

#Neural Networks

#create grid

82

nnetGrid <- expand.grid(.size = 1:10, .decay = c(0, .1, 1, 2))

maxSize <- max(nnetGrid$.size)
numWts <- 1*(maxSize * (length(trainHRdataDummyFullRankLowCorr)) + maxSize + 1)

#train model
#spatialSign increases the predictive performance
set.seed(1247)
nnetFit <- train(trainHRdataDummyFullRankLowCorr[, -1],
trainHRdataDummyFullRankLowCorr$Attrition, method = "nnet", metric = "ROC", preProc =
c("BoxCox", "center", "scale", "spatialSign"), tuneGrid = nnetGrid, trace = FALSE, maxit =
2000, MaxNWts = numWts, trControl = ctrl)
nnetFit
Outcome:
Neural Network

1103 samples
 39 predictor
 2 classes: 'X0', 'X1'

Pre-processing: Box-Cox transformation (13), centered (39), scaled (39), s
patial
 sign transformation (39)
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...
Resampling results across tuning parameters:

 size decay ROC Sens Spec
 1 0.0 0.6331973 0.9556942 0.339346405
 1 0.1 0.8403970 0.9641000 0.465294118
 1 1.0 0.8325750 0.9974053 0.137973856
 1 2.0 0.8244572 1.0000000 0.000000000
 2 0.0 0.6156003 0.9424848 0.384771242
 2 0.1 0.8236169 0.9576134 0.462026144
 2 1.0 0.8326925 0.9937284 0.202026144
 2 2.0 0.8236968 1.0000000 0.002222222
 3 0.0 0.6417868 0.9331884 0.379738562
 3 0.1 0.8095311 0.9411664 0.447516340
 3 1.0 0.8328273 0.9937307 0.215424837
 3 2.0 0.8242260 1.0000000 0.005555556
Note: list was reduced

ROC was used to select the optimal model using the largest value.
The final values used for the model were size = 1 and decay = 0.1.

#results of trained model
trainresults$nnetFit <- trainresultsfunction(nnetFit, trainHRdataDummyFullRankLowCorr)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 902 86
 X1 23 92

 Accuracy : 0.9012
 95% CI : (0.882, 0.9182)
 No Information Rate : 0.8386

83

 P-Value [Acc > NIR] : 1.325e-09

 Kappa : 0.574
 Mcnemar's Test P-Value : 2.876e-09

 Sensitivity : 0.51685
 Specificity : 0.97514
 Pos Pred Value : 0.80000
 Neg Pred Value : 0.91296
 Prevalence : 0.16138
 Detection Rate : 0.08341
 Detection Prevalence : 0.10426
 Balanced Accuracy : 0.74599

 'Positive' Class : X1

Area under the curve: 0.867

#results of trained model on test set
testresults$nnetFit <- testresultsfunction(nnetFit, testHRdataDummyFullRankLowCorr,
"nnetFit")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 297 37
 X1 11 22

 Accuracy : 0.8692
 95% CI : (0.8304, 0.902)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.064977

 Kappa : 0.4102
 Mcnemar's Test P-Value : 0.000308

 Sensitivity : 0.37288
 Specificity : 0.96429
 Pos Pred Value : 0.66667
 Neg Pred Value : 0.88922
 Prevalence : 0.16076

84

 Detection Rate : 0.05995
 Detection Prevalence : 0.08992
 Balanced Accuracy : 0.66858

 'Positive' Class : X1

[1] "F1 score = 0.478260869565217"
Area under the curve: 0.828

#------------------------

#train average nnet model
#------------------------

#create grid
rdaGrid <- expand.grid(.gamma = seq(0, 1, length = 10), .lambda = seq(0, 1, length = 10))

set.seed(1247)
nnetFit2 <- train(x = trainHRdataDummyFullRankLowCorr[, -1], y =
trainHRdataDummyFullRankLowCorr$Attrition, method = "avNNet", metric = "ROC", preProc
= c("BoxCox", "center", "scale", "spatialSign"), tuneGrid = avnnetGrid, trace = FALSE,
trControl = ctrl)
nnetFit2
Outcome:
Model Averaged Neural Network

1103 samples
 39 predictor

85

 2 classes: 'X0', 'X1'

Pre-processing: Box-Cox transformation (13), centered (39), scaled (39), s
patial sign transformation (39)
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...
Resampling results across tuning parameters:

 size decay ROC Sens Spec
 1 0.0 0.4937108 1.0000000 0.000000000
 1 0.1 0.8355051 0.9712436 0.455228758
 1 1.0 0.8242448 1.0000000 0.007777778
 1 2.0 0.8060022 1.0000000 0.000000000
 2 0.0 0.5278147 1.0000000 0.000000000
 2 0.1 0.8318003 0.9625993 0.449738562
 2 1.0 0.8231309 1.0000000 0.014509804
 2 2.0 0.8041041 1.0000000 0.000000000
 3 0.0 0.5093318 1.0000000 0.000000000
 3 0.1 0.8315763 0.9608509 0.443660131
 3 1.0 0.8263758 0.9987050 0.050588235
 3 2.0 0.8044978 1.0000000 0.000000000
 4 0.0 0.5195749 1.0000000 0.000000000
 4 0.1 0.8326432 0.9617251 0.453071895
 4 1.0 0.8247662 0.9995699 0.060522876
 4 2.0 0.8051703 1.0000000 0.000000000
 5 0.0 0.5321935 1.0000000 0.000000000
 5 0.1 0.8308858 0.9621482 0.456535948
 5 1.0 0.8248748 1.0000000 0.058300654
 5 2.0 0.8018000 1.0000000 0.000000000
 6 0.0 0.5539379 1.0000000 0.000000000
 6 0.1 0.8350617 0.9619402 0.448562092
 6 1.0 0.8232154 0.9993525 0.068300654
 6 2.0 0.8023413 1.0000000 0.000000000
 7 0.0 0.5543868 1.0000000 0.000000000
 7 0.1 0.8305635 0.9595605 0.454052288
 7 1.0 0.8247775 0.9991374 0.067516340
 7 2.0 0.8036769 1.0000000 0.000000000
 8 0.0 0.5831814 1.0000000 0.000000000
 8 0.1 0.8271659 0.9632235 0.441895425
 8 1.0 0.8230947 0.9991328 0.076143791
 8 2.0 0.8033158 1.0000000 0.000000000
 9 0.0 0.5599956 1.0000000 0.000000000
 9 0.1 0.8331060 0.9630178 0.448169935
 9 1.0 0.8249645 0.9993525 0.062549020
 9 2.0 0.8042971 1.0000000 0.000000000
 10 0.0 0.5501331 1.0000000 0.000000000
 10 0.1 0.8324096 0.9623749 0.440653595
 10 1.0 0.8245509 0.9995676 0.067320261
 10 2.0 0.8019499 1.0000000 0.000000000

Tuning parameter 'bag' was held constant at a value of 10
ROC was used to select the optimal model using the largest value.
The final values used for the model were size = 1, decay = 0.1 and bag = 1
0.

#results of trained model
trainresults$nnetFit2 <- trainresultsfunction(nnetFit2, trainHRdataDummyFullRankLowCorr)
Outcome:
Confusion Matrix and Statistics

86

 Reference
Prediction X0 X1
 X0 902 80
 X1 23 98

 Accuracy : 0.9066
 95% CI : (0.8879, 0.9231)
 No Information Rate : 0.8386
 P-Value [Acc > NIR] : 3.587e-11

 Kappa : 0.6038
 Mcnemar's Test P-Value : 3.432e-08

 Sensitivity : 0.55056
 Specificity : 0.97514
 Pos Pred Value : 0.80992
 Neg Pred Value : 0.91853
 Prevalence : 0.16138
 Detection Rate : 0.08885
 Detection Prevalence : 0.10970
 Balanced Accuracy : 0.76285

 'Positive' Class : X1

Area under the curve: 0.856

#results of trained model on test set
testresults$nnetFit2 <- testresultsfunction(nnetFit2, testHRdataDummyFullRankLowCorr,
"nnetFit2")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 293 38
 X1 15 21

 Accuracy : 0.8556
 95% CI : (0.8154, 0.8899)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.219061

87

 Kappa : 0.3647
 Mcnemar's Test P-Value : 0.002512

 Sensitivity : 0.35593
 Specificity : 0.95130
 Pos Pred Value : 0.58333
 Neg Pred Value : 0.88520
 Prevalence : 0.16076
 Detection Rate : 0.05722
 Detection Prevalence : 0.09809
 Balanced Accuracy : 0.65362

 'Positive' Class : X1

[1] "F1 score = 0.442105263157895"
Area under the curve: 0.8259

#Flexible Discriminant Analysis

#Train FDA over number of components from 1 to 30 and a degree of 1 and 2.
set.seed(1247)
fdaFit <- train(x = trainHRdataDummyFullRankLowCorr[, -1], y =
trainHRdataDummyFullRankLowCorr$Attrition, method = "earth", metric = "ROC", preProc =
c("BoxCox", "center", "scale"), tuneGrid = expand.grid(.nprune = 1:30, .degree = 1:2),
trControl = ctrl)
fdaFit
Outcome:
Multivariate Adaptive Regression Spline

88

1103 samples
 39 predictor
 2 classes: 'X0', 'X1'

Pre-processing: Box-Cox transformation (13), centered (39), scaled (39)
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 992, 994, 992, 992, 993, 993, ...
Resampling results across tuning parameters:

 degree nprune ROC Sens Spec
 1 25 0.8083973 0.9571739 0.3620915
 1 26 0.8084876 0.9567438 0.3632026
 1 27 0.8080336 0.9565288 0.3620915
 1 28 0.8083617 0.9563137 0.3632026
 1 29 0.8095219 0.9569565 0.3643137
 1 30 0.8094213 0.9571716 0.3654248
 2 25 0.7510179 0.9437821 0.3062745
 2 26 0.7494129 0.9437868 0.3051634
 2 27 0.7493593 0.9437868 0.3041830
 2 28 0.7482044 0.9442193 0.3053595
 2 29 0.7479579 0.9442193 0.3065359
 2 30 0.7480327 0.9444343 0.3053595

ROC was used to select the optimal model using the largest value.
The final values used for the model were nprune = 29 and degree = 1.

#results of trained model
trainresults$fdaFit <- trainresultsfunction(fdaFit, trainHRdataDummyFullRankLowCorr)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 899 107
 X1 26 71

 Accuracy : 0.8794
 95% CI : (0.8587, 0.8981)
 No Information Rate : 0.8386
 P-Value [Acc > NIR] : 8.126e-05

 Kappa : 0.4542
 Mcnemar's Test P-Value : 4.009e-12

 Sensitivity : 0.39888
 Specificity : 0.97189
 Pos Pred Value : 0.73196
 Neg Pred Value : 0.89364
 Prevalence : 0.16138
 Detection Rate : 0.06437
 Detection Prevalence : 0.08794
 Balanced Accuracy : 0.68538

 'Positive' Class : X1

Area under the curve: 0.8594

89

#results of trained model on test set
testresults$fdaFit <- testresultsfunction(fdaFit, testHRdataDummyFullRankLowCorr, "fdaFit")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 297 33
 X1 11 26

 Accuracy : 0.8801
 95% CI : (0.8424, 0.9115)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.016982

 Kappa : 0.4768
 Mcnemar's Test P-Value : 0.001546

 Sensitivity : 0.44068
 Specificity : 0.96429
 Pos Pred Value : 0.70270
 Neg Pred Value : 0.90000
 Prevalence : 0.16076
 Detection Rate : 0.07084
 Detection Prevalence : 0.10082
 Balanced Accuracy : 0.70248

 'Positive' Class : X1

[1] "F1 score = 0.541666666666667"
Area under the curve: 0.7972

90

#check the variable importance
fdaimp <- varImp(fdaFit, scale = FALSE)
fdaimp
Outcome:
earth variable importance

 only 20 most important variables shown (out of 39)

 Overall
OverTime.Yes 100.00
TotalWorkingYears 87.29
EnvironmentSatisfaction 72.56
StockOptionLevel 64.85
JobInvolvement 58.48
NumCompaniesWorked 51.62
BusinessTravel.Travel_Frequently 45.41
RelationshipSatisfaction 39.99
YearsWithCurrManager 31.36
YearsSinceLastPromotion 27.07
JobSatisfaction 27.07
WorkLifeBalance 14.86
MaritalStatus.Married 0.00
DailyRate 0.00
PercentSalaryHike 0.00
Education 0.00
Gender.Male 0.00
MonthlyRate 0.00
EducationField.Marketing 0.00

91

EducationField.LifeSciences 0.00

#plot the variable importance
plot(fdaimp , top = 20, scales = list(y = list(cex = .95)))
Outcome:

Support Vector Machines
#create tuning parameters
set.seed(1247)
sigmaRangeReduced <- sigest(as.matrix(trainHRdataDummyFullRankLowCorr[, -1]))
svmRGridReduced <- expand.grid(.sigma = sigmaRangeReduced[1], .C = 2^(seq(-4, 4)))

#train the model
set.seed(1247)
svmFit <- train(x = trainHRdataDummyFullRankLowCorr[, -1], y =
trainHRdataDummyFullRankLowCorr$Attrition, method = "svmRadial", metric = "ROC",
preProc = c("BoxCox", "center", "scale"), tuneGrid = svmRGridReduced, fit = FALSE,
trControl = ctrl)
svmFit
Outcome:
Support Vector Machines with Radial Basis Function Kernel

1103 samples
 39 predictor
 2 classes: 'X0', 'X1'

Pre-processing: Box-Cox transformation (13), centered (39), scaled (39)

92

Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 992, 992, 992, 993, 993, 993, ...
Resampling results across tuning parameters:

 C ROC Sens Spec
 0.0625 0.8367184 0.9628144 0.4480392
 0.1250 0.8366713 0.9641094 0.4358824
 0.2500 0.8366593 0.9636816 0.4401307
 0.5000 0.8367560 0.9625993 0.4405229
 1.0000 0.8369186 0.9641117 0.4427451
 2.0000 0.8370395 0.9703763 0.4058170
 4.0000 0.8342243 0.9764236 0.3707843
 8.0000 0.8234219 0.9749112 0.3392157
 16.0000 0.8088556 0.9777349 0.2840523

Tuning parameter 'sigma' was held constant at a value of 0.009475476
ROC was used to select the optimal model using the largest value.
The final values used for the model were sigma = 0.009475476 and C = 2.

#results of trained model
trainresults$svmFit <- trainresultsfunction(svmFit, trainHRdataDummyFullRankLowCorr)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 916 75
 X1 9 103

 Accuracy : 0.9238
 95% CI : (0.9066, 0.9388)
 No Information Rate : 0.8386
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.6691
 Mcnemar's Test P-Value : 1.321e-12

 Sensitivity : 0.57865
 Specificity : 0.99027
 Pos Pred Value : 0.91964
 Neg Pred Value : 0.92432
 Prevalence : 0.16138
 Detection Rate : 0.09338
 Detection Prevalence : 0.10154
 Balanced Accuracy : 0.78446

 'Positive' Class : X1

Area under the curve: 0.9243

93

#results of trained model on test set
testresults$svmFit <- testresultsfunction(svmFit, testHRdataDummyFullRankLowCorr,
"svmFit")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 302 36
 X1 6 23

 Accuracy : 0.8856
 95% CI : (0.8485, 0.9163)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.007567

 Kappa : 0.4662
 Mcnemar's Test P-Value : 7.648e-06

 Sensitivity : 0.38983
 Specificity : 0.98052
 Pos Pred Value : 0.79310
 Neg Pred Value : 0.89349
 Prevalence : 0.16076
 Detection Rate : 0.06267
 Detection Prevalence : 0.07902
 Balanced Accuracy : 0.68517

 'Positive' Class : X1

[1] "F1 score = 0.522727272727273"
Area under the curve: 0.8489

94

#K-Nearest Neighbors

#Train model
set.seed(1247)
knnFit <- train(x = trainHRdataDummy[, -1], y = trainHRdataDummy$Attrition, method =
"knn", metric = "ROC", preProc = c("BoxCox", "center", "scale"), tuneGrid = data.frame(.k =
c(4*(0:5)+1, 20*(1:5)+1, 50*(2:9)+1)), trControl = ctrl)
knnFit
Outcome:
k-Nearest Neighbors

1103 samples
 51 predictor
 2 classes: 'X0', 'X1'

Pre-processing: Box-Cox transformation (14), centered (51), scaled (51)
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...
Resampling results across tuning parameters:

 k ROC Sens Spec
 1 0.5547712 0.9115685 0.197973856
 5 0.6908449 0.9716830 0.156797386
 9 0.7351462 0.9872347 0.097647059
 13 0.7512537 0.9956826 0.075359477
 17 0.7557581 0.9971926 0.059346405
 21 0.7592417 0.9991351 0.045882353
 41 0.7734339 1.0000000 0.003333333

95

 61 0.7879072 1.0000000 0.000000000
 81 0.7968381 1.0000000 0.000000000
 101 0.8053464 1.0000000 0.000000000
 151 0.8137418 1.0000000 0.000000000
 201 0.8117384 1.0000000 0.000000000
 251 0.8099499 1.0000000 0.000000000
 301 0.8085165 1.0000000 0.000000000
 351 0.8008097 1.0000000 0.000000000
 401 0.8016349 1.0000000 0.000000000
 451 0.8035886 1.0000000 0.000000000

ROC was used to select the optimal model using the largest value.
The final value used for the model was k = 151.

