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Abstract

Computational models of language acquisition often simplify the problem of word learn-
ing by abstracting away from the input signal children receive. Typically, they learn
to match symbolic representations of words and candidate referents. In reality, both
the language input and the perceptual context information that contains the candidate
referents are continuous. This study presents a model of visually grounded language
learning: a deep recurrent neural model that is trained to predict the features of a visual
scene, based on a description in the form of a sequence of phonemes. Like children, the
model has to discover structure in the phoneme stream and learn meaning from noisy
and ambiguous data. A series of experiments shows that the model indeed learns to
predict the visual scene, encodes aspects of both word form and visual semantic infor-
mation, and is able to exploit sentence order information as well. Encoding of form
and meaning shows a hierarchical organization with regards to abstraction: lower layers
are comparatively more sensitive to form, whereas higher layers are more sensitive to
meaning.
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Introduction

A language learning child has a daunting challenge ahead. A non-exhaustive to-do list
includes learning to identify words, understand what they mean, how to pronounce the
phonemes of which they are composed, and how to combine them into larger utterances.
Learning the meaning of words involves more than matching objects or concepts in the
world to the correct word forms. The information available to human language learners
does not present itself in the form of neatly separated words and pre-defined concepts.
The language input consists of an uninterrupted stream of phonemes, and it is up to
the child to decide which subsequences form words. The possible referents are also not
a given set of concepts; they are objects and abstract concepts that exist in the outside
world, which is perceived through continuous, multisensory input.

It makes intuitive sense to decompose the language learning process in a hierarchical
manner, starting at the phoneme level and growing towards the comprehension and
production of full conversations. Indeed, many aspects of the language learning process
have been studied in isolation. Learning to segment the speech signal into words is
a key problem in language acquisition research, studied experimentally with language
learning children and in artificial language learning experiments with adults, as well as
using computational methods. Mapping words to objects and concepts is also studied
experimentally as well as computationally, specifically in the cross-situational learning
paradigm. Recently, however, computational and experimental studies have shown that
visual cues may aid in word segmentation learning (e.g. Thiessen (2010), Glicksohn and
Cohen (2013)), indicating that learning of form and meaning should be considered in
interaction, rather than in sequence. Several joint models of word segmentation and
cross-situational learning have been proposed, such as the Cross-channel Early Lexical
Learning (CELL) model of Roy and Pentland (2002) and the statistical model of Räsänen
and Rasilo (2015). These models work with continuous speech as language input, but
the visual context is pre-processed in such a way that it no longer contains the noise and
ambiguity that language learners encounter.

Chrupa la et al. (2015) propose Imaginet, a model of visually grounded language
learning, that learns from full utterances in noisy, ambiguous visual context. Imaginet
makes realistic assumptions about the visual context, but bypasses the segmentation
problem by taking words as the basic unit of language input.

Phoneme GRU, the model that forms the subject of this thesis, takes the work
of Chrupa la et al. (2015) one step further towards the learning task of a human lan-
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guage learner, by taking phoneme rather than word level language input. It consists of a
recurrent neural network that receives language input in the form of phonetically tran-
scribed utterances, and learns to predict the visual scene that the utterance describes.
To successfully perform the learning task, Phoneme GRU will have to acquire struc-
tural language knowledge of form as well as function, solely through visual feedback -
making it a fully grounded model of language learning.

Phoneme GRU is evaluated on the visual prediction task, on which it is outper-
formed by a word level recurrent architecture, but outperforms a bag-of-words model.
Stepping down from word to phoneme level language input thus complicates the learning
task, but Phoneme GRU is able to exploit sentence order information.

The architecture of Phoneme GRU comprises multiple hidden layers. A series of
experiments on processing time scales and the encoding of several types of linguistic
knowledge shows hierarchical organization in the stack of hidden layers. Lower layers
operate on shorter time scales, and are comparatively more sensitive to form, whereas
higher layers retain information over the full length of the sentence and are more sensi-
tive to meaning.