#results of trained model
trainresults$knnFit <- trainresultsfunction(knnFit, trainHRdataDummy)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 925 178
 X1 0 0

 Accuracy : 0.8386
 95% CI : (0.8156, 0.8599)
 No Information Rate : 0.8386
 P-Value [Acc > NIR] : 0.52

 Kappa : 0
 Mcnemar's Test P-Value : <2e-16

 Sensitivity : 0.0000
 Specificity : 1.0000
 Pos Pred Value : NaN
 Neg Pred Value : 0.8386
 Prevalence : 0.1614
 Detection Rate : 0.0000
 Detection Prevalence : 0.0000
 Balanced Accuracy : 0.5000

 'Positive' Class : X1

Area under the curve: 0.8272

96

#results of trained model on test set
testresults$knnFit <- testresultsfunction(knnFit, testHRdataDummy, "knnFit")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 308 59
 X1 0 0

 Accuracy : 0.8392
 95% CI : (0.7976, 0.8753)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.5347

 Kappa : 0
 Mcnemar's Test P-Value : 4.321e-14

 Sensitivity : 0.0000
 Specificity : 1.0000
 Pos Pred Value : NaN
 Neg Pred Value : 0.8392
 Prevalence : 0.1608
 Detection Rate : 0.0000
 Detection Prevalence : 0.0000
 Balanced Accuracy : 0.5000

 'Positive' Class : X1

[1] "F1 score = NaN"
Area under the curve: 0.7644

97

#Naive Bayes
#create Naive Bayes grid
nbgrid <- expand.grid(.usekernel = c(TRUE, FALSE), .fL = seq(0, 2, length.out = 4), .adjust =
1)

#train model
set.seed(1247)
nbFit <- train(x = trainHRdataDummyFullRankLowCorr[, -1], y =
trainHRdataDummyFullRankLowCorr$Attrition, method = "nb", metric = "ROC", preProc =
c("BoxCox", "center", "scale"), tuneGrid = nbgrid, trControl = ctrl)
nbFit
Outcome:
Naive Bayes

1103 samples
 39 predictor
 2 classes: 'X0', 'X1'

Pre-processing: Box-Cox transformation (13), centered (39), scaled (39)
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...
Resampling results across tuning parameters:

 usekernel fL ROC Sens Spec
 FALSE 0.0 0.7401731 0.6366604 0.766739288
 FALSE 0.5 0.7401731 0.6366604 0.766739288
 FALSE 1.0 0.7401731 0.6366604 0.766739288
 FALSE 1.5 0.7401731 0.6366604 0.766739288

98

 FALSE 2.0 0.7401731 0.6366604 0.766739288
 TRUE 0.0 0.8078821 0.9997849 0.001111111
 TRUE 0.5 0.8078821 0.9997849 0.001111111
 TRUE 1.0 0.8078821 0.9997849 0.001111111
 TRUE 1.5 0.8078821 0.9997849 0.001111111
 TRUE 2.0 0.8078821 0.9997849 0.001111111

Tuning parameter 'adjust' was held constant at a value of 1
ROC was used to select the optimal model using the largest value.
The final values used for the model were fL = 0, usekernel = TRUE and adj
ust = 1.

#Note model were kernel density estimate is used outperformed normal density

#results of trained model
trainresults$nbFit <- trainresultsfunction(nbFit, trainHRdataDummyFullRankLowCorr)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 925 178
 X1 0 0

 Accuracy : 0.8386
 95% CI : (0.8156, 0.8599)
 No Information Rate : 0.8386
 P-Value [Acc > NIR] : 0.52

 Kappa : 0
 Mcnemar's Test P-Value : <2e-16

 Sensitivity : 0.0000
 Specificity : 1.0000
 Pos Pred Value : NaN
 Neg Pred Value : 0.8386
 Prevalence : 0.1614
 Detection Rate : 0.0000
 Detection Prevalence : 0.0000
 Balanced Accuracy : 0.5000

 'Positive' Class : X1

Area under the curve: 0.857

99

#results of trained model on test set
testresults$nbFit <- testresultsfunction(nbFit, testHRdataDummyFullRankLowCorr, "nbFit")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 308 59
 X1 0 0

 Accuracy : 0.8392
 95% CI : (0.7976, 0.8753)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.5347

 Kappa : 0
 Mcnemar's Test P-Value : 4.321e-14

 Sensitivity : 0.0000
 Specificity : 1.0000
 Pos Pred Value : NaN
 Neg Pred Value : 0.8392
 Prevalence : 0.1608
 Detection Rate : 0.0000
 Detection Prevalence : 0.0000
 Balanced Accuracy : 0.5000

 'Positive' Class : X1

[1] "F1 score = NaN"
Area under the curve: 0.7595

100

Classification Trees and Rule-Based Models

#Classification Trees

#------------------------------

#rpart non dummy train set
#------------------------------

set.seed(1247)
rpartFit <- train(x = trainHRdata[, -1],
 y = trainHRdata$Attrition,
 method = "rpart",
 tuneLength = 30,
 metric = "ROC",
 trControl = ctrl)
rpartFit
Outcome:
CART

1103 samples
 30 predictor
 2 classes: 'X0', 'X1'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)

101

Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...
Resampling results across tuning parameters:

 cp ROC Sens Spec
 0.0000000000 0.7230258 0.9227887 0.3174510
 0.0009040424 0.7234989 0.9234409 0.3174510
 0.0018080847 0.7226876 0.9238733 0.3151634
 0.0027121271 0.7202946 0.9260285 0.3128758
 0.0036161694 0.7203436 0.9286232 0.3105882
 0.0045202118 0.7148741 0.9301286 0.3050327
 0.0054242542 0.7147050 0.9303460 0.3050327
 0.0063282965 0.7144686 0.9379383 0.2994771
 0.0072323389 0.7144686 0.9379383 0.2994771
 0.0081363812 0.7091616 0.9388032 0.2916993
 0.0090404236 0.7044311 0.9411875 0.2861438
 0.0099444660 0.6967399 0.9420524 0.2783660
 0.0108485083 0.6888061 0.9466059 0.2715686
 0.0117525507 0.6888061 0.9466059 0.2715686
 0.0126565931 0.6872033 0.9522137 0.2659477
 0.0135606354 0.6872033 0.9522137 0.2659477
 0.0144646778 0.6865412 0.9526461 0.2624183
 0.0153687201 0.6786785 0.9537260 0.2545752
 0.0162727625 0.6777687 0.9545979 0.2533333
 0.0171768049 0.6737032 0.9550281 0.2533333
 0.0180808472 0.6737032 0.9550281 0.2533333
 0.0189848896 0.6614408 0.9587027 0.2433333
 0.0198889319 0.6614408 0.9587027 0.2433333
 0.0207929743 0.6565543 0.9597779 0.2366667
 0.0216970167 0.6565543 0.9597779 0.2366667
 0.0226010590 0.6416361 0.9600070 0.2119608
 0.0235051014 0.6384054 0.9606592 0.2097386
 0.0244091437 0.6384054 0.9606592 0.2097386
 0.0253131861 0.6173281 0.9651893 0.1670588
 0.0262172285 0.6173281 0.9651893 0.1670588

ROC was used to select the optimal model using the largest value.
The final value used for the model was cp = 0.0009040424.

#results of trained model
trainresults$rpartFit <- trainresultsfunction(rpartFit, trainHRdata)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 892 71
 X1 33 107

 Accuracy : 0.9057
 95% CI : (0.8869, 0.9223)
 No Information Rate : 0.8386
 P-Value [Acc > NIR] : 6.716e-11

 Kappa : 0.6188
 Mcnemar's Test P-Value : 0.0002855

 Sensitivity : 0.60112
 Specificity : 0.96432
 Pos Pred Value : 0.76429
 Neg Pred Value : 0.92627

102

 Prevalence : 0.16138
 Detection Rate : 0.09701
 Detection Prevalence : 0.12693
 Balanced Accuracy : 0.78272

 'Positive' Class : X1

Area under the curve: 0.8845

#results of trained model on test set
testresults$rpartFit <- testresultsfunction(rpartFit, testHRdata)
Outcome:

Confusion Matrix and Statistics

 Reference

Prediction X0 X1

 X0 280 40

 X1 28 19

 Accuracy : 0.8147
 95% CI : (0.7711, 0.8531)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.9096

 Kappa : 0.2518
Mcnemar's Test P-Value : 0.1822

 Sensitivity : 0.32203
 Specificity : 0.90909
 Pos Pred Value : 0.40426
 Neg Pred Value : 0.87500
 Prevalence : 0.16076
 Detection Rate : 0.05177
 Detection Prevalence : 0.12807
 Balanced Accuracy : 0.61556

 'Positive' Class : X1

103

[1] "F1 score = 0.358490566037736"
Area under the curve: 0.6901

#------------------------------

#rpart dummy train set
#------------------------------

#train model
set.seed(1247)
rpartFitDummy <- train(x = trainHRdataDummy[, -1],
 y = trainHRdataDummy$Attrition,
 method = "rpart",
 tuneLength = 30,
 metric = "ROC",
 trControl = ctrl)
rpartFitDummy
Outcome:
CART

1103 samples
 51 predictor
 2 classes: 'X0', 'X1'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...

104

Resampling results across tuning parameters:

 cp ROC Sens Spec
 0.0000000000 0.6957270 0.9212903 0.2964706
 0.0009040424 0.6957270 0.9212903 0.2964706
 0.0018080847 0.6999908 0.9221552 0.2942484
 0.0027121271 0.7023316 0.9238850 0.2930719
 0.0036161694 0.7041678 0.9290767 0.2908497
 0.0045202118 0.7021433 0.9318887 0.2828105
 0.0054242542 0.7027168 0.9325339 0.2828105
 0.0063282965 0.7047712 0.9388149 0.2748366
 0.0072323389 0.7047712 0.9388149 0.2748366
 0.0081363812 0.6989168 0.9401075 0.2681699
 0.0090404236 0.6980900 0.9420594 0.2636601
 0.0099444660 0.6968498 0.9431417 0.2614379
 0.0108485083 0.6945832 0.9474731 0.2557516
 0.0117525507 0.6945832 0.9474731 0.2557516
 0.0126565931 0.6935093 0.9504932 0.2559477
 0.0135606354 0.6935093 0.9504932 0.2559477
 0.0144646778 0.6926781 0.9507106 0.2524183
 0.0153687201 0.6821177 0.9520079 0.2467974
 0.0162727625 0.6755023 0.9533053 0.2343791
 0.0171768049 0.6726681 0.9537354 0.2343791
 0.0180808472 0.6674113 0.9541655 0.2277124
 0.0189848896 0.6556316 0.9578448 0.2186928
 0.0198889319 0.6556316 0.9578448 0.2186928
 0.0207929743 0.6531749 0.9584923 0.2120261
 0.0216970167 0.6528882 0.9591374 0.2098039
 0.0226010590 0.6508223 0.9610846 0.1950980
 0.0235051014 0.6475916 0.9617368 0.1928758
 0.0244091437 0.6475916 0.9617368 0.1928758
 0.0253131861 0.6264301 0.9692917 0.1286275
 0.0262172285 0.6264301 0.9692917 0.1286275

ROC was used to select the optimal model using the largest value.
The final value used for the model was cp = 0.007232339.

#results of trained model
trainresults$rpartFitDummy <- trainresultsfunction(rpartFitDummy, trainHRdataDummy)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 896 91
 X1 29 87

 Accuracy : 0.8912
 95% CI : (0.8713, 0.909)
 No Information Rate : 0.8386
 P-Value [Acc > NIR] : 3.954e-07

 Kappa : 0.5323
 Mcnemar's Test P-Value : 2.569e-08

 Sensitivity : 0.48876
 Specificity : 0.96865
 Pos Pred Value : 0.75000
 Neg Pred Value : 0.90780
 Prevalence : 0.16138

105

 Detection Rate : 0.07888
 Detection Prevalence : 0.10517
 Balanced Accuracy : 0.72871

 'Positive' Class : X1

Area under the curve: 0.7999

#results of trained model on test set
testresults$rpartFitDummy <- testresultsfunction(rpartFitDummy, testHRdataDummy)
Outcome:

Confusion Matrix and Statistics

 Reference

Prediction X0 X1

 X0 294 39

 X1 14 20

 Accuracy : 0.8556
 95% CI : (0.8154, 0.8899)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.2190611

 Kappa : 0.3542
Mcnemar's Test P-Value : 0.0009784

 Sensitivity : 0.33898
 Specificity : 0.95455
 Pos Pred Value : 0.58824
 Neg Pred Value : 0.88288
 Prevalence : 0.16076
 Detection Rate : 0.05450
 Detection Prevalence : 0.09264
 Balanced Accuracy : 0.64676

106

 'Positive' Class : X1

[1] "F1 score = 0.43010752688172"
Area under the curve: 0.7145

#------------------------------

#C4.5/J48 non dummy trainset
#------------------------------

set.seed(1247)
j48Fit <- train(x = trainHRdata[, -1],
 y = trainHRdata$Attrition,
 method = "J48",
 metric = "ROC",
 trControl = ctrl)
j48Fit
Outcome:
C4.5-like Trees

1103 samples
 30 predictor
 2 classes: 'X0', 'X1'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...
Resampling results across tuning parameters:

107

 C M ROC Sens Spec
 0.010 1 0.5355405 0.9895979 0.03156863
 0.010 2 0.5199565 0.9924147 0.02124183
 0.010 3 0.5199419 0.9900257 0.02241830
 0.255 1 0.5658017 0.9319121 0.29562092
 0.255 2 0.5905983 0.9301753 0.28418301
 0.255 3 0.6147518 0.9314727 0.30104575
 0.500 1 0.5659947 0.8932071 0.33261438
 0.500 2 0.5953606 0.8999042 0.31222222
 0.500 3 0.6108905 0.9100818 0.32026144

ROC was used to select the optimal model using the largest value.
The final values used for the model were C = 0.255 and M = 3.

#results of trained model
trainresults$j48Fit <- trainresultsfunction(j48Fit, trainHRdata)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 917 77
 X1 8 101

 Accuracy : 0.9229
 95% CI : (0.9056, 0.938)
 No Information Rate : 0.8386
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.6625
 Mcnemar's Test P-Value : 1.636e-13

 Sensitivity : 0.56742
 Specificity : 0.99135
 Pos Pred Value : 0.92661
 Neg Pred Value : 0.92254
 Prevalence : 0.16138
 Detection Rate : 0.09157
 Detection Prevalence : 0.09882
 Balanced Accuracy : 0.77938

 'Positive' Class : X1

Area under the curve: 0.8327

108

#results of trained model on test set
testresults$j48Fit <- testresultsfunction(j48Fit, testHRdata, "j48Fit")
Outcome:

Confusion Matrix and Statistics

 Reference

Prediction X0 X1

 X0 291 41

 X1 17 18

 Accuracy : 0.842
 95% CI : (0.8005, 0.8778)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.478071

 Kappa : 0.2991
Mcnemar's Test P-Value : 0.002527

 Sensitivity : 0.30508
 Specificity : 0.94481
 Pos Pred Value : 0.51429
 Neg Pred Value : 0.87651
 Prevalence : 0.16076
 Detection Rate : 0.04905
 Detection Prevalence : 0.09537
 Balanced Accuracy : 0.62494

 'Positive' Class : X1

[1] "F1 score = 0.382978723404255"
Area under the curve: 0.6867

109

#------------------------------

#C4.5/J48 dummy trainset
#------------------------------

set.seed(1247)
j48FitDummy <- train(x = trainHRdataDummy[, -1],
 y = trainHRdataDummy$Attrition,
 method = "J48",
 metric = "ROC",
 trControl = ctrl)
j48FitDummy
Outcome:
C4.5-like Trees

1103 samples
 51 predictor
 2 classes: 'X0', 'X1'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...
Resampling results across tuning parameters:

 C M ROC Sens Spec
 0.010 1 0.5350743 0.9889551 0.03941176
 0.010 2 0.5361838 0.9900421 0.03692810
 0.010 3 0.5332913 0.9898200 0.03464052
 0.255 1 0.5569126 0.9204956 0.30542484

110

 0.255 2 0.5994401 0.9239271 0.32352941
 0.255 3 0.6115514 0.9276087 0.29418301
 0.500 1 0.5899274 0.8817765 0.33777778
 0.500 2 0.6163471 0.8875900 0.35032680
 0.500 3 0.6288828 0.9016386 0.33130719

ROC was used to select the optimal model using the largest value.
The final values used for the model were C = 0.5 and M = 3.

#results of trained model
trainresults$j48Fit <- trainresultsfunction(j48FitDummy, trainHRdataDummy)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 911 42
 X1 14 136

 Accuracy : 0.9492
 95% CI : (0.9346, 0.9614)
 No Information Rate : 0.8386
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.7997
 Mcnemar's Test P-Value : 0.0003085

 Sensitivity : 0.7640
 Specificity : 0.9849
 Pos Pred Value : 0.9067
 Neg Pred Value : 0.9559
 Prevalence : 0.1614
 Detection Rate : 0.1233
 Detection Prevalence : 0.1360
 Balanced Accuracy : 0.8745

 'Positive' Class : X1

Area under the curve: 0.9402

111

#results of trained model on test set
testresults$j48Fit <- testresultsfunction(j48FitDummy, testHRdataDummy, "j48FitDummy")
Outcome:

Confusion Matrix and Statistics

 Reference

Prediction X0 X1

 X0 273 34

 X1 35 25

 Accuracy : 0.812
 95% CI : (0.7682, 0.8507)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.9298

 Kappa : 0.308
Mcnemar's Test P-Value : 1.0000

 Sensitivity : 0.42373
 Specificity : 0.88636
 Pos Pred Value : 0.41667
 Neg Pred Value : 0.88925
 Prevalence : 0.16076
 Detection Rate : 0.06812
 Detection Prevalence : 0.16349
 Balanced Accuracy : 0.65505

 'Positive' Class : X1

[1] "F1 score = 0.420168067226891"
Area under the curve: 0.6581

112

#------------------------------

#Rule based models: PART
#------------------------------

set.seed(1247)
partFit <- train(x = trainHRdata[, -1],
 y = trainHRdata$Attrition,
 method = "PART",
 metric = "ROC",
 trControl = ctrl)
partFit
Outcome:
Rule-Based Classifier

1103 samples
 30 predictor
 2 classes: 'X0', 'X1'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...
Resampling results across tuning parameters:

 threshold pruned ROC Sens Spec
 0.010 yes 0.6567082 0.8940019 0.3785621
 0.010 no 0.6303250 0.8823726 0.3749673
 0.255 yes 0.6479434 0.8933707 0.3617647

113

 0.255 no 0.6303250 0.8823726 0.3749673
 0.500 yes 0.6416703 0.8927092 0.3564052
 0.500 no 0.6303250 0.8823726 0.3749673

ROC was used to select the optimal model using the largest value.
The final values used for the model were threshold = 0.01 and pruned = ye
s.

#results of trained model
trainresults$partFit <- trainresultsfunction(partFit, trainHRdata)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 909 26
 X1 16 152

 Accuracy : 0.9619
 95% CI : (0.9489, 0.9724)
 No Information Rate : 0.8386
 P-Value [Acc > NIR] : <2e-16

 Kappa : 0.8561
 Mcnemar's Test P-Value : 0.1649

 Sensitivity : 0.8539
 Specificity : 0.9827
 Pos Pred Value : 0.9048
 Neg Pred Value : 0.9722
 Prevalence : 0.1614
 Detection Rate : 0.1378
 Detection Prevalence : 0.1523
 Balanced Accuracy : 0.9183

 'Positive' Class : X1

Area under the curve: 0.967

#results of trained model on test set
testresults$partFit <- testresultsfunction(partFit, testHRdata, "partFit")
Outcome:
Confusion Matrix and Statistics

 Reference

114

Prediction X0 X1
 X0 273 42
 X1 35 17

 Accuracy : 0.7902
 95% CI : (0.7449, 0.8307)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.9946

 Kappa : 0.1833
 Mcnemar's Test P-Value : 0.4941

 Sensitivity : 0.28814
 Specificity : 0.88636
 Pos Pred Value : 0.32692
 Neg Pred Value : 0.86667
 Prevalence : 0.16076
 Detection Rate : 0.04632
 Detection Prevalence : 0.14169
 Balanced Accuracy : 0.58725

 'Positive' Class : X1

Area under the curve: 0.6411

#------------------------------

#PART Dummy
#------------------------------

set.seed(1247)

115

partFitDummy <- train(x = trainHRdataDummy[, -1],
 y = trainHRdataDummy$Attrition,
 method = "PART",
 metric = "ROC",
 trControl = ctrl)
partFitDummy
Outcome:
Rule-Based Classifier

1103 samples
 51 predictor
 2 classes: 'X0', 'X1'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...
Resampling results across tuning parameters:

 threshold pruned ROC Sens Spec
 0.010 yes 0.6411306 0.8873329 0.3524183
 0.010 no 0.6351989 0.8812763 0.3862745
 0.255 yes 0.6468416 0.8903693 0.3805882
 0.255 no 0.6351989 0.8812763 0.3862745
 0.500 yes 0.6468416 0.8903693 0.3805882
 0.500 no 0.6351989 0.8812763 0.3862745

ROC was used to select the optimal model using the largest value.
The final values used for the model were threshold = 0.5 and pruned = yes
.

#results of trained model
trainresults$partFitDummy <- trainresultsfunction(partFitDummy, trainHRdataDummy)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 921 15
 X1 4 163

 Accuracy : 0.9828
 95% CI : (0.9732, 0.9896)
 No Information Rate : 0.8386
 P-Value [Acc > NIR] : < 2e-16

 Kappa : 0.9347
 Mcnemar's Test P-Value : 0.02178

 Sensitivity : 0.9157
 Specificity : 0.9957
 Pos Pred Value : 0.9760
 Neg Pred Value : 0.9840
 Prevalence : 0.1614
 Detection Rate : 0.1478
 Detection Prevalence : 0.1514
 Balanced Accuracy : 0.9557

 'Positive' Class : X1

116

Area under the curve: 0.986

#results of trained model on test set
testresults$partFitDummy <- testresultsfunction(partFitDummy, testHRdataDummy,
"partFitDummy")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 273 41
 X1 35 18

 Accuracy : 0.7929
 95% CI : (0.7478, 0.8332)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.9921

 Kappa : 0.1997
 Mcnemar's Test P-Value : 0.5663

 Sensitivity : 0.30508
 Specificity : 0.88636
 Pos Pred Value : 0.33962
 Neg Pred Value : 0.86943
 Prevalence : 0.16076
 Detection Rate : 0.04905
 Detection Prevalence : 0.14441
 Balanced Accuracy : 0.59572

 'Positive' Class : X1

Area under the curve: 0.607

117

#------------------------------

#Bagged Trees
#------------------------------

set.seed(1247)
treebagFit <- train(x = trainHRdata[, -1],
 y = trainHRdata$Attrition,
 method = "treebag",
 nbagg = 50,
 metric = "ROC",
 trControl = ctrl)
treebagFit
Outcome:
Bagged CART

1103 samples
 30 predictor
 2 classes: 'X0', 'X1'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...
Resampling results:

 ROC Sens Spec
 0.7955515 0.9692871 0.2412418

#results of trained model

118

trainresults$partFit <- trainresultsfunction(partFit, trainHRdata)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 925 2
 X1 0 176

 Accuracy : 0.9982
 95% CI : (0.9935, 0.9998)
 No Information Rate : 0.8386
 P-Value [Acc > NIR] : <2e-16

 Kappa : 0.9933
 Mcnemar's Test P-Value : 0.4795

 Sensitivity : 0.9888
 Specificity : 1.0000
 Pos Pred Value : 1.0000
 Neg Pred Value : 0.9978
 Prevalence : 0.1614
 Detection Rate : 0.1596
 Detection Prevalence : 0.1596
 Balanced Accuracy : 0.9944

 'Positive' Class : X1

Area under the curve: 1

#results of trained model on test set
testresults$partFit <- testresultsfunction(partFit, testHRdata, "partFit")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 298 38
 X1 10 21

 Accuracy : 0.8692
 95% CI : (0.8304, 0.902)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.06498

119

 Kappa : 0.4002
 Mcnemar's Test P-Value : 9.735e-05

 Sensitivity : 0.35593
 Specificity : 0.96753
 Pos Pred Value : 0.67742
 Neg Pred Value : 0.88690
 Prevalence : 0.16076
 Detection Rate : 0.05722
 Detection Prevalence : 0.08447
 Balanced Accuracy : 0.66173

 'Positive' Class : X1

[1] "F1 score = 0.466666666666667"
Area under the curve: 0.7649

#------------------------------

#Bagged Trees Dummy set
#------------------------------

set.seed(1247)
treebagFitDummy <- train(x = trainHRdataDummy[, -1],
 y = trainHRdataDummy$Attrition,
 method = "treebag",
 nbagg = 50,
 metric = "ROC",
 trControl = ctrl)
treebagFitDummy

120

Outcome:
Bagged CART

1103 samples
 51 predictor
 2 classes: 'X0', 'X1'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...
Resampling results:

 ROC Sens Spec
 0.7777671 0.9664633 0.2241176

#results of trained model
trainresults$treebagFitDummy <- trainresultsfunction(treebagFitDummy, trainHRdataDummy)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 925 2
 X1 0 176

 Accuracy : 0.9982
 95% CI : (0.9935, 0.9998)
 No Information Rate : 0.8386
 P-Value [Acc > NIR] : <2e-16

 Kappa : 0.9933
 Mcnemar's Test P-Value : 0.4795

 Sensitivity : 0.9888
 Specificity : 1.0000
 Pos Pred Value : 1.0000
 Neg Pred Value : 0.9978
 Prevalence : 0.1614
 Detection Rate : 0.1596
 Detection Prevalence : 0.1596
 Balanced Accuracy : 0.9944

 'Positive' Class : X1

Area under the curve: 1

121

#results of trained model on test set
testresults$treebagFitDummy <- testresultsfunction(treebagFitDummy, testHRdataDummy,
"treebagFitDummy")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 297 41
 X1 11 18

 Accuracy : 0.8583
 95% CI : (0.8184, 0.8923)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.1784

 Kappa : 0.3391
 Mcnemar's Test P-Value : 5.781e-05

 Sensitivity : 0.30508
 Specificity : 0.96429
 Pos Pred Value : 0.62069
 Neg Pred Value : 0.87870
 Prevalence : 0.16076
 Detection Rate : 0.04905
 Detection Prevalence : 0.07902
 Balanced Accuracy : 0.63469

 'Positive' Class : X1

[1] "F1 score = 0.409090909090909"
Area under the curve: 0.7632

122

#------------------------------

#Random Forests
#------------------------------

mtryValues <- c(2, 10, 15, 20, 25, 31)
set.seed(1247)
rfFit <- train(x = trainHRdata[, -1],
 y = trainHRdata$Attrition,
 method = "rf",
 ntree = 1000,
 tuneGrid = data.frame(mtry = mtryValues),
 importance = TRUE,
 metric = "ROC",
 trControl = ctrl)
rfFit
Outcome:
Random Forest

1103 samples
 30 predictor
 2 classes: 'X0', 'X1'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...
Resampling results across tuning parameters:

 mtry ROC Sens Spec

123

 2 0.8274313 0.9971926 0.07973856
 10 0.8182447 0.9894016 0.16816993
 15 0.8160469 0.9861547 0.18732026
 20 0.8135821 0.9820547 0.19967320
 25 0.8120986 0.9792380 0.22111111
 31 0.8102681 0.9768630 0.22777778

ROC was used to select the optimal model using the largest value.
The final value used for the model was mtry = 2.

#results of trained model
trainresults$rfFit <- trainresultsfunction(rfFit, trainHRdata)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 925 0
 X1 0 178

 Accuracy : 1
 95% CI : (0.9967, 1)
 No Information Rate : 0.8386
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 1
 Mcnemar's Test P-Value : NA

 Sensitivity : 1.0000
 Specificity : 1.0000
 Pos Pred Value : 1.0000
 Neg Pred Value : 1.0000
 Prevalence : 0.1614
 Detection Rate : 0.1614
 Detection Prevalence : 0.1614
 Balanced Accuracy : 1.0000

 'Positive' Class : X1

Area under the curve: 1

#results of trained model on test set
testresults$rfFit <- testresultsfunction(rfFit, testHRdata, "rfFit")

124

Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 308 49
 X1 0 10

 Accuracy : 0.8665
 95% CI : (0.8274, 0.8996)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.08614

 Kappa : 0.2551
 Mcnemar's Test P-Value : 7.025e-12

 Sensitivity : 0.16949
 Specificity : 1.00000
 Pos Pred Value : 1.00000
 Neg Pred Value : 0.86275
 Prevalence : 0.16076
 Detection Rate : 0.02725
 Detection Prevalence : 0.02725
 Balanced Accuracy : 0.58475

 'Positive' Class : X1

[1] "F1 score = 0.289855072463768"
Area under the curve: 0.7839

#------------------------------

125

#Random Forests Dummy set
#------------------------------

mtryValuesDummy <- c(2, 10, 20, 30, 40, 52)
set.seed(1247)
rfFitDummy <- train(x = trainHRdataDummy[, -1],
 y = trainHRdataDummy$Attrition,
 method = "rf",
 ntree = 1000,
 tuneGrid = data.frame(mtry = mtryValuesDummy),
 importance = TRUE,
 metric = "ROC",
 trControl = ctrl)
rfFitDummy
Outcome:
Random Forest

1103 samples
 51 predictor
 2 classes: 'X0', 'X1'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...
Resampling results across tuning parameters:

 mtry ROC Sens Spec
 2 0.8282182 0.9991351 0.05143791
 10 0.8120767 0.9900397 0.16150327
 20 0.8046020 0.9822604 0.19189542
 30 0.8006318 0.9794530 0.20535948
 40 0.7989807 0.9772838 0.21098039
 52 0.7975457 0.9740486 0.20862745

ROC was used to select the optimal model using the largest value.
The final value used for the model was mtry = 2.

#results of trained model
trainresults$rfFitDummy <- trainresultsfunction(rfFitDummy, trainHRdataDummy)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 925 25
 X1 0 153

 Accuracy : 0.9773
 95% CI : (0.9667, 0.9853)
 No Information Rate : 0.8386
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.9112
 Mcnemar's Test P-Value : 1.587e-06

 Sensitivity : 0.8596
 Specificity : 1.0000
 Pos Pred Value : 1.0000

126

 Neg Pred Value : 0.9737
 Prevalence : 0.1614
 Detection Rate : 0.1387
 Detection Prevalence : 0.1387
 Balanced Accuracy : 0.9298

 'Positive' Class : X1

Area under the curve: 1

#results of trained model on test set
testresults$rfFitDummy <- testresultsfunction(rfFitDummy, testHRdataDummy, "rfFitDummy")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 308 52
 X1 0 7

 Accuracy : 0.8583
 95% CI : (0.8184, 0.8923)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.1784

 Kappa : 0.1843
 Mcnemar's Test P-Value : 1.522e-12

 Sensitivity : 0.11864
 Specificity : 1.00000
 Pos Pred Value : 1.00000
 Neg Pred Value : 0.85556
 Prevalence : 0.16076
 Detection Rate : 0.01907
 Detection Prevalence : 0.01907
 Balanced Accuracy : 0.55932

 'Positive' Class : X1

[1] "F1 score = 0.212121212121212"
Area under the curve: 0.7859

127

#------------------------------

#Boosting: Gradient Boosting Machines
#------------------------------

gbmGrid <- expand.grid(interaction.depth = c(1, 3, 5, 7, 9),
 n.trees = (1:15)*100,
 shrinkage = c(.01, .1),
 n.minobsinnode = 10)

#the method gbm needs the predictors to be of the same type (numeric, ordered, or factor).
That is why gbm is only executed on the dummy training set.

#------------------------------

#Gradient Boosting Machines dummy set
#------------------------------

set.seed(1247)
gbmFitDummy <- train(x = trainHRdataDummy[, -1],
 y = trainHRdataDummy$Attrition,
 method = "gbm",
 tuneGrid = gbmGrid,
 metric = "ROC",
 verbose = FALSE,
 trControl = ctrl)
gbmFitDummy
Outcome:

128

Stochastic Gradient Boosting

1103 samples
 51 predictor
 2 classes: 'X0', 'X1'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...
Resampling results across tuning parameters:

 shrinkage interaction.depth n.trees ROC Sens Spec
 0.01 1 100 0.7520932 1.0000000 0.00000000
 0.01 1 200 0.7744828 0.9993502 0.01555556
 0.01 1 300 0.7881055 0.9976204 0.03790850
 0.01 1 400 0.8009539 0.9956732 0.06496732
 0.01 1 500 0.8114195 0.9943782 0.08307190
 0.01 1 600 0.8179557 0.9937260 0.11104575
 0.01 1 700 0.8234029 0.9937237 0.12901961
 0.01 1 800 0.8278312 0.9935086 0.15026144
 0.01 1 900 0.8312533 0.9917789 0.17169935
 0.01 1 1000 0.8339333 0.9904839 0.19091503
 0.01 1 1100 0.8364020 0.9896143 0.21895425
 0.01 1 1200 0.8384327 0.9887447 0.25052288
 0.01 1 1300 0.8409396 0.9883146 0.26189542
 0.01 1 1400 0.8425855 0.9867952 0.28444444
 0.01 1 1500 0.8436796 0.9867976 0.29222222
 0.01 3 100 0.7805504 0.9995676 0.01555556
 0.01 3 200 0.8010011 0.9939364 0.07601307
 0.01 3 300 0.8123053 0.9922066 0.12895425
 0.01 3 400 0.8187787 0.9902595 0.16267974
 0.01 3 500 0.8244944 0.9885297 0.19307190
 0.01 3 600 0.8279645 0.9876671 0.22568627
 0.01 3 700 0.8311173 0.9874497 0.25150327
 0.01 3 800 0.8333486 0.9861477 0.27176471
 0.01 3 900 0.8364593 0.9850678 0.28862745
 0.01 3 1000 0.8375149 0.9833333 0.30091503
 0.01 3 1100 0.8385839 0.9831159 0.31437908
 0.01 3 1200 0.8395808 0.9822511 0.32222222
 0.01 3 1300 0.8402667 0.9807293 0.33568627
 0.01 3 1400 0.8412079 0.9794320 0.34241830
 0.01 3 1500 0.8419168 0.9783497 0.34346405
 0.01 5 100 0.7954710 0.9991328 0.02568627
 0.01 5 200 0.8119993 0.9943735 0.10300654
 0.01 5 300 0.8199939 0.9913394 0.17071895
 0.01 5 400 0.8265990 0.9889575 0.21235294
 0.01 5 500 0.8308797 0.9878775 0.24712418
 0.01 5 600 0.8331628 0.9863604 0.27189542
 0.01 5 700 0.8344650 0.9852828 0.29098039
 0.01 5 800 0.8359463 0.9839808 0.30660131
 0.01 5 900 0.8366358 0.9828962 0.31117647
 0.01 5 1000 0.8379351 0.9820243 0.32013072
 0.01 5 1100 0.8385342 0.9800795 0.32901961
 0.01 5 1200 0.8393080 0.9792146 0.33013072
 0.01 5 1300 0.8393487 0.9774848 0.33803922
 0.01 5 1400 0.8393068 0.9761851 0.33575163
 0.01 5 1500 0.8393676 0.9761851 0.34254902
 0.01 7 100 0.7995776 0.9982702 0.02673203
 0.01 7 200 0.8151414 0.9926414 0.11973856
 0.01 7 300 0.8233312 0.9900397 0.19666667
 0.01 7 400 0.8275936 0.9880902 0.22549020
 0.01 7 500 0.8312094 0.9876578 0.26156863

129

 0.01 7 600 0.8333506 0.9852805 0.27954248
 0.01 7 700 0.8351079 0.9835484 0.29653595
 0.01 7 800 0.8359870 0.9822534 0.30895425
 0.01 7 900 0.8365397 0.9813838 0.31679739
 0.01 7 1000 0.8363373 0.9803039 0.32124183
 0.01 7 1100 0.8366863 0.9790112 0.32228758
 0.01 7 1200 0.8370614 0.9781463 0.32450980
 0.01 7 1300 0.8374840 0.9764165 0.32679739
 0.01 7 1400 0.8372265 0.9753343 0.32673203
 0.01 7 1500 0.8374652 0.9757667 0.33013072
 0.01 9 100 0.8016337 0.9984853 0.03679739
 0.01 9 200 0.8144669 0.9926344 0.13901961
 0.01 9 300 0.8222977 0.9891748 0.19862745
 0.01 9 400 0.8269018 0.9876625 0.23470588
 0.01 9 500 0.8288386 0.9852805 0.26372549

Note: the list was reduced!