Chapter 1 sketches the discussions in language acquisition research on word segmentation
and reference learning, and explains how Phoneme GRU fits in the discussion. It also
describes technically related work in natural language processing, specifically recurrent
neural architectures that work with character level language input or multimodal data.
In chapter 2, the architectures of Phoneme GRU and comparison models are specified,
and the corpus that was used as input is described. The ability of Phoneme GRU
and comparison word level models to predict the visual scene is reported in chapter 3.
Chapter 4 reports several experiments that explore the encoding of linguistic knowledge
in Phoneme GRU. Finally, chapter 5 summarizes and interprets the findings, relates
them to discussions in lexical acquisition research, and poses considerations for future
work.

6



Chapter 1

Background

This thesis presents Phoneme GRU, a model of visually grounded language learning
with phoneme-level language input. It is based on the Imaginet model (Chrupa la et al.,
2015). In contrast to other models of word meaning acquisition, in which the perceptual
context is highly simplified, Imaginet learns word meaning from visual input with
realistic levels of noise and ambiguity. The language input, on the other hand, consists
of neat, word-sized input units. A beginning human language learner does not have
access to word forms, but has to learn how to segment the continuous speech signal
into meaningful units, as well as connect these units to referents. Phoneme GRU
is designed to take the approach of Chrupa la et al. (2015) one step further towards
the learning task of a natural language learner: the language input signal consists of
sequences of phonemes, rather than sequences of words.

This endeavour is motivated by open problems in language acquisition research, and
is technically related to work in natural language processing (NLP) and the recently
emerged cross-over field of computer vision and NLP. Section 1.1 introduces the learn-
ing problems of word segmentation and reference in lexical acquisition research, as well
as some computational models that address these questions. Joint models of lexical
acquisition, in which the problems of word segmentation and reference are solved con-
currently, are described in section 1.1.3. Section 1.2 describes recent advances in neural
NLP with character level language input, and multimodal models in which visual and
language data are processed together.

1.1 Computational models of lexical acquisition

1.1.1 Word segmentation

If we were to describe the language learning process step-by-step, one of the first problems
to solve would likely be deciding which parts of the speech signal constitute words. There
is no acoustic equivalent of the blank space in written text; speech contains no pauses
between words. Adult language users may rely on their knowledge of words and syntax to
determine which segmentation of the phoneme stream is most likely. Beginning language
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learners, however, have yet to acquire a lexicon, which makes separating the speech signal
into word-sized units especially difficult.

Language acquisition research has proposed several mechanisms that may be in-
volved in early segmentation. Perhaps the most intuitive proposition is that children
learn words from occurrences in isolation. An initial vocabulary, learnt through iso-
lated presentation of words, may then be recognized in multi-word utterances and serve
as bootstrapping material for further segmentation. Around 9.0% of maternal child-
directed utterances consists of single words, and the frequency with which words occur
in isolation in maternal speech is predictive of later productive use of that word, whereas
the overall frequency is not (Brent and Siskind, 2001). However, many words never occur
in isolation, such as function words. Furthermore, when encountering a one-word utter-
ance, the learner does not know that it contains only one word. Therefore, relying on
isolated occurrences alone is likely too shallow a basis for solving the word segmentation
problem.

Although there are no pauses in between words, the speech signal may contain acous-
tic cues that may help to determine where word boundaries are, such as metrical patterns
and allophonic variation. Allophonic variation may be helpful, because some phonemes
are pronounced differently when they appear at word boundaries as opposed to in the
middel of a word. Adult language users are unaware of these variations, but newborn
infants do notice them (Christophe et al., 1994). Some languages have fixed or pre-
dominant word stress patterns, and adults use these cues in segmentation (Cutler and
Butterfield, 1992). Indeed, the ability of 7.5 month old infants to segment words from
fluent speech depends on whether they follow the predominant stress pattern (Jusczyk
et al., 1999). Acoustic cues are language-specific, and therefore, so is the effectiveness
of segmentation strategies based on them.

Perhaps the most consistent and language independent source of information about
word boundaries lies in the sequence of phonemes itself. The phonotactic rules of a lan-
guage result in some sequences of phonemes commonly occurring within words, whereas
others can only occur at word boundaries. The information in the phoneme sequence
itself becomes richer if we take into account statistical regularities by looking at the tran-
sitional probabilities between phonemes: the next phoneme is more predictable within
a word than between two words, as each word end may be followed by any number of
starts of other words, starting with any phoneme. Intuitively, the more surprised you
are about one phoneme following the other, the more likely it is that this phoneme pair
contains a word boundary. Behavioural studies have shown that infants as young as 8
or 7 months show sensitivity to transitional probabilities in phoneme sequences (Saffran
et al., 1996a; Thiessen and Saffran, 2003). The principle has shown to be an effective
learning mechanism in computational studies as well as in applications in natural lan-
guage processing (Saffran et al., 1996b; Cohen and Adams, 2001; Ando and Lee, 2000;
Feng et al., 2004).