Tuning parameter 'n.minobsinnode' was held constant at a value of 10
ROC was used to select the optimal model using the largest value.
The final values used for the model were n.trees = 600, interaction.depth
= 1, shrinkage = 0.1
 and n.minobsinnode = 10.

#results of trained model
trainresults$gbmFitDummy <- trainresultsfunction(gbmFitDummy, trainHRdataDummy)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 911 62
 X1 14 116

 Accuracy : 0.9311
 95% CI : (0.9145, 0.9453)
 No Information Rate : 0.8386
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.7143
 Mcnemar's Test P-Value : 6.996e-08

 Sensitivity : 0.6517
 Specificity : 0.9849
 Pos Pred Value : 0.8923
 Neg Pred Value : 0.9363
 Prevalence : 0.1614
 Detection Rate : 0.1052
 Detection Prevalence : 0.1179
 Balanced Accuracy : 0.8183

 'Positive' Class : X1

Area under the curve: 0.9394

130

#results of trained model on test set
testresults$gbmFitDummy <- testresultsfunction(gbmFitDummy, testHRdataDummy,
"gbmFitDummy")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 291 33
 X1 17 26

 Accuracy : 0.8638
 95% CI : (0.8244, 0.8972)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.11193

 Kappa : 0.4329
 Mcnemar's Test P-Value : 0.03389

 Sensitivity : 0.44068
 Specificity : 0.94481
 Pos Pred Value : 0.60465
 Neg Pred Value : 0.89815
 Prevalence : 0.16076
 Detection Rate : 0.07084
 Detection Prevalence : 0.11717
 Balanced Accuracy : 0.69274

 'Positive' Class : X1

[1] "F1 score = 0.509803921568627"
Area under the curve: 0.8154

131

#------------------------------

#C5.0
#------------------------------

c50Grid <- expand.grid(trials = c(1:9, (1:10)*10),
 model = c("tree", "rules"),
 winnow = c(TRUE, FALSE))

c50Fit <- train(x = trainHRdata[, -1],
 y = trainHRdata$Attrition,
 method = "C5.0",
 tuneGrid = c50Grid,
 metric = "ROC",
 verbose = FALSE,
 trControl = ctrl)

#Running this model produces the error: "either a tree or rules must be provided"
#Since these are provided, it is concluded that c5.0 does not work on trainHRdata dataset.

#------------------------------

#C5.0 dummy set
#------------------------------

c50FitDummy <- train(x = trainHRdataDummy[, -1],
 y = trainHRdataDummy$Attrition,

132

 method = "C5.0",
 tuneGrid = c50Grid,
 metric = "ROC",
 verbose = FALSE,
 trControl = ctrl)
c50FitDummy
Outcome:
C5.0

1103 samples
 51 predictor
 2 classes: 'X0', 'X1'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 992, 992, 992, 993, 994, 993, ...
Resampling results across tuning parameters:

 model winnow trials ROC Sens Spec
 rules FALSE 1 0.4507860 0.9470407 0.2935294
 rules FALSE 2 0.6116739 0.9461851 0.2923529
 rules FALSE 3 0.7103982 0.9329804 0.3086928
 rules FALSE 4 0.7396424 0.9182702 0.3708497
 rules FALSE 5 0.7505268 0.9446470 0.3057516
 rules FALSE 6 0.7586321 0.9338359 0.3496732
 rules FALSE 7 0.7672699 0.9506989 0.3113072
 rules FALSE 8 0.7723512 0.9409724 0.3596078
 rules FALSE 9 0.7732234 0.9524217 0.3222876
 rules FALSE 10 0.7786578 0.9459374 0.3458824
 rules FALSE 20 0.7959418 0.9554675 0.3350327
 rules FALSE 30 0.8048714 0.9595652 0.3403268
 rules FALSE 40 0.8109593 0.9632328 0.3447059
 rules FALSE 50 0.8119380 0.9636653 0.3368627
 rules FALSE 60 0.8146937 0.9651847 0.3234641
 rules FALSE 70 0.8157873 0.9660355 0.3268627
 rules FALSE 80 0.8176024 0.9658205 0.3315686
 rules FALSE 90 0.8183820 0.9662599 0.3337255
 rules FALSE 100 0.8177644 0.9660332 0.3326797
 rules TRUE 1 0.4326071 0.9571716 0.1675163
 rules TRUE 2 0.5134970 0.9586933 0.1729412
 rules TRUE 3 0.6601917 0.9476625 0.2389542
 rules TRUE 4 0.6937326 0.9520126 0.2352288
 rules TRUE 5 0.7031959 0.9491725 0.2475163
 rules TRUE 6 0.7083315 0.9511477 0.2272549
 rules TRUE 7 0.7143054 0.9524264 0.2431373
 rules TRUE 8 0.7077651 0.9524357 0.2409150
 rules TRUE 9 0.7170084 0.9530926 0.2443791
 rules TRUE 10 0.7215055 0.9550257 0.2433987
 rules TRUE 20 0.7363420 0.9589154 0.2486928
 rules TRUE 30 0.7385781 0.9563090 0.2475163
 rules TRUE 40 0.7432173 0.9578191 0.2438562
 rules TRUE 50 0.7434752 0.9591141 0.2486928
 rules TRUE 60 0.7428521 0.9597662 0.2385621
 rules TRUE 70 0.7439902 0.9604137 0.2486928
 rules TRUE 80 0.7458488 0.9606358 0.2452941
 rules TRUE 90 0.7485768 0.9601964 0.2545098
 rules TRUE 100 0.7497564 0.9619331 0.2521569
 tree FALSE 1 0.5872516 0.9256685 0.3169281
 tree FALSE 2 0.5678580 0.9651964 0.1943137
 tree FALSE 3 0.6850062 0.9243198 0.2977124
 tree FALSE 4 0.7079254 0.9608836 0.2235948

133

 tree FALSE 5 0.7269227 0.9394250 0.2778431
 tree FALSE 6 0.7371385 0.9621529 0.2249020
 tree FALSE 7 0.7457089 0.9507013 0.2920915
 tree FALSE 8 0.7523029 0.9664914 0.2157516
 tree FALSE 9 0.7587161 0.9545956 0.2854248
 tree FALSE 10 0.7620169 0.9675713 0.2429412
 tree FALSE 20 0.7849037 0.9727489 0.2416340
 tree FALSE 30 0.7975436 0.9744811 0.2507190
 tree FALSE 40 0.8031911 0.9746891 0.2472549
 tree FALSE 50 0.8057415 0.9753343 0.2302614
 tree FALSE 60 0.8078063 0.9757644 0.2360131
 tree FALSE 70 0.8085484 0.9762015 0.2392157
 tree FALSE 80 0.8107055 0.9770617 0.2458824
 tree FALSE 90 0.8114283 0.9772838 0.2470588
 tree FALSE 100 0.8124837 0.9764165 0.2449020
 tree TRUE 1 0.5475425 0.9396774 0.1969935
 tree TRUE 2 0.4984825 0.9651706 0.1532026
 tree TRUE 3 0.6443040 0.9334035 0.2338562
 tree TRUE 4 0.6751334 0.9604231 0.1956209
 tree TRUE 5 0.6878512 0.9439925 0.2361438
 tree TRUE 6 0.6960811 0.9664656 0.1943791
 tree TRUE 7 0.7047369 0.9556615 0.2358824
 tree TRUE 8 0.7111375 0.9662576 0.1976471
 tree TRUE 9 0.7135427 0.9560916 0.2245098
 tree TRUE 10 0.7165999 0.9651683 0.1998039
 tree TRUE 20 0.7275286 0.9640977 0.2078431
 tree TRUE 30 0.7332628 0.9666924 0.2047059
 tree TRUE 40 0.7387336 0.9673469 0.2014379
 tree TRUE 50 0.7416204 0.9679874 0.2126144
 tree TRUE 60 0.7392242 0.9679944 0.2103922
 tree TRUE 70 0.7390053 0.9701543 0.2080392
 tree TRUE 80 0.7395830 0.9692824 0.2103268
 tree TRUE 90 0.7411626 0.9686396 0.2103268
 tree TRUE 100 0.7437485 0.9699369 0.2114379

ROC was used to select the optimal model using the largest value.
The final values used for the model were trials = 90, model = rules and w
innow = FALSE.

#results of trained model
trainresults$c50FitDummy <- trainresultsfunction(c50FitDummy, trainHRdataDummy)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 925 0
 X1 0 178

 Accuracy : 1
 95% CI : (0.9967, 1)
 No Information Rate : 0.8386
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 1
 Mcnemar's Test P-Value : NA

 Sensitivity : 1.0000
 Specificity : 1.0000
 Pos Pred Value : 1.0000

134

 Neg Pred Value : 1.0000
 Prevalence : 0.1614
 Detection Rate : 0.1614
 Detection Prevalence : 0.1614
 Balanced Accuracy : 1.0000

 'Positive' Class : X1

Area under the curve: 1

#results of trained model on test set
testresults$c50FitDummy <- testresultsfunction(c50FitDummy, testHRdataDummy,
"c50FitDummy")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 301 38
 X1 7 21

 Accuracy : 0.8774
 95% CI : (0.8394, 0.9091)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.02456

 Kappa : 0.4231
 Mcnemar's Test P-Value : 7.744e-06

 Sensitivity : 0.35593
 Specificity : 0.97727
 Pos Pred Value : 0.75000
 Neg Pred Value : 0.88791
 Prevalence : 0.16076
 Detection Rate : 0.05722
 Detection Prevalence : 0.07629
 Balanced Accuracy : 0.66660

 'Positive' Class : X1

[1] "F1 score = 0.482758620689655"
Area under the curve: 0.7912

135

Compare the model resluts.

#make function to get the Confidence Interval values of the ROC

ROCCItestfunction <- function(xx){
 RocTest <- roc(response = xx$outcome, predictor = xx$X1, levels =
rev(levels(xx$outcome)))
 ROCCITest <- ci.auc(RocTest, method = "b", boot.n = 2000, boot.stratified = TRUE)
 print(ROCCITest)
 return(ROCCITest)
}

#collect value in dataframe
ROCCI <- NULL

ROCCI$logisicReg <- ROCCItestfunction(testresults$logisticReg)
ROCCI$LDA <- ROCCItestfunction(testresults$ldaFit)
ROCCI$PenalizedLR <- ROCCItestfunction(testresults$glmnTuned)
ROCCI$nnet <- ROCCItestfunction(testresults$nnetFit)
ROCCI$AvrgNnet <- ROCCItestfunction(testresults$nnetFit2)
ROCCI$FDA <- ROCCItestfunction(testresults$fdaFit)
ROCCI$SVM <- ROCCItestfunction(testresults$svmFit)
ROCCI$KNN <- ROCCItestfunction(testresults$knnFit)
ROCCI$NaiveBayes <- ROCCItestfunction(testresults$nbFit)
ROCCI$RPART <- ROCCItestfunction(testresults$rpartFit)
ROCCI$RPARTDummy <- ROCCItestfunction(testresults$rpartFitDummy)
ROCCI$J48 <- ROCCItestfunction(testresults$j48Fit)

136

ROCCI$J48Dummy <- ROCCItestfunction(testresults$j48FitDummy)
ROCCI$PART <- ROCCItestfunction(testresults$partFit)
ROCCI$PARTDummy <- ROCCItestfunction(testresults$partFitDummy)
ROCCI$BaggedTrees <- ROCCItestfunction(testresults$treebagFit)
ROCCI$BaggedTreesDummy <- ROCCItestfunction(testresults$treebagFitDummy)
ROCCI$RF <- ROCCItestfunction(testresults$rfFit)
ROCCI$RFDummy <- ROCCItestfunction(testresults$rfFitDummy)
ROCCI$GBMDummy <- ROCCItestfunction(testresults$gbmFitDummy)
ROCCI$C5.0Dummy <- ROCCItestfunction(testresults$c50FitDummy)

ROCCI <- data.frame(ROCCI)

ROCCI <- melt(ROCCI)

#plot the values
stripplot(variable ~ value,
 data = ROCCI,
 groups = variable,
 type = "l")
Outcome:

#Sampling Methods

#upsampling, downsampling, and the hybrid from: synthetic minority over-sampling
technique (SMOTE)

137

trainHRdata$Attrition <- as.factor(trainHRdata$Attrition)
summary.default(trainHRdata$Attrition)
Outcome:
X0 X1
925 178

#downsampling would result in a training set of 178x2= 356
#this is to low to expect good results

#apply upsampling
set.seed(1247)
trainHRdataDummyFullRankLowCorrUpSampled <-
upSample(trainHRdataDummyFullRankLowCorr,
trainHRdataDummyFullRankLowCorr$Attrition)
summary.default(trainHRdataDummyFullRankLowCorrUpSampled$Attrition)
Outcome:
X0 X1
925 925

set.seed(1247)
trainHRdataUpSampled <- upSample(trainHRdata, trainHRdata$Attrition)

set.seed(1247)
trainHRdataDummyUpSampled <- upSample(trainHRdataDummy,
trainHRdataDummy$Attrition)

set.seed(1247)
trainHRdataDummyFullRankUpSampled <- upSample(trainHRdataDummyFullRank,
trainHRdataDummyFullRank$Attrition)

#apply SMOTE
set.seed(1247)
trainHRdataSMOTE <- SMOTE(Attrition ~., data = trainHRdata, perc.over = 100, k = 5,
perc.under = 100)
#Does not work on this dataset, since the predictors should be of the same type.

set.seed(1247)
trainHRdataDummySMOTE <- SMOTE(Attrition ~., data = trainHRdataDummy, perc.over =
200, k = 5, perc.under = 200)
summary.default(trainHRdataDummySMOTE$Attrition)
Outcome:
X0 X1
712 534

set.seed(1247)
trainHRdataDummyFullRankSMOTE <- SMOTE(Attrition ~., data =
trainHRdataDummyFullRank, perc.over = 200, k = 5, perc.under = 200)

set.seed(1247)

138

trainHRdataDummyFullRankLowCorrSMOTE <- SMOTE(Attrition ~., data =
trainHRdataDummyFullRankLowCorr, perc.over = 200, k = 5, perc.under = 200)

#---

#Use newly created datasets to train models
#---

#-------------------------------------

#Logistic Regression
#-------------------------------------

#Logistic Regression UpSampled

trainHRdataDummyFullRankLowCorrUpSampled$Class<-NULL

set.seed(1247)
logisticRegUpSampled <- train(trainHRdataDummyFullRankLowCorrUpSampled[, -1], y =
trainHRdataDummyFullRankLowCorrUpSampled$Attrition, method = "glm", preProc =
c("BoxCox", "center", "scale"), metric = "ROC", trControl = ctrl)
logisticRegUpSampled
Outcome:
Generalized Linear Model

1850 samples
 39 predictor
 2 classes: 'X0', 'X1'

Pre-processing: Box-Cox transformation (13), centered (39), scaled (39)
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 1664, 1664, 1664, 1665, 1666, 1665, ...
Resampling results:

 ROC Sens Spec
 0.8623527 0.7625877 0.7701753

trainresultsSampling <- NULL
testresultsSampling <- NULL

#results of trained model
trainresultsSampling$logisticRegUpSampled <- trainresultsfunction(logisticRegUpSampled,
trainHRdataDummyFullRankLowCorrUpSampled)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 718 189
 X1 207 736

 Accuracy : 0.7859
 95% CI : (0.7665, 0.8044)
 No Information Rate : 0.5
 P-Value [Acc > NIR] : <2e-16

 Kappa : 0.5719

139

 Mcnemar's Test P-Value : 0.3929

 Sensitivity : 0.7957
 Specificity : 0.7762
 Pos Pred Value : 0.7805
 Neg Pred Value : 0.7916
 Prevalence : 0.5000
 Detection Rate : 0.3978
 Detection Prevalence : 0.5097
 Balanced Accuracy : 0.7859

 'Positive' Class : X1

Area under the curve: 0.8758

#results of trained model on test set
testresultsSampling$logisticRegUpSampled <- testresultsfunction(logisticRegUpSampled,
testHRdataDummyFullRankLowCorr, "logisticRegUpSampled")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 237 16
 X1 71 43

 Accuracy : 0.7629
 95% CI : (0.716, 0.8055)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.9999

 Kappa : 0.3619
 Mcnemar's Test P-Value : 7.064e-09

 Sensitivity : 0.7288
 Specificity : 0.7695
 Pos Pred Value : 0.3772
 Neg Pred Value : 0.9368
 Prevalence : 0.1608
 Detection Rate : 0.1172
 Detection Prevalence : 0.3106
 Balanced Accuracy : 0.7491

 'Positive' Class : X1

140

[1] "F1 score = 0.497109826589595"
Area under the curve: 0.8168

#Logistic Regression SMOTE

set.seed(1247)
logisticRegSMOTE <- train(trainHRdataDummyFullRankLowCorrSMOTE[, -1], y =
trainHRdataDummyFullRankLowCorrSMOTE$Attrition, method = "glm", preProc =
c("BoxCox", "center", "scale"), metric = "ROC", trControl = ctrl)
logisticRegSMOTE
Outcome:
Generalized Linear Model

1246 samples
 39 predictor
 2 classes: 'X0', 'X1'

Pre-processing: Box-Cox transformation (14), centered (39), scaled (39)
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 1121, 1121, 1121, 1122, 1121, 1122, ...
Resampling results:

 ROC Sens Spec
 0.891164 0.8376135 0.7744654

#results of trained model

141

trainresultsSampling$logisticRegSMOTE <- trainresultsfunction(logisticRegSMOTE,
trainHRdataDummyFullRankLowCorrSMOTE)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 606 111
 X1 106 423

 Accuracy : 0.8258
 95% CI : (0.8036, 0.8465)
 No Information Rate : 0.5714
 P-Value [Acc > NIR] : <2e-16

 Kappa : 0.644
 Mcnemar's Test P-Value : 0.786

 Sensitivity : 0.7921
 Specificity : 0.8511
 Pos Pred Value : 0.7996
 Neg Pred Value : 0.8452
 Prevalence : 0.4286
 Detection Rate : 0.3395
 Detection Prevalence : 0.4246
 Balanced Accuracy : 0.8216

 'Positive' Class : X1

Area under the curve: 0.9078

#results of trained model on test set
testresultsSampling$logisticRegSMOTE <- testresultsfunction(logisticRegSMOTE,
testHRdataDummyFullRankLowCorr, "logisticRegSMOTE")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 249 18
 X1 59 41

 Accuracy : 0.7902
 95% CI : (0.7449, 0.8307)

142

 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.9946

 Kappa : 0.393
 Mcnemar's Test P-Value : 5.154e-06

 Sensitivity : 0.6949
 Specificity : 0.8084
 Pos Pred Value : 0.4100
 Neg Pred Value : 0.9326
 Prevalence : 0.1608
 Detection Rate : 0.1117
 Detection Prevalence : 0.2725
 Balanced Accuracy : 0.7517

 'Positive' Class : X1

[1] "F1 score = 0.515723270440252"
Area under the curve: 0.815

#--

#Neural Networks
#--

#create grid
nnetGrid <- expand.grid(.size = 1:10, .decay = c(0, .1, 1, 2))

maxSize <- max(nnetGrid$.size)
numWts <- 1*(maxSize * (length(trainHRdataDummyFullRankLowCorr)) + maxSize + 1)

143

#Neural Networks UpSampled

#spatialSign increases the predictive performance
set.seed(1247)
nnetFitUpSampled <- train(trainHRdataDummyFullRankLowCorrUpSampled[, -1],
trainHRdataDummyFullRankLowCorrUpSampled$Attrition, method = "nnet", metric = "ROC",
preProc = c("BoxCox", "center", "scale", "spatialSign"), tuneGrid = nnetGrid, trace = FALSE,
maxit = 2000, MaxNWts = numWts, trControl = ctrl)
nnetFitUpSampled
Outcome:
Neural Network

1850 samples
 39 predictor
 2 classes: 'X0', 'X1'

Pre-processing: Box-Cox transformation (13), centered (39), scaled (39), s
patial sign transformation (39)
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 1664, 1664, 1664, 1665, 1666, 1665, ...
Resampling results across tuning parameters:

 size decay ROC Sens Spec
 1 0.0 0.8373854 0.8212062 0.7880902
 1 0.1 0.8690010 0.8196540 0.7584853
 1 1.0 0.8682373 0.7939154 0.7749299
 1 2.0 0.8650401 0.7863558 0.7799135
 2 0.0 0.8861367 0.7951403 0.8533754
 2 0.1 0.8969714 0.7889855 0.8244367
 2 1.0 0.8780763 0.8038710 0.7784011
 2 2.0 0.8656446 0.7803109 0.7799088
 3 0.0 0.9125570 0.8313020 0.8981814
 3 0.1 0.9191268 0.8220360 0.8940790
 3 1.0 0.8801631 0.8045348 0.7831557
 3 2.0 0.8661533 0.7818280 0.7805610
 4 0.0 0.9241239 0.8396470 0.9168186
 4 0.1 0.9336959 0.8298083 0.9291024
 4 1.0 0.8800960 0.8051870 0.7844530
 4 2.0 0.8654821 0.7781557 0.7816386
 5 0.0 0.9290908 0.8434409 0.9419986
 5 0.1 0.9396955 0.8456194 0.9643268
 5 1.0 0.8799024 0.8047546 0.7848831
 5 2.0 0.8655372 0.7770734 0.7822908
 6 0.0 0.9362701 0.8511641 0.9647288
 6 0.1 0.9477583 0.8516550 0.9783731
 6 1.0 0.8798791 0.8047546 0.7855283
 6 2.0 0.8653264 0.7753389 0.7837985
 7 0.0 0.9377642 0.8507924 0.9672814
 7 0.1 0.9588392 0.8661875 0.9881089
 7 1.0 0.8798790 0.8045418 0.7855283
 7 2.0 0.8652587 0.7744764 0.7827232
 8 0.0 0.9419095 0.8507340 0.9846237
 8 0.1 0.9621525 0.8661501 0.9933029
 8 1.0 0.8798977 0.8047592 0.7855283
 8 2.0 0.8652844 0.7753436 0.7844437
 9 0.0 0.9419214 0.8548995 0.9857340
 9 0.1 0.9671956 0.8668046 0.9950257
 9 1.0 0.8798653 0.8045442 0.7855283

144

 9 2.0 0.8652568 0.7742590 0.7827232
 10 0.0 0.9445508 0.8583614 0.9965498
 10 0.1 0.9713717 0.8782515 0.9971950
 10 1.0 0.8799071 0.8045418 0.7855283
 10 2.0 0.8651381 0.7736115 0.7831533

ROC was used to select the optimal model using the largest value.
The final values used for the model were size = 10 and decay = 0.1.

#results of trained model
trainresultsSampling$nnetFitUpSampled <- trainresultsfunction(nnetFitUpSampled,
trainHRdataDummyFullRankLowCorrUpSampled)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 923 0
 X1 2 925

 Accuracy : 0.9989
 95% CI : (0.9961, 0.9999)
 No Information Rate : 0.5
 P-Value [Acc > NIR] : <2e-16

 Kappa : 0.9978
 Mcnemar's Test P-Value : 0.4795

 Sensitivity : 1.0000
 Specificity : 0.9978
 Pos Pred Value : 0.9978
 Neg Pred Value : 1.0000
 Prevalence : 0.5000
 Detection Rate : 0.5000
 Detection Prevalence : 0.5011
 Balanced Accuracy : 0.9989

 'Positive' Class : X1

Area under the curve: 1

#results of trained model on test set
testresultsSampling$nnetFitUpSampled <- testresultsfunction(nnetFitUpSampled,
testHRdataDummyFullRankLowCorr, "nnetFitUpSampled")

145

Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 276 29
 X1 32 30

 Accuracy : 0.8338
 95% CI : (0.7917, 0.8704)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.6440

 Kappa : 0.3964
 Mcnemar's Test P-Value : 0.7979

 Sensitivity : 0.50847
 Specificity : 0.89610
 Pos Pred Value : 0.48387
 Neg Pred Value : 0.90492
 Prevalence : 0.16076
 Detection Rate : 0.08174
 Detection Prevalence : 0.16894
 Balanced Accuracy : 0.70229

 'Positive' Class : X1

[1] "F1 score = 0.495867768595041"
Area under the curve: 0.7925

146

#Neural Networks SMOTE

#spatialSign increases the predictive performance
set.seed(1247)
nnetFitUpSMOTE <- train(trainHRdataDummyFullRankLowCorrSMOTE[, -1],
trainHRdataDummyFullRankLowCorrSMOTE$Attrition, method = "nnet", metric = "ROC",
preProc = c("BoxCox", "center", "scale", "spatialSign"), tuneGrid = nnetGrid, trace = FALSE,
maxit = 2000, MaxNWts = numWts, trControl = ctrl)
nnetFitUpSMOTE
Outcome:
Neural Network

1246 samples
 39 predictor
 2 classes: 'X0', 'X1'

Pre-processing: Box-Cox transformation (14), centered (39), scaled (39), s
patial sign transformation (39)
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 1121, 1121, 1121, 1122, 1121, 1122, ...
Resampling results across tuning parameters:

 size decay ROC Sens Spec
 1 0.0 0.8766043 0.8792097 0.7725926
 1 0.1 0.8976848 0.8578247 0.7734172
 1 1.0 0.8946517 0.8479890 0.7708036
 1 2.0 0.8887835 0.8608881 0.7562404
 2 0.0 0.8778907 0.8668271 0.7825856
 2 0.1 0.9142561 0.8536189 0.8052830
 2 1.0 0.8947731 0.8477074 0.7737876
 2 2.0 0.8896895 0.8586581 0.7554647
 3 0.0 0.8856142 0.8783646 0.8074423
 3 0.1 0.9257528 0.8637011 0.8431027
 3 1.0 0.8950995 0.8491119 0.7726555
 3 2.0 0.8896754 0.8575391 0.7550734
 4 0.0 0.8949660 0.8861581 0.8180922
 4 0.1 0.9378992 0.8828326 0.8700559
 4 1.0 0.8946383 0.8468701 0.7719008
 4 2.0 0.8895910 0.8569757 0.7557932
 5 0.0 0.8951367 0.8772066 0.8457372
 5 0.1 0.9484980 0.8929421 0.8884067
 5 1.0 0.8947368 0.8471518 0.7715234
 5 2.0 0.8895021 0.8569757 0.7557932
 6 0.0 0.8972280 0.8904734 0.8562683
 6 0.1 0.9528639 0.8959898 0.9086024
 6 1.0 0.8946169 0.8471518 0.7726415
 6 2.0 0.8894284 0.8561307 0.7554228
 7 0.0 0.9049533 0.8949296 0.8625926
 7 0.1 0.9565219 0.9128717 0.9131516
 7 1.0 0.8946210 0.8474335 0.7711391
 7 2.0 0.8893703 0.8564124 0.7550454
 8 0.0 0.9033950 0.8926643 0.8662683
 8 0.1 0.9611718 0.9120031 0.9258770
 8 1.0 0.8945690 0.8477152 0.7718798
 8 2.0 0.8893185 0.8564124 0.7550454
 9 0.0 0.8963317 0.8847613 0.8702096
 9 0.1 0.9640022 0.9151330 0.9389658
 9 1.0 0.8945167 0.8477152 0.7718798
 9 2.0 0.8892868 0.8561307 0.7557862
 10 0.0 0.9090557 0.8937911 0.8817470

147

 10 0.1 0.9651034 0.9187676 0.9319147
 10 1.0 0.8944221 0.8474335 0.7718798
 10 2.0 0.8892401 0.8555673 0.7554088

ROC was used to select the optimal model using the largest value.
The final values used for the model were size = 10 and decay = 0.1.

#results of trained model
trainresultsSampling$nnetFitUpSMOTE <- trainresultsfunction(nnetFitUpSMOTE,
trainHRdataDummyFullRankLowCorrSMOTE)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 712 2
 X1 0 532

 Accuracy : 0.9984
 95% CI : (0.9942, 0.9998)
 No Information Rate : 0.5714
 P-Value [Acc > NIR] : <2e-16

 Kappa : 0.9967
 Mcnemar's Test P-Value : 0.4795

 Sensitivity : 0.9963
 Specificity : 1.0000
 Pos Pred Value : 1.0000
 Neg Pred Value : 0.9972
 Prevalence : 0.4286
 Detection Rate : 0.4270
 Detection Prevalence : 0.4270
 Balanced Accuracy : 0.9981

 'Positive' Class : X1

Area under the curve: 1

#results of trained model on test set
testresultsSampling$nnetFitUpSMOTE <- testresultsfunction(nnetFitUpSMOTE,
testHRdataDummyFullRankLowCorr, "nnetFitUpSMOTE")
Outcome:
Confusion Matrix and Statistics

148

 Reference
Prediction X0 X1
 X0 260 23
 X1 48 36

 Accuracy : 0.8065
 95% CI : (0.7624, 0.8457)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.959541

 Kappa : 0.3879
 Mcnemar's Test P-Value : 0.004396

 Sensitivity : 0.61017
 Specificity : 0.84416
 Pos Pred Value : 0.42857
 Neg Pred Value : 0.91873
 Prevalence : 0.16076
 Detection Rate : 0.09809
 Detection Prevalence : 0.22888
 Balanced Accuracy : 0.72716

 'Positive' Class : X1

[1] "F1 score = 0.503496503496503"
Area under the curve: 0.7676

#---

149

#Flexible Discriminant Analysis
#---

#Train FDA over number of components from 1 to 30 and a degree of 1 and 2.

#Train on upsampled trainingset.
set.seed(1247)
fdaFitupsampled <- train(x = trainHRdataDummyFullRankLowCorrUpSampled[, -1], y =
trainHRdataDummyFullRankLowCorrUpSampled$Attrition, method = "earth", metric =
"ROC", preProc = c("BoxCox", "center", "scale"), tuneGrid = expand.grid(.nprune = 1:30,
.degree = 1:2), trControl = ctrl)
fdaFitupsampled
Outcome:
Multivariate Adaptive Regression Spline

1850 samples
 39 predictor
 2 classes: 'X0', 'X1'

Pre-processing: Box-Cox transformation (13), centered (39), scaled (39)
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 1664, 1664, 1664, 1665, 1666, 1665, ...
Resampling results across tuning parameters:
 1 28 0.8799666 0.7897616 0.8207784
 1 29 0.8834650 0.7925830 0.8220804
 1 30 0.8830586 0.7923726 0.8227115
 2 1 0.5000000 0.7400000 0.2600000
 2 2 0.6100958 0.7104745 0.5620991
 2 3 0.7193622 0.6708392 0.6646424
 2 4 0.7422760 0.7035133 0.6490697
 2 5 0.7622773 0.7182539 0.6722814
 2 6 0.7778210 0.7262272 0.7033848
 2 7 0.7886456 0.7329056 0.7117578
 2 8 0.7967406 0.7363417 0.7212950
 2 9 0.8079603 0.7424240 0.7424731
 2 10 0.8182017 0.7543315 0.7457574
 2 11 0.8232655 0.7530295 0.7522347
 2 12 0.8319331 0.7588663 0.7609046
 2 13 0.8395600 0.7631837 0.7721155
 2 14 0.8426392 0.7716223 0.7768724
 2 15 0.8468435 0.7722698 0.7908789
 2 16 0.8516156 0.7707527 0.7958696
 2 17 0.8543649 0.7767952 0.7978144
 2 18 0.8575320 0.7815591 0.8036419
 2 19 0.8606604 0.7826414 0.8090720
 2 20 0.8648038 0.7876064 0.8142660
 2 21 0.8684763 0.7889130 0.8131791
 2 22 0.8716962 0.7884970 0.8216199
 2 23 0.8739333 0.7932702 0.8237681
 2 24 0.8756527 0.7926367 0.8250865
 2 25 0.8785085 0.7954254 0.8294156
 2 26 0.8796350 0.7997499 0.8298457
 2 27 0.8811837 0.8006054 0.8311127
 2 28 0.8826468 0.8017134 0.8354418
 2 29 0.8843310 0.8042987 0.8343572
 2 30 0.8856178 0.8023656 0.8363067

ROC was used to select the optimal model using the largest value.
The final values used for the model were nprune = 30 and degree = 2.

150

#results of trained model
trainresultsSampling$fdaFitupsampled <- trainresultsfunction(fdaFitupsampled,
trainHRdataDummyFullRankLowCorrUpSampled)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 767 144
 X1 158 781

 Accuracy : 0.8368
 95% CI : (0.8191, 0.8533)
 No Information Rate : 0.5
 P-Value [Acc > NIR] : <2e-16

 Kappa : 0.6735
 Mcnemar's Test P-Value : 0.4544

 Sensitivity : 0.8443
 Specificity : 0.8292
 Pos Pred Value : 0.8317
 Neg Pred Value : 0.8419
 Prevalence : 0.5000
 Detection Rate : 0.4222
 Detection Prevalence : 0.5076
 Balanced Accuracy : 0.8368

 'Positive' Class : X1

Area under the curve: 0.9149

#results of trained model on test set
testresultsSampling$fdaFitupsampled <- testresultsfunction(fdaFitupsampled,
testHRdataDummyFullRankLowCorr, "fdaFitupsampled")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1

151

 X0 246 18
 X1 62 41

 Accuracy : 0.782
 95% CI : (0.7362, 0.8232)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.9984

 Kappa : 0.3793
 Mcnemar's Test P-Value : 1.528e-06

 Sensitivity : 0.6949
 Specificity : 0.7987
 Pos Pred Value : 0.3981
 Neg Pred Value : 0.9318
 Prevalence : 0.1608
 Detection Rate : 0.1117
 Detection Prevalence : 0.2807
 Balanced Accuracy : 0.7468

 'Positive' Class : X1

[1] "F1 score = 0.506172839506173"
Area under the curve: 0.7729

#train on SMOTE trainingset.
#Train FDA over number of components from 25 to 30 and a degree of 1 and 2.
set.seed(1247)
fdaFitSMOTE <- train(x = trainHRdataDummyFullRankLowCorrSMOTE[, -1], y =
trainHRdataDummyFullRankLowCorrSMOTE$Attrition, method = "earth", metric = "ROC",

152

preProc = c("BoxCox", "center", "scale"), tuneGrid = expand.grid(.nprune = 25:30, .degree =
1:2), trControl = ctrl)
fdaFitSMOTE
Outcome:
Multivariate Adaptive Regression Spline

1246 samples
 39 predictor
 2 classes: 'X0', 'X1'

Pre-processing: Box-Cox transformation (14), centered (39), scaled (39)
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 1121, 1121, 1121, 1122, 1121, 1122, ...
Resampling results across tuning parameters:

 degree nprune ROC Sens Spec
 1 25 0.9199323 0.9283177 0.7847170
 1 26 0.9199323 0.9283177 0.7847170
 1 27 0.9199323 0.9283177 0.7847170
 1 28 0.9199323 0.9283177 0.7847170
 1 29 0.9199323 0.9283177 0.7847170
 1 30 0.9199323 0.9283177 0.7847170
 2 25 0.9198561 0.8923670 0.7982460
 2 26 0.9200503 0.8957277 0.8016282
 2 27 0.9222879 0.8929108 0.8005101
 2 28 0.9238469 0.8963028 0.7967086
 2 29 0.9241004 0.9005282 0.7959539
 2 30 0.9245850 0.9008099 0.7978546

ROC was used to select the optimal model using the largest value.
The final values used for the model were nprune = 30 and degree = 2.