Experiments such as performed by Saffran et al. (1996a) use artificial language data
in which word collocations are random, but in natural language, the presence of one
word has predictive value over the presence of other words. Goldwater et al. (2009)
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show that learning from transitional probabilities under the assumption of independent
words leads to undersegmentation when faced with natural language data. When the
predictive value of words over other words is exploited, however, learning results in far
more accurate segmentation.

Interesting in relation to the work presented in this thesis, though perhaps not at
the heart of the segmentation discussion, is the use of recurrent neural networks (RNNs,
further covered in section 1.2) in word boundary prediction. RNNs are (in theory,
at least) capable of taking into account meaningful sequential information over long
timescales, and may be sensitive not only to the dependencies between phonemes, but
also take into account dependencies between words. In fact, the now classic paper by
Elman (1990) proposes word boundary identification as one of the use cases of RNNs,
through predicting the next phoneme and subsequently checking how surprising the
actual phoneme was.

More recently, work in natural language processing has shown that a word boundary
identification implementation based on LSTMs (more in section 1.2) reaches state of the
art performance in recognizing word boundaries in Chinese written text (which has no
equivalent of the blank space in Latin script) (Chen et al., 2015b). Although the symbolic
representation system is of course very different from phoneme symbols or Latin script,
it does indicate that the location of word boundaries is learnable from distributional
information in a symbol sequence using modern recurrent neural network techniques.

1.1.2 Cross-situational learning

Learning the mapping of words to meanings is an essential part of language acquisition, as
it is what makes language functional in communication. A naive example of this process
might go as follows: a child hears the word bird, sees a robin flying by, and assumes the
word bird refers to that robin. Learning the meaning of words in this (overly simplified)
example is simply remembering which words and objects appear together.

This basic principle has been implemented in associative models of word learning
such as LEX (Regier, 2005). This model receives word forms paired with a represen-
tation of meaning, and learns to associate them. Regier (2005) shows that this type of
model follows several patterns observed in human word learning, such as fast mapping
(forming and retaining an association between novel words and new referents after a
single encounter), and an initial reluctance to, but eventual learning of second words for
referents.

The problem with this explanation, however, is that words and referents usually do
not appear alone. Words typically appear together in larger utterances, and the visual
scene also contains multiple objects. In our example, the child may very well also be
seeing a tree and a house, and it is quite likely that she hears the sequence Do you see the
bird?, rather than just the word bird in isolation. To arrive at the correct word-meaning
pairing, she must figure out that bird does not refer to a tree or a house, or even the
action of flying or the red color of the robins’ belly; and she must also find out that it is
the word bird that refers to the robin, rather than do or the. The challenge would be even
greater if in fact she did not see the robin - now what could the word bird possibly relate
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to? The relationship between language and referents in the outside world is obscured by
noise, alignment ambiguity (not knowing which part of the utterance relates to which
referent in the scene), and referential uncertainty (uncertainty about which objects in
the scene, or which parts of them, are being referred to). So how do learners eventually
figure out the meaning of words?

The cross-situational word learning hypothesis proposes a mechanism to deal with
referential uncertainty and alignment ambiguity. According to this hypothesis, language
learning infants take into account co-occurrences of words and referent candidates over
multiple situations. When looking at a single instance, it may not be clear what the
correct word-referent pairings are, but the uncertainty may be reduced by looking at
statistical patterns in co-occurence.

The first computational model of cross-situational learning was proposed by Siskind
(1996). The model consists of a set of principles that guide inference from the available
evidence and partial knowledge. Whenever a new combination of words and aspects
of possible referents is encountered, the sets of possible and necessary aspects of the
meaning of words are updated following the inference rules. Because of the discrete
nature of the rules, this model has difficulty dealing with noise. Specific mechanisms
are in place to handle exceptions, but they lead to unnecessary double entries in the
lexicon. Later models implement cross-situational learning as a probabilistic process,
which makes it more robust to noise (e.g. Frank et al. (2007); Yu (2005)). Most models
of cross-situational learning operate in a batch-like manner, processing all input data at
once. However, children receive input one piece at a time, and update their knowledge
incrementally. This is implemented in the model of Fazly et al. (2010).