#results of trained model
trainresultsSampling$fdaFitSMOTE <- trainresultsfunction(fdaFitSMOTE,
trainHRdataDummyFullRankLowCorrSMOTE)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 668 79
 X1 44 455

 Accuracy : 0.9013
 95% CI : (0.8834, 0.9173)
 No Information Rate : 0.5714
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.7968
 Mcnemar's Test P-Value : 0.002172

 Sensitivity : 0.8521
 Specificity : 0.9382
 Pos Pred Value : 0.9118
 Neg Pred Value : 0.8942
 Prevalence : 0.4286
 Detection Rate : 0.3652
 Detection Prevalence : 0.4005
 Balanced Accuracy : 0.8951

153

 'Positive' Class : X1

Area under the curve: 0.9604

#results of trained model on test set
testresultsSampling$fdaFitSMOTE <- testresultsfunction(fdaFitSMOTE,
testHRdataDummyFullRankLowCorr, "fdaFitSMOTE")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 278 31
 X1 30 28

 Accuracy : 0.8338
 95% CI : (0.7917, 0.8704)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.644

 Kappa : 0.3798
 Mcnemar's Test P-Value : 1.000

 Sensitivity : 0.47458
 Specificity : 0.90260
 Pos Pred Value : 0.48276
 Neg Pred Value : 0.89968
 Prevalence : 0.16076
 Detection Rate : 0.07629
 Detection Prevalence : 0.15804
 Balanced Accuracy : 0.68859

 'Positive' Class : X1

[1] "F1 score = 0.478632478632479"
Area under the curve: 0.7569

154

#---

Support Vector Machines
#---

#create tuning parameters
set.seed(1247)
sigmaRangeReduced <- sigest(as.matrix(trainHRdataDummyFullRankLowCorr[, -1]))
svmRGridReduced <- expand.grid(.sigma = sigmaRangeReduced[1], .C = 2^(seq(-4, 4)))

Support Vector Machines UpSampled

#train the model
set.seed(1247)
svmFitUpSampled <- train(x = trainHRdataDummyFullRankLowCorrUpSampled[, -1], y =
trainHRdataDummyFullRankLowCorrUpSampled$Attrition, method = "svmRadial", metric =
"ROC", preProc = c("BoxCox", "center", "scale"), tuneGrid = svmRGridReduced, fit = FALSE,
trControl = ctrl)
svmFitUpSampled
Outcome:
Support Vector Machines with Radial Basis Function Kernel

1850 samples
 39 predictor
 2 classes: 'X0', 'X1'

Pre-processing: Box-Cox transformation (13), centered (39), scaled (39)
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 1664, 1664, 1664, 1665, 1666, 1665, ...

155

Resampling results across tuning parameters:

 C ROC Sens Spec
 0.0625 0.8497826 0.7543432 0.7900468
 0.1250 0.8667428 0.8030154 0.7790323
 0.2500 0.8855392 0.8051800 0.7937331
 0.5000 0.9027779 0.8205213 0.8250888
 1.0000 0.9213240 0.8376017 0.8590439
 2.0000 0.9454673 0.8682679 0.8973165
 4.0000 0.9648639 0.8966246 0.9362225
 8.0000 0.9753479 0.9182492 0.9582702
 16.0000 0.9826495 0.9323095 0.9833450

Tuning parameter 'sigma' was held constant at a value of 0.009475476
ROC was used to select the optimal model using the largest value.
The final values used for the model were sigma = 0.009475476 and C = 16.

#results of trained model
trainresultsSampling$svmFitUpSampled <- trainresultsfunction(svmFitUpSampled,
trainHRdataDummyFullRankLowCorrUpSampled)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 916 4
 X1 9 921

 Accuracy : 0.993
 95% CI : (0.988, 0.9963)
 No Information Rate : 0.5
 P-Value [Acc > NIR] : <2e-16

 Kappa : 0.9859
 Mcnemar's Test P-Value : 0.2673

 Sensitivity : 0.9957
 Specificity : 0.9903
 Pos Pred Value : 0.9903
 Neg Pred Value : 0.9957
 Prevalence : 0.5000
 Detection Rate : 0.4978
 Detection Prevalence : 0.5027
 Balanced Accuracy : 0.9930

 'Positive' Class : X1

Area under the curve: 0.998

156

#results of trained model on test set
testresultsSampling$svmFitUpSampled <- testresultsfunction(svmFitUpSampled,
testHRdataDummyFullRankLowCorr, "svmFitUpSampled")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 291 33
 X1 17 26

 Accuracy : 0.8638
 95% CI : (0.8244, 0.8972)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.11193

 Kappa : 0.4329
 Mcnemar's Test P-Value : 0.03389

 Sensitivity : 0.44068
 Specificity : 0.94481
 Pos Pred Value : 0.60465
 Neg Pred Value : 0.89815
 Prevalence : 0.16076
 Detection Rate : 0.07084
 Detection Prevalence : 0.11717
 Balanced Accuracy : 0.69274

 'Positive' Class : X1

[1] "F1 score = 0.509803921568627"
Area under the curve: 0.7753

157

Support Vector Machines SMOTE

#train the model
set.seed(1247)
svmFitSMOTE <- train(x = trainHRdataDummyFullRankLowCorrSMOTE[, -1], y =
trainHRdataDummyFullRankLowCorrSMOTE$Attrition, method = "svmRadial", metric =
"ROC", preProc = c("BoxCox", "center", "scale"), tuneGrid = svmRGridReduced, fit = FALSE,
trControl = ctrl)
svmFitSMOTE
Outcome:
Support Vector Machines with Radial Basis Function Kernel

1246 samples
 39 predictor
 2 classes: 'X0', 'X1'

Pre-processing: Box-Cox transformation (14), centered (39), scaled (39)
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 1121, 1121, 1121, 1122, 1121, 1122, ...
Resampling results across tuning parameters:

 C ROC Sens Spec
 0.0625 0.8620929 0.7173435 0.8255835
 0.1250 0.8799273 0.8241002 0.7716212
 0.2500 0.8959591 0.8482590 0.7757652
 0.5000 0.9087934 0.8541510 0.7966806
 1.0000 0.9224847 0.8687793 0.8274004
 2.0000 0.9381621 0.8845110 0.8711670

158

 4.0000 0.9533407 0.9055829 0.8932914
 8.0000 0.9649410 0.9190336 0.9190846
 16.0000 0.9737213 0.9356103 0.9479804

Tuning parameter 'sigma' was held constant at a value of 0.009475476
ROC was used to select the optimal model using the largest value.
The final values used for the model were sigma = 0.009475476 and C = 16.

#results of trained model
trainresultsSampling$svmFitSMOTE <- trainresultsfunction(svmFitSMOTE,
trainHRdataDummyFullRankLowCorrSMOTE)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 704 2
 X1 8 532

 Accuracy : 0.992
 95% CI : (0.9853, 0.9961)
 No Information Rate : 0.5714
 P-Value [Acc > NIR] : <2e-16

 Kappa : 0.9836
 Mcnemar's Test P-Value : 0.1138

 Sensitivity : 0.9963
 Specificity : 0.9888
 Pos Pred Value : 0.9852
 Neg Pred Value : 0.9972
 Prevalence : 0.4286
 Detection Rate : 0.4270
 Detection Prevalence : 0.4334
 Balanced Accuracy : 0.9925

 'Positive' Class : X1

Area under the curve: 0.9999

#results of trained model on test set
testresultsSampling$svmFitSMOTE <- testresultsfunction(svmFitSMOTE,
testHRdataDummyFullRankLowCorr, "svmFitSMOTE")

159

Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 278 33
 X1 30 26

 Accuracy : 0.8283
 95% CI : (0.7858, 0.8655)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.7418

 Kappa : 0.3505
 Mcnemar's Test P-Value : 0.8011

 Sensitivity : 0.44068
 Specificity : 0.90260
 Pos Pred Value : 0.46429
 Neg Pred Value : 0.89389
 Prevalence : 0.16076
 Detection Rate : 0.07084
 Detection Prevalence : 0.15259
 Balanced Accuracy : 0.67164

 'Positive' Class : X1

[1] "F1 score = 0.452173913043478"
Area under the curve: 0.7581

#------------------------------

160

#Random Forests Dummy set
#------------------------------
mtryValuesDummy <- c(2, 10, 20, 30, 40, 52)

#Random Forests Dummy set UpSampled
set.seed(1247)
rfFitDummyUpSampled <- train(x = trainHRdataDummyUpSampled[, -1],
 y = trainHRdataDummyUpSampled$Attrition,
 method = "rf",
 ntree = 1000,
 tuneGrid = data.frame(mtry = mtryValuesDummy),
 importance = TRUE,
 metric = "ROC",
 trControl = ctrl)
rfFitDummyUpSampled
Outcome:
Random Forest

1850 samples
 51 predictor
 2 classes: 'X0', 'X1'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 1664, 1664, 1664, 1665, 1666, 1665, ...
Resampling results across tuning parameters:

 mtry ROC Sens Spec
 2 0.9991652 0.9485133 0.9952408
 10 0.9994187 0.9517485 0.9976157
 20 0.9993058 0.9441842 0.9982655
 30 0.9991848 0.9413791 0.9987003
 40 0.9990302 0.9392146 0.9984853
 52 0.9989803 0.9394320 0.9984853

ROC was used to select the optimal model using the largest value.
The final value used for the model was mtry = 10.

#results of trained model
trainresultsSampling$rfFitDummyUpSampled <- trainresultsfunction(rfFitDummyUpSampled,
trainHRdataDummyUpSampled)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 925 0
 X1 0 925

 Accuracy : 1
 95% CI : (0.998, 1)
 No Information Rate : 0.5
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 1
 Mcnemar's Test P-Value : NA

161

 Sensitivity : 1.0
 Specificity : 1.0
 Pos Pred Value : 1.0
 Neg Pred Value : 1.0
 Prevalence : 0.5
 Detection Rate : 0.5
 Detection Prevalence : 0.5
 Balanced Accuracy : 1.0

 'Positive' Class : X1

Area under the curve: 1

#results of trained model on test set
testresultsSampling$rfFitDummyUpSampled <- testresultsfunction(rfFitDummyUpSampled,
testHRdataDummy, "rfFitDummyUpSampled")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 298 37
 X1 10 22

 Accuracy : 0.8719
 95% CI : (0.8334, 0.9044)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.0480056

 Kappa : 0.4177
 Mcnemar's Test P-Value : 0.0001491

 Sensitivity : 0.37288
 Specificity : 0.96753
 Pos Pred Value : 0.68750
 Neg Pred Value : 0.88955
 Prevalence : 0.16076
 Detection Rate : 0.05995
 Detection Prevalence : 0.08719
 Balanced Accuracy : 0.67021

 'Positive' Class : X1

[1] "F1 score = 0.483516483516484"
Area under the curve: 0.7778

162

#Random Forests Dummy set SMOTE
set.seed(1247)
rfFitDummySMOTE <- train(x = trainHRdataDummySMOTE[, -1],
 y = trainHRdataDummySMOTE$Attrition,
 method = "rf",
 ntree = 1000,
 tuneGrid = data.frame(mtry = mtryValuesDummy),
 importance = TRUE,
 metric = "ROC",
 trControl = ctrl)
rfFitDummySMOTE
Outcome:
Random Forest

1246 samples
 51 predictor
 2 classes: 'X0', 'X1'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 1121, 1121, 1121, 1122, 1121, 1122, ...
Resampling results across tuning parameters:

 mtry ROC Sens Spec
 2 0.9801181 0.9701956 0.8487212
 10 0.9794091 0.9558764 0.8707757
 20 0.9781573 0.9539085 0.8696506
 30 0.9768240 0.9508294 0.8677778

163

 40 0.9759455 0.9519444 0.8674144
 52 0.9749527 0.9527856 0.8614326

ROC was used to select the optimal model using the largest value.
The final value used for the model was mtry = 2.

#results of trained model
trainresultsSampling$rfFitDummySMOTE <- trainresultsfunction(rfFitDummySMOTE,
trainHRdataDummySMOTE)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 712 1
 X1 0 533

 Accuracy : 0.9992
 95% CI : (0.9955, 1)
 No Information Rate : 0.5714
 P-Value [Acc > NIR] : <2e-16

 Kappa : 0.9984
 Mcnemar's Test P-Value : 1

 Sensitivity : 0.9981
 Specificity : 1.0000
 Pos Pred Value : 1.0000
 Neg Pred Value : 0.9986
 Prevalence : 0.4286
 Detection Rate : 0.4278
 Detection Prevalence : 0.4278
 Balanced Accuracy : 0.9991

 'Positive' Class : X1

Area under the curve: 1

#results of trained model on test set
testresultsSampling$rfFitDummySMOTE <- testresultsfunction(rfFitDummySMOTE,
testHRdataDummy, "rfFitDummySMOTE")
Outcome:

164

Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 297 36
 X1 11 23

 Accuracy : 0.8719
 95% CI : (0.8334, 0.9044)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.0480056

 Kappa : 0.4273
 Mcnemar's Test P-Value : 0.0004639

 Sensitivity : 0.38983
 Specificity : 0.96429
 Pos Pred Value : 0.67647
 Neg Pred Value : 0.89189
 Prevalence : 0.16076
 Detection Rate : 0.06267
 Detection Prevalence : 0.09264
 Balanced Accuracy : 0.67706

 'Positive' Class : X1

[1] "F1 score = 0.494623655913979"
Area under the curve: 0.7911

#------------------------------

165

#Gradient Boosting Machines dummy set
#------------------------------
gbmGrid <- expand.grid(interaction.depth = c(1, 3, 5, 7, 9),
 n.trees = (1:15)*100,
 shrinkage = c(.01, .1),
 n.minobsinnode = 10)

#Gradient Boosting Machines dummy set UpSampled
set.seed(1247)
gbmFitDummyUpSampled <- train(x = trainHRdataDummyUpSampled[, -1],
 y = trainHRdataDummyUpSampled$Attrition,
 method = "gbm",
 tuneGrid = gbmGrid,
 metric = "ROC",
 verbose = FALSE,
 trControl = ctrl)
gbmFitDummyUpSampled
Outcome:
Stochastic Gradient Boosting

1850 samples
 51 predictor
 2 classes: 'X0', 'X1'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 1664, 1664, 1664, 1665, 1666, 1665, ...
Resampling results across tuning parameters:

 shrinkage interaction.depth n.trees ROC Sens Spec
 0.10 7 1200 0.9986824 0.9491748 0.9980552
 0.10 7 1300 0.9987454 0.9491772 0.9982726
 0.10 7 1400 0.9987881 0.9489621 0.9980552
 0.10 7 1500 0.9988163 0.9511220 0.9980552
 0.10 9 100 0.9877963 0.9093712 0.9755657
 0.10 9 200 0.9963415 0.9314142 0.9967648
 0.10 9 300 0.9977463 0.9394320 0.9980552
 0.10 9 400 0.9985339 0.9411618 0.9980552
 0.10 9 500 0.9986934 0.9446237 0.9976204
 0.10 9 600 0.9990249 0.9487307 0.9978378
 0.10 9 700 0.9991179 0.9500351 0.9976204
 0.10 9 800 0.9992227 0.9504605 0.9976204
 0.10 9 900 0.9992433 0.9513277 0.9976204
 0.10 9 1000 0.9992672 0.9528354 0.9976204
 0.10 9 1100 0.9993161 0.9519776 0.9976204
 0.10 9 1200 0.9993284 0.9539224 0.9976204
 0.10 9 1300 0.9993631 0.9543525 0.9976204
 0.10 9 1400 0.9992977 0.9537097 0.9976204
 0.10 9 1500 0.9993094 0.9534946 0.9976204
Note: list was shortened!

Tuning parameter 'n.minobsinnode' was held constant at a value of 10
ROC was used to select the optimal model using the largest value.
The final values used for the model were n.trees = 1300, interaction.dept
h = 9, shrinkage = 0.1
 and n.minobsinnode = 10.

166

#results of trained model
trainresultsSampling$gbmFitDummyUpSampled <-
trainresultsfunction(gbmFitDummyUpSampled, trainHRdataDummyUpSampled)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 925 0
 X1 0 925

 Accuracy : 1
 95% CI : (0.998, 1)
 No Information Rate : 0.5
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 1
 Mcnemar's Test P-Value : NA

 Sensitivity : 1.0
 Specificity : 1.0
 Pos Pred Value : 1.0
 Neg Pred Value : 1.0
 Prevalence : 0.5
 Detection Rate : 0.5
 Detection Prevalence : 0.5
 Balanced Accuracy : 1.0

 'Positive' Class : X1

Area under the curve: 1

#results of trained model on test set
testresultsSampling$gbmFitDummyUpSampled <-
testresultsfunction(gbmFitDummyUpSampled, testHRdataDummy,
"gbmFitDummyUpSampled")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 295 35
 X1 13 24

 Accuracy : 0.8692

167

 95% CI : (0.8304, 0.902)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.064977

 Kappa : 0.4293
 Mcnemar's Test P-Value : 0.002437

 Sensitivity : 0.4068
 Specificity : 0.9578
 Pos Pred Value : 0.6486
 Neg Pred Value : 0.8939
 Prevalence : 0.1608
 Detection Rate : 0.0654
 Detection Prevalence : 0.1008
 Balanced Accuracy : 0.6823

 'Positive' Class : X1

[1] "F1 score = 0.5"
Area under the curve: 0.7751

#Gradient Boosting Machines dummy set SMOTE
set.seed(1247)
gbmFitDummyUpSMOTE <- train(x = trainHRdataDummySMOTE[, -1],
 y = trainHRdataDummySMOTE$Attrition,
 method = "gbm",
 tuneGrid = gbmGrid,
 metric = "ROC",
 verbose = FALSE,

168

 trControl = ctrl)
gbmFitDummyUpSMOTE
Outcome:
Stochastic Gradient Boosting

1246 samples
 51 predictor
 2 classes: 'X0', 'X1'

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 1121, 1121, 1121, 1122, 1121, 1122, ...
Resampling results across tuning parameters:

 shrinkage interaction.depth n.trees ROC Sens Spec
 0.10 7 1100 0.9738368 0.9615219 0.8711950
 0.10 7 1200 0.9743225 0.9626448 0.8726555
 0.10 7 1300 0.9743821 0.9620775 0.8745563
 0.10 7 1400 0.9742881 0.9623592 0.8726695
 0.10 7 1500 0.9741201 0.9615141 0.8741929
 0.10 9 100 0.9643828 0.9550196 0.8554787
 0.10 9 200 0.9685343 0.9595305 0.8569811
 0.10 9 300 0.9709049 0.9586894 0.8633403
 0.10 9 400 0.9724274 0.9614984 0.8648498
 0.10 9 500 0.9727322 0.9615141 0.8640811
 0.10 9 600 0.9731866 0.9612363 0.8689727
 0.10 9 700 0.9734812 0.9617997 0.8719567
 0.10 9 800 0.9739389 0.9617919 0.8719357
 0.10 9 900 0.9741881 0.9620657 0.8734382
 0.10 9 1000 0.9743662 0.9609546 0.8738015
 0.10 9 1100 0.9747216 0.9606690 0.8749476
 0.10 9 1200 0.9747051 0.9615180 0.8749406
 0.10 9 1300 0.9748111 0.9609468 0.8734312
 0.10 9 1400 0.9749029 0.9615180 0.8741719
 0.10 9 1500 0.9750860 0.9612285 0.8753040
Note: list was shortened

Tuning parameter 'n.minobsinnode' was held constant at a value of 10
ROC was used to select the optimal model using the largest value.
The final values used for the model were n.trees = 1500, interaction.dept
h = 9, shrinkage = 0.1
 and n.minobsinnode = 10.

#results of trained model
trainresultsSampling$gbmFitDummyUpSMOTE <-
trainresultsfunction(gbmFitDummyUpSMOTE, trainHRdataDummySMOTE)
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 712 0
 X1 0 534

 Accuracy : 1
 95% CI : (0.997, 1)
 No Information Rate : 0.5714
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 1

169

 Mcnemar's Test P-Value : NA

 Sensitivity : 1.0000
 Specificity : 1.0000
 Pos Pred Value : 1.0000
 Neg Pred Value : 1.0000
 Prevalence : 0.4286
 Detection Rate : 0.4286
 Detection Prevalence : 0.4286
 Balanced Accuracy : 1.0000

 'Positive' Class : X1

Area under the curve: 1

#results of trained model on test set
testresultsSampling$gbmFitDummyUpSMOTE <-
testresultsfunction(gbmFitDummyUpSMOTE, testHRdataDummy,
"gbmFitDummyUpSMOTE")
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X0 X1
 X0 280 33
 X1 28 26

 Accuracy : 0.8338
 95% CI : (0.7917, 0.8704)
 No Information Rate : 0.8392
 P-Value [Acc > NIR] : 0.6440

 Kappa : 0.3622
 Mcnemar's Test P-Value : 0.6085

 Sensitivity : 0.44068
 Specificity : 0.90909
 Pos Pred Value : 0.48148
 Neg Pred Value : 0.89457
 Prevalence : 0.16076
 Detection Rate : 0.07084
 Detection Prevalence : 0.14714
 Balanced Accuracy : 0.67488

 'Positive' Class : X1

170

Area under the curve: 0.7673

#--

#Alternate Cutoff points
#--

#compare the results with Alternate Cutoff points

Create alternate cutoff function
AlternateCutoffs <- function(xx, yy){
 # xx = testresults$(Machine learning algorithm)
 # yy = "Machine learning algorithm"
 RocTest <- roc(response = xx$outcome, predictor = xx$X1, levels =
rev(levels(xx$outcome)))

 Thresh <- coords(RocTest , x = "best", ret=c("threshold", "accuracy", "specificity",
"sensitivity", "ppv"),
 best.method="closest.topleft")
print(Thresh)

Thresh

plot(RocTest , print.thres = c(.5, Thresh["threshold"]), type = "S",
 print.thres.pattern = "%.3f (Spec = %.2f, Sens = %.2f)",

171

 print.thres.cex = .8, legacy.axes = TRUE)
legend(.75, .2,
 str_c("Testset Alternate Cutoff ", yy),
 lwd = 1,
 pch = 16)

ThreshY <- coords(RocTest , x = "best", ret="threshold",
 best.method="youden")

cutText <- ifelse(Thresh["threshold"] == ThreshY,
 "is the same as",
 "is similar to")
print(cutText)

Fscore <- (2*Thresh["specificity"]*Thresh["ppv"]/(Thresh["specificity"]+Thresh["ppv"]))

print(paste(c("F1 score =", Fscore), collapse = " "))
}

#apply function on algorithms used

AlternateCutoffs(testresults$logisticReg, "Logistic Regression")
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.1848141 0.7901907 0.7288136 0.8019481 0.9391635
[1] "is the same as"
[1] "F1 score = 0.820724828065837"

AlternateCutoffs(testresults$nnetFit, "Neural Network")
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.1674948 0.8147139 0.7118644 0.8344156 0.9379562
 threshold
"is similar to"
[1] "F1 score = 0.809418469498706"

172

AlternateCutoffs(testresults$svmFit, "Support Vector Machines")
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.1770735 0.7874659 0.7627119 0.7922078 0.9457364
 threshold
"is similar to"
[1] "F1 score = 0.844420518341921"

AlternateCutoffs(testresults$rfFitDummy, "Random Forests Dummy")
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.1475000 0.7411444 0.7457627 0.7402597 0.9382716
 threshold
"is the same as"
[1] "F1 score = 0.831013916500994"

173

AlternateCutoffs(testresults$gbmFitDummy, "GBM dummy")
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.1652439 0.7792916 0.7796610 0.7792208 0.9486166
 threshold
"is the same as"
[1] "F1 score = 0.855880300798512"

Results of alternate cutoffs on Sampling

AlternateCutoffs(testresultsSampling$logisticRegUpSampled, "Logistic Regression
UpSampled")
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.5343487 0.7901907 0.7288136 0.8019481 0.9391635
 threshold
"is the same as"
[1] "F1 score = 0.820724828065837"

174

AlternateCutoffs(testresultsSampling$logisticRegSMOTE, "Logistic Regression SMOTE")
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.5257691 0.8010899 0.6949153 0.8214286 0.9335793
 threshold
"is similar to"
[1] "F1 score = 0.796758583608572"

AlternateCutoffs(testresultsSampling$nnetFitUpSampled, "Neural Network UpSampled")
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.1066153 0.7574932 0.7288136 0.7629870 0.9362550
 threshold
"is the same as"
[1] "F1 score = 0.819612296212183"

AlternateCutoffs(testresultsSampling$nnetFitUpSMOTE , "Neural Network SMOTE")
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.3349407 0.7738420 0.6779661 0.7922078 0.9277567
 threshold
"is the same as"
[1] "F1 score = 0.783432332637663"

175

AlternateCutoffs(testresultsSampling$svmFitUpSampled, "Support Vector Machines
UpSampled")
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.08109166 0.72752044 0.67796610 0.73701299 0.92276423
 threshold
"is similar to"
[1] "F1 score = 0.781646795506392"

AlternateCutoffs(testresultsSampling$svmFitSMOTE, "Support Vector Machines SMOTE")
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.1183862 0.6594005 0.7118644 0.6493506 0.9216590
 threshold
"is similar to"
[1] "F1 score = 0.803289662427082"

AlternateCutoffs(testresultsSampling$rfFitDummyUpSampled, "Random Forests Dummy
UpSampled")
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.2065000 0.7247956 0.7457627 0.7207792 0.9367089
 threshold
"is the same as"
[1] "F1 score = 0.830400408059169"

176

AlternateCutoffs(testresultsSampling$rfFitDummySMOTE, "Random Forests Dummy
SMOTE")
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.3885000 0.8174387 0.6610169 0.8474026 0.9288256
 threshold
"is the same as"
[1] "F1 score = 0.772365126337355"

AlternateCutoffs(testresultsSampling$gbmFitDummyUpSampled, "GBM dummy
UpSampled")
Outcome:
 threshold accuracy specificity sensitivity ppv
0.002546103 0.754768392 0.677966102 0.769480519 0.925781250
 threshold
"is similar to"
[1] "F1 score = 0.78272716013706"

AlternateCutoffs(testresultsSampling$gbmFitDummyUpSMOTE, "GBM dummy SMOTE")
Outcome:
 threshold accuracy specificity sensitivity ppv
0.006469846 0.752043597 0.711864407 0.759740260 0.932270916
 threshold
"is the same as"
[1] "F1 score = 0.807294233612617"

#---

177

#apply function on algorithms used based on trainingset.
#---

#First Create alternate cutoff function based on trainset.
AlternateCutoffstrain <- function(xx, yy, zz){
 # xx = trainresults$(Machine learning algorithm)
 # yy = "Machine learning algorithm"
 # zz = testresults$(Machine learning algorithm)
 RocTrain <- roc(response = xx$outcome, predictor = xx$X1, levels =
rev(levels(xx$outcome)))
 RocTest <- roc(response = zz$outcome, predictor = zz$X1, levels =
rev(levels(zz$outcome)))

 Threshtrain <- coords(RocTrain , x = "best", ret=c("threshold"),
 best.method="closest.topleft")
 Threshtest <- coords(RocTest , x = Threshtrain, input = "threshold", ret=c("threshold",
"accuracy", "specificity", "sensitivity", "ppv"))

 print(Threshtest)

 plot(RocTest , print.thres = c(.5, Threshtrain), type = "S",
 print.thres.pattern = "%.3f (Spec = %.2f, Sens = %.2f)",
 print.thres.cex = .8, legacy.axes = TRUE)
 legend(.75, .2,
 str_c("Alternate Cutoff based on Train set ", yy),
 lwd = 1,
 pch = 16)

 ThreshY <- coords(RocTrain , x = "best", ret="threshold",
 best.method="youden")

 cutText <- ifelse(Threshtrain == ThreshY,
 "is the same as",
 "is similar to")
 print(cutText)
 Fscore <-
(2*Threshtest["specificity"]*Threshtest["ppv"]/(Threshtest["specificity"]+Threshtest["ppv"]))

 print(paste(c("F1 score =", Fscore), collapse = " "))

}

AlternateCutoffstrain(trainresults$logisticReg, "Logistic Regression", testresults$logisticReg)
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.1848141 0.7901907 0.7288136 0.8019481 0.9391635
[1] "is the same as"
[1] "F1 score = 0.820724828065837"

178

AlternateCutoffstrain(trainresults$nnetFit, "Neural Network", testresults$nnetFit)
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.1753550 0.8174387 0.6949153 0.8409091 0.9350181
[1] "is similar to"
[1] "F1 score = 0.797282078234102"

AlternateCutoffstrain(trainresults$fdaFit, "Flexible Discriminant Analysis", testresults$fdaFit)
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.1504595 0.7329700 0.6610169 0.7467532 0.9200000
[1] "is the same as"
[1] "F1 score = 0.769296740994854"

179

AlternateCutoffstrain(trainresults$svmFit, "Support Vector Machines", testresults$svmFit)
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.1458358 0.7574932 0.7796610 0.7532468 0.9469388
[1] "is the same as"
[1] "F1 score = 0.855196730507252"

AlternateCutoffstrain(trainresults$rfFitDummy, "Random Forests Dummy",
testresults$rfFitDummy)
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.3425000 0.8801090 0.3050847 0.9902597 0.8815029
[1] "is the same as"
[1] "F1 score = 0.453288197167981"

180

AlternateCutoffstrain(trainresults$gbmFitDummy, "GBM dummy", testresults$gbmFitDummy)
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.2399141 0.8092643 0.6949153 0.8311688 0.9343066
[1] "is the same as"
[1] "F1 score = 0.797023312324398"

AlternateCutoffstrain(trainresultsSampling$logisticRegUpSampled, "Logistic Regression
UpSampled",
 testresultsSampling$logisticRegUpSampled)
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.4943143 0.7602180 0.7288136 0.7662338 0.9365079
[1] "is similar to"
[1] "F1 score = 0.819709208400646"

181

AlternateCutoffstrain(trainresultsSampling$logisticRegSMOTE, "Logistic Regression
SMOTE",
 testresultsSampling$logisticRegSMOTE)
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.4240535 0.7438692 0.6949153 0.7532468 0.9280000
 best best
threshold "is the same as" "is similar to"
[1] "F1 score = 0.794719692539059"

AlternateCutoffstrain(trainresultsSampling$nnetFitUpSampled, "Neural Network
UpSampled",
 testresultsSampling$nnetFitUpSampled)
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.6938504 0.8610354 0.4745763 0.9350649 0.9028213
[1] "is the same as"
[1] "F1 score = 0.622126215090264"

182

AlternateCutoffstrain(trainresultsSampling$nnetFitUpSMOTE , "Neural Network SMOTE",
 testresultsSampling$nnetFitUpSMOTE)
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.4067063 0.7847411 0.6440678 0.8116883 0.9225092
[1] "is the same as"
[1] "F1 score = 0.758543596295113"

AlternateCutoffstrain(trainresultsSampling$fdaFitupsampled, "FDA UpSampled",
 testresultsSampling$fdaFitupsampled)
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.5131750 0.7874659 0.6779661 0.8084416 0.9291045
[1] "is the same as"
[1] "F1 score = 0.783912478847743"

183

AlternateCutoffstrain(trainresultsSampling$fdaFitSMOTE , "FDA SMOTE",
 testresultsSampling$fdaFitSMOTE)
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.3949082 0.7983651 0.5593220 0.8441558 0.9090909
[1] "is similar to"
[1] "F1 score = 0.692549842602308"

AlternateCutoffstrain(trainresultsSampling$svmFitUpSampled, "Support Vector Machines
UpSampled", testresultsSampling$svmFitUpSampled)
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.7041408 0.8637602 0.3389831 0.9642857 0.8839286
 best best
threshold "is similar to" "is the same as"
[1] "F1 score = 0.490038361588912"

184

AlternateCutoffstrain(trainresultsSampling$svmFitSMOTE, "Support Vector Machines
SMOTE",
 testresultsSampling$svmFitSMOTE)
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.7329880 0.8474114 0.3559322 0.9415584 0.8841463
 best best
threshold "is the same as" "is similar to"
[1] "F1 score = 0.507542295191266"

AlternateCutoffstrain(testresultsSampling$rfFitDummyUpSampled, "Random Forests Dummy
UpSampled",
 testresultsSampling$rfFitDummyUpSampled)
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.2065000 0.7247956 0.7457627 0.7207792 0.9367089

185

[1] "is the same as"
[1] "F1 score = 0.830400408059169"

AlternateCutoffstrain(testresultsSampling$rfFitDummySMOTE, "Random Forests Dummy
SMOTE",
 testresultsSampling$rfFitDummySMOTE)
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.3885000 0.8174387 0.6610169 0.8474026 0.9288256
[1] "is the same as"
[1] "F1 score = 0.772365126337355"

AlternateCutoffstrain(trainresultsSampling$gbmFitDummyUpSampled, "GBM dummy
UpSampled",
 testresultsSampling$gbmFitDummyUpSampled)
Outcome:
 threshold accuracy specificity sensitivity ppv

186

 0.5000121 0.8692098 0.4067797 0.9577922 0.8939394
[1] "is the same as"
[1] "F1 score = 0.559131293188549"

AlternateCutoffstrain(trainresultsSampling$gbmFitDummyUpSMOTE, "GBM dummy
SMOTE",
 testresultsSampling$gbmFitDummyUpSMOTE)
Outcome:
 threshold accuracy specificity sensitivity ppv
 0.5000006 0.8337875 0.4406780 0.9090909 0.8945687
[1] "is the same as"
[1] "F1 score = 0.590477735420553"

#Hypothesis testing

#-------------------------------------

187

#Logistic Regression predictor significance and importance calculation
#-------------------------------------

#first make outcome variable a factor to be useful for classification.
HRdataDummyFullRankLowCorr$Attrition <-
as.factor(HRdataDummyFullRankLowCorr$Attrition)

#change the name of factor, so it can be computed.
HRdataDummyFullRankLowCorr$Attrition <-
make.names(HRdataDummyFullRankLowCorr$Attrition, unique = FALSE, allow_ = TRUE)

#Transform each X0 (= to no attrition) into X2 to make results more interpretable.
for(i in 1:length(HRdataDummyFullRankLowCorr)){
 if(HRdataDummyFullRankLowCorr[i,] == "X0"){HRdataDummyFullRankLowCorr[i,
"Attrition"] <- "X2"}
}

#Transform each X0 (= to no attrition) into X2 to make results more interpretable.
for(i in 1:nrow(HRdataDummyFullRankLowCorr)){
 if(HRdataDummyFullRankLowCorr[i, "Attrition"] == "X0"){HRdataDummyFullRankLowCorr[i,
"Attrition"] <- "X2"}
}

#change levels of $attrition
HRdataDummyFullRankLowCorr$Attrition <-
factor(HRdataDummyFullRankLowCorr$Attrition)
levels(HRdataDummyFullRankLowCorr$Attrition)
Outcome:
[1] "X1" "X2"

#create dataset including years at company
first delete total working years
dput(names(trainHRdataDummyFullRankLowCorr))

HRdataDummyFullRankLowCorr2 <- HRdataDummyFullRankLowCorr[, c("Attrition", "Age",
"NumCompaniesWorked",
 "YearsInCurrentRole", "YearsSinceLastPromotion",
"YearsWithCurrManager",
 "TrainingTimesLastYear", "HourlyRate", "DailyRate",
"MonthlyRate",
 "MonthlyIncome", "PercentSalaryHike",
"StockOptionLevel", "Education",
 "DistanceFromHome", "JobInvolvement",
"PerformanceRating", "EnvironmentSatisfaction",
 "JobSatisfaction", "RelationshipSatisfaction",
"WorkLifeBalance",
 "Gender.Male", "MaritalStatus.Married",
"MaritalStatus.Single",
 "OverTime.Yes", "EducationField.Life Sciences",
"EducationField.Marketing",
 "EducationField.Medical", "EducationField.Other",
"EducationField.Technical Degree",
 "BusinessTravel.Travel_Frequently",
"JobRole.Human Resources",

188

 "JobRole.Laboratory Technician",
"JobRole.Manager", "JobRole.Manufacturing Director",
 "JobRole.Research Director", "JobRole.Research
Scientist", "JobRole.Sales Executive",
 "JobRole.Sales Representative")]
HRdataDummyFullRankLowCorr2$YearsAtCompany <- HRdata$YearsAtCompany

Next, Train the model
set.seed(1247)
logisticRegVarImp2 <- train(HRdataDummyFullRankLowCorr2[, -1], y =
HRdataDummyFullRankLowCorr2$Attrition, method = "glm",
 preProc = c("BoxCox"),
 metric = "ROC", trControl = ctrl)
logisticRegVarImp2
Outcome:
Generalized Linear Model

1470 samples
 39 predictor
 2 classes: 'X1', 'X2'

Pre-processing: Box-Cox transformation (13)
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 1323, 1323, 1322, 1324, 1323, 1323, ...
Resampling results:

 ROC Sens Spec
 0.8379086 0.4306522 0.9644781

#---

#confusion matrix and roc curve for train set.
#The basic predict call evaluates new samples, and type = "prob" returns the class
probabilities.
TrainPredictlogisticRegVarImp <- predict(logisticRegVarImp,
HRdataDummyFullRankLowCorr[, -1], type = "prob")
TrainPredictlogisticRegVarImp$class <- predict(logisticRegVarImp,
HRdataDummyFullRankLowCorr[, -1])
TrainPredictlogisticRegVarImp$outcome <- HRdataDummyFullRankLowCorr$Attrition
TrainPredictlogisticRegVarImp$outcome <-
as.factor(TrainPredictlogisticRegVarImp$outcome)

#Confusion matrix for trainset:
cm <- confusionMatrix(data = TrainPredictlogisticRegVarImp$class, reference =
TrainPredictlogisticRegVarImp$outcome, positive = "X1")
cm
Outcome:
Confusion Matrix and Statistics

 Reference
Prediction X1 X2
 X1 108 30
 X2 129 1203

 Accuracy : 0.8918
 95% CI : (0.8748, 0.9073)
 No Information Rate : 0.8388

189

 P-Value [Acc > NIR] : 3.866e-09

 Kappa : 0.5189
 Mcnemar's Test P-Value : 7.731e-15

 Sensitivity : 0.45570
 Specificity : 0.97567
 Pos Pred Value : 0.78261
 Neg Pred Value : 0.90315
 Prevalence : 0.16122
 Detection Rate : 0.07347
 Detection Prevalence : 0.09388
 Balanced Accuracy : 0.71568

 'Positive' Class : X1

#plot ROC curve and Area under the curve statistic
RocTrainlogisticRegVarImp <- roc(response = TrainPredictlogisticRegVarImp$outcome,
predictor = TrainPredictlogisticRegVarImp$X1, levels =
rev(levels(TrainPredictlogisticRegVarImp$outcome)))
plot(RocTrainlogisticRegVarImp, type = "s", print.thres = c(.5),
 print.thres.pch = 3,
 print.thres.pattern = "",
 print.thres.cex = 1.2,
 col = "red", legacy.axes = TRUE,
 print.thres.col = "red")
print(auc(RocTrain))
Outcome:
Area under the curve: 0.8656

logisticRegImp <- varImp(logisticRegVarImp, scale = FALSE)
logisticRegImp
Outcome:
glm variable importance

190

 only 20 most important variables shown (out of 39)

 Overall
OverTime.Yes 10.295
EnvironmentSatisfaction 5.302
NumCompaniesWorked 5.161
JobSatisfaction 4.918
BusinessTravel.Travel_Frequently 4.837
JobInvolvement 4.334
YearsSinceLastPromotion 3.991
DistanceFromHome 3.912
Age 3.517
MaritalStatus.Single 3.403
RelationshipSatisfaction 3.138
MonthlyIncome 3.090
YearsWithCurrManager 3.020
YearsInCurrentRole 2.685
`JobRole.Sales Representative` 2.681
TrainingTimesLastYear 2.618
WorkLifeBalance 2.604
`JobRole.Sales Executive` 2.349
`JobRole.Laboratory Technician` 2.225
Gender.Male 2.141

plot(logisticRegImp2)
Outcome:

#Check the variable significance for this model
summary.glm(logisticRegVarImp2$finalModel)

191

Outcome:
Call:
NULL

Deviance Residuals:
 Min 1Q Median 3Q Max
-3.5508 0.0990 0.2543 0.4933 1.6533

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.462e+01 1.284e+01 -1.917 0.055257 .
Age 7.463e-01 2.122e-01 3.517 0.000436 ***
NumCompaniesWorked -1.945e-01 3.769e-02 -5.161 2.46e-07 ***
YearsInCurrentRole 1.199e-01 4.466e-02 2.685 0.007245 **
YearsSinceLastPromotion -1.667e-01 4.178e-02 -3.991 6.58e-05 ***
YearsWithCurrManager 1.391e-01 4.607e-02 3.020 0.002527 **
TrainingTimesLastYear 1.909e-01 7.293e-02 2.618 0.008850 **
HourlyRate -1.161e-03 4.412e-03 -0.263 0.792471
DailyRate 2.161e-03 1.558e-03 1.387 0.165538
MonthlyRate -8.248e-05 2.124e-04 -0.388 0.697791
MonthlyIncome 9.037e-01 2.924e-01 3.090 0.001999 **
PercentSalaryHike 1.813e+01 1.787e+01 1.015 0.310243
StockOptionLevel 1.706e-01 1.553e-01 1.099 0.271832
Education -2.566e-02 7.290e-02 -0.352 0.724799
DistanceFromHome -3.464e-01 8.854e-02 -3.912 9.14e-05 ***
JobInvolvement 3.452e-01 7.965e-02 4.334 1.46e-05 ***
PerformanceRating -9.942e-02 3.326e-01 -0.299 0.764985
EnvironmentSatisfaction 4.390e-01 8.280e-02 5.302 1.15e-07 ***
JobSatisfaction 4.009e-01 8.153e-02 4.918 8.75e-07 ***
RelationshipSatisfaction 2.588e-01 8.247e-02 3.138 0.001699 **
WorkLifeBalance 1.885e-01 7.240e-02 2.604 0.009208 **
Gender.Male -3.949e-01 1.845e-01 -2.141 0.032271 *
MaritalStatus.Married -3.873e-01 2.675e-01 -1.448 0.147677
MaritalStatus.Single -1.173e+00 3.448e-01 -3.403 0.000666 ***
OverTime.Yes -1.993e+00 1.936e-01 -10.295 < 2e-16 ***
`EducationField.Life Sciences` 4.417e-01 7.612e-01 0.580 0.561736
EducationField.Marketing 1.200e-02 8.064e-01 0.015 0.988125
EducationField.Medical 5.682e-01 7.590e-01 0.749 0.454068
EducationField.Other 5.276e-01 8.292e-01 0.636 0.524581
`EducationField.Technical Degree`-4.903e-01 7.836e-01 -0.626 0.531522
BusinessTravel.Travel_Frequently -1.020e+00 2.109e-01 -4.837 1.32e-06 ***
`JobRole.Human Resources` -1.120e+00 6.848e-01 -1.635 0.101972
`JobRole.Laboratory Technician` -1.068e+00 4.799e-01 -2.225 0.026107 *
JobRole.Manager -4.927e-01 6.811e-01 -0.723 0.469377
`JobRole.Manufacturing Director` -2.737e-01 5.355e-01 -0.511 0.609300
`JobRole.Research Director` 7.230e-01 9.455e-01 0.765 0.444497
`JobRole.Research Scientist` -9.713e-02 4.924e-01 -0.197 0.843634
`JobRole.Sales Executive` -1.050e+00 4.469e-01 -2.349 0.018812 *
`JobRole.Sales Representative` -1.481e+00 5.524e-01 -2.681 0.007338 **
YearsAtCompany -6.665e-02 3.410e-02 -1.954 0.050655 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 1298.58 on 1469 degrees of freedom
Residual deviance: 862.52 on 1430 degrees of freedom
AIC: 942.52

Number of Fisher Scoring iterations: 7

192

exponentiated coefficients, indicating the odds change of one step in variable x
exp(coef(logisticRegVarImp$finalModel))
Outcome:

#---

#Goodness Of Fit
#---

Based on the deviances a p value for the model can be calculated
H0 = Logistic regression model provides an adequate fit for the data
pvalue <- 1- pchisq(1298.58 - 862.52, df = (1469-1430))
pvalue
Outcome:
[1] 0

p=0, so evidence to reject the null hypothesis.

#Next, goodness of fit test Hosmer-Lemeshow
hoslem.test(as.numeric(TrainPredictlogisticRegVarImp2$class),as.numeric(TrainPredictlogist
icRegVarImp2$outcome), g = 10)
Outcome:
 Hosmer and Lemeshow goodness of fit (GOF) test

data: as.numeric(TrainPredictlogisticRegVarImp2$class), as.numeric(Train
PredictlogisticRegVarImp2$outcome)
X-squared = -4.3229, df = 8, p-value = 1

#Identify the box-cox transformed variables.
logisticRegVarImp$preProcess$bc
Outcome:
Box-Cox Transformation

1470 data points used to estimate Lambda

193

Input data summary:
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 18.00 30.00 36.00 36.92 43.00 60.00

Largest/Smallest: 3.33
Sample Skewness: 0.412

Estimated Lambda: 0.2

$HourlyRate
Box-Cox Transformation

1470 data points used to estimate Lambda

Input data summary:
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 30.00 48.00 66.00 65.89 83.75 100.00

Largest/Smallest: 3.33
Sample Skewness: -0.0322

Estimated Lambda: 0.8
With fudge factor, no transformation is applied

$DailyRate
Box-Cox Transformation

1470 data points used to estimate Lambda

Input data summary:
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 102.0 465.0 802.0 802.5 1157.0 1499.0

Largest/Smallest: 14.7
Sample Skewness: -0.00351

Estimated Lambda: 0.7

$MonthlyRate
Box-Cox Transformation

1470 data points used to estimate Lambda

Input data summary:
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 2094 8047 14240 14310 20460 27000

Largest/Smallest: 12.9
Sample Skewness: 0.0185

Estimated Lambda: 0.7

$MonthlyIncome
Box-Cox Transformation

1470 data points used to estimate Lambda

194

Input data summary:
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1009 2911 4919 6503 8379 20000

Largest/Smallest: 19.8
Sample Skewness: 1.37

Estimated Lambda: -0.2
With fudge factor, Lambda = 0 will be used for transformations

$PercentSalaryHike
Box-Cox Transformation

1470 data points used to estimate Lambda

Input data summary:
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 11.00 12.00 14.00 15.21 18.00 25.00

Largest/Smallest: 2.27
Sample Skewness: 0.819

Estimated Lambda: -1.3

$Education
Box-Cox Transformation

1470 data points used to estimate Lambda

Input data summary:
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.000 2.000 3.000 2.913 4.000 5.000

Largest/Smallest: 5
Sample Skewness: -0.289

Estimated Lambda: 1.2

$DistanceFromHome
Box-Cox Transformation

1470 data points used to estimate Lambda

Input data summary:
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.000 2.000 7.000 9.193 14.000 29.000

Largest/Smallest: 29
Sample Skewness: 0.956

Estimated Lambda: 0.1
With fudge factor, Lambda = 0 will be used for transformations

$JobInvolvement
Box-Cox Transformation

1470 data points used to estimate Lambda

195

Input data summary:
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.00 2.00 3.00 2.73 3.00 4.00

Largest/Smallest: 4
Sample Skewness: -0.497

Estimated Lambda: 1.5

$EnvironmentSatisfaction
Box-Cox Transformation

1470 data points used to estimate Lambda

Input data summary:
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.000 2.000 3.000 2.722 4.000 4.000

Largest/Smallest: 4
Sample Skewness: -0.321

Estimated Lambda: 1.1
With fudge factor, no transformation is applied

$JobSatisfaction
Box-Cox Transformation

1470 data points used to estimate Lambda

Input data summary:
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.000 2.000 3.000 2.729 4.000 4.000

Largest/Smallest: 4
Sample Skewness: -0.329

Estimated Lambda: 1.1
With fudge factor, no transformation is applied

$RelationshipSatisfaction
Box-Cox Transformation

1470 data points used to estimate Lambda

Input data summary:
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.000 2.000 3.000 2.712 4.000 4.000

Largest/Smallest: 4
Sample Skewness: -0.302

Estimated Lambda: 1.1
With fudge factor, no transformation is applied

$WorkLifeBalance
Box-Cox Transformation

1470 data points used to estimate Lambda

196

Input data summary:
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.000 2.000 3.000 2.761 3.000 4.000

Largest/Smallest: 4
Sample Skewness: -0.551

Estimated Lambda: 1.6

#Create plots for the significant box-cox transformed predictors
#---

first identify the mean of each predictor
means <- colMeans(HRdataDummyFullRankLowCorr2[,-1])
means <- as.data.frame(t(means))
means
next, get estimates for model
model <- logisticRegVarImp2$finalModel$coefficients
model <- as.data.frame(t(model))
model
str(model)
#transform box-cox transformed variables in means
means$Age<- ((means$Age^0.2)-1)/0.2
means$DailyRate <- ((means$DailyRate^0.7)-1)/0.7
means$MonthlyRate <- ((means$MonthlyRate^0.7)-1)/0.7
means$MonthlyIncome <- log(means$MonthlyIncome)
means$PercentSalaryHike <- ((means$PercentSalaryHike^(-1.3))-1)/(-1.3)
means$Education <- ((means$Education^1.2)-1)/1.2
means$DistanceFromHome <- log(means$DistanceFromHome)
means$JobInvolvement <- ((means$JobInvolvement^1.5)-1)/1.5
means$WorkLifeBalance <- ((means$WorkLifeBalance^1.6)-1)/1.6

#create intercept in means table and right place in model
means$`(Intercept)` <- 1
means
str(means)
means <- means[, c("(Intercept)", "Age", "NumCompaniesWorked",
 "YearsInCurrentRole", "YearsSinceLastPromotion", "YearsWithCurrManager",
 "TrainingTimesLastYear", "HourlyRate", "DailyRate", "MonthlyRate",
 "MonthlyIncome", "PercentSalaryHike", "StockOptionLevel", "Education",
 "DistanceFromHome", "JobInvolvement", "PerformanceRating", "EnvironmentSatisfaction"
,
 "JobSatisfaction", "RelationshipSatisfaction", "WorkLifeBalance",
 "Gender.Male", "MaritalStatus.Married", "MaritalStatus.Single",
 "OverTime.Yes", "EducationField.Life Sciences", "EducationField.Marketing",
 "EducationField.Medical", "EducationField.Other", "EducationField.Technical Degree",
 "BusinessTravel.Travel_Frequently", "JobRole.Human Resources",
 "JobRole.Laboratory Technician", "JobRole.Manager", "JobRole.Manufacturing Director",
 "JobRole.Research Director", "JobRole.Research Scientist", "JobRole.Sales Executive",
 "JobRole.Sales Representative", "YearsAtCompany")]

197

#calculate model average outcome
modelaverageoutcome <- means
modelaverageoutcome <- modelaverageoutcome*model

#plot Age against outcome
plot(HRdataDummyFullRankLowCorr2$Age,
 (sum(modelaverageoutcome[, -2])+
 model$Age*(((HRdataDummyFullRankLowCorr2$Age^0.2)-1)/0.2)),
 type = "p",
 xlab = "Age",
 ylab = "Outcome")
Outcome:

#plot Monthly Income against outcome
plot(HRdataDummyFullRankLowCorr2$MonthlyIncome,
 (sum(modelaverageoutcome)-modelaverageoutcome$MonthlyIncome+
 model$MonthlyIncome*log(HRdataDummyFullRankLowCorr2$MonthlyIncome)),
 type = "p",
 xlab = "MonthlyIncome",
 ylab = "Outcome"
)
Outcome:

198

#plot Distance from home against outcome
plot(HRdataDummyFullRankLowCorr2$DistanceFromHome,
 (sum(modelaverageoutcome)-modelaverageoutcome$DistanceFromHome+

model$DistanceFromHome*log(HRdataDummyFullRankLowCorr2$DistanceFromHome)),
 type = "p",
 xlab = "DistanceFromHome",
 ylab = "Outcome"
)
Outcome:

#plot Job involvement against outcome
plot(HRdataDummyFullRankLowCorr2$JobInvolvement,
 (sum(modelaverageoutcome)-modelaverageoutcome$JobInvolvement+

199

 model$JobInvolvement*(((HRdataDummyFullRankLowCorr2$JobInvolvement^1.5)-
1)/1.5)),
 type = "p",
 xlab = "JobInvolvement",
 ylab = "Outcome"
)
Outcome:

#plot Work life balance against outcome
plot(HRdataDummyFullRankLowCorr2$WorkLifeBalance,
 (sum(modelaverageoutcome)-modelaverageoutcome$WorkLifeBalance+
 model$WorkLifeBalance*(((HRdataDummyFullRankLowCorr2$WorkLifeBalance^1.6)-
1)/1.6)),
 type = "p",
 xlab = "WorkLifeBalance",
 ylab = "Outcome"
)
Outcome:

200