In the cross-situational models mentioned so far, learning the meaning of words is
essentially a matching task between symbolic representations of words and referents.
In reality, both the visual context and the language signal are continuous rather than
symbolic. A visual scene is necessarily richer and more confusing than any symbolic
transcription of it can capture. The Imaginet model by Chrupa la et al. (2015) learns
from continuous visual input data paired with sequences of words that describe the scene.
Imaginet consists of two recurrent neural pathways, a language model and an image
scene predictor, that share the word embedding layer. The visual pathway learns to
predict the visual scene based on the words in the description. The authors show that
the model is able to learn the meaning of individual words through the predictive value
they have over the environment.

Although Imaginet can be seen as a cross-situational model of word learning, in
fact it covers a much broader scope of the language learning process. Its recurrent
architecture allows it to encode sentential structure as well. Additional studies show
that both pathways selectively pay attention to certain lexical categories, and that the
model may even treat the same word differently depending on the grammatical role it
fills in the sentence (Kádár et al., 2016).

What Imaginet does not take into account, however, is the continuous nature of
the speech signal. Imaginet takes word-sized units as input, and has no segmentation
problem to solve. Phoneme GRU, the model described here, takes phoneme-level lan-
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guage as input. Informally, it can be understood as a joint model of word discovery as
well as cross-situational learning.

1.1.3 Joint learning of word form and meaning

The computational models described in the previous sections focus on one aspect of
language learning alone, as if it were performed in isolation from other language learning
processes. Recent experimental and computational studies have found that co-occurring
visual information may help to learn word forms (Thiessen (2010); Cunillera et al. (2010);
Glicksohn and Cohen (2013); Yurovsky et al. (2012)). This suggests that acquisition of
word form and meaning should be seen as interactive, rather than separate processes.

Räsänen and Rasilo (2015) propose an integrated view of lexical learning: rather
than linguistically correct segmentation or referent assignment, they argue ‘segment
meaningfulness’ is the primary criterion in pre-lexical speech perception. Instead of
trying to segment the speech signal into units first, and subsequently trying to attach
these blocks to a referent in the outside world, the infant is looking for segments that
have predictive power over the environment. In essence, this is the language learning
strategy implemented in the Phoneme GRU model. Phoneme GRUs task is to predict
the visual context based on the phonemic signal. Knowledge of word forms and reference
is acquired only because it helps to perform this learning task.

Johnson et al. (2010) propose an argument for the integrated view of lexical learning.
They present several Bayesian models that learn to segment phoneme-level utterance
transcriptions into words, while also learning the referents of some of the words in these
utterances. The input consists of phonetically transcribed child-directed speech, with
manual annotations of potential referents. The authors show that learning dependencies
between words contributes to word segmentation as well as reference learning, and that
word segmentation is facilitated by concurrent reference learning. The models in Johnson
et al. (2010) operate on symbolic representations of language and context input, with a
very limited number of possible referents, significantly reducing the noise and ambiguity
faced by beginning language learners.

Several models have been proposed that use speech signal and visual input instead
of symbolic representations. The first model of this sort was the Cross-channel Early
Lexical Learning (CELL) model of Roy and Pentland (2002). CELL learns to discover
words from continuous speech, and learn their referent. The model has speech and
visual processing modules that convert the speech to phone-like units, and strips the
object in the visual context of all properties but shape. Rather than segmenting the
whole speech signal, the model looks for the parts of the auditory signal that co-occur
with certain shapes. While CELL manages to learn words from co-occurring spoken
utterances and visual objects alone, it does so by removing all referential uncertainty,
noise, and ambiguity on the visual side.

Yu and Ballard (2004) present a model that integrates visual and auditive data, as
well as information about eye gaze and the position of head and hands, to learn to
recognize words in a grounded and meaningful way. The input data consists of speech
and sensory information that is recorded while participants were performing everyday
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tasks and commenting on their actions. Co-occurence of speech and sensory information
is used both in segmentation and grounding. The model uses remarkably rich sensory
data. However, the vocabulary is limited: it covers no more than seven action-verb pairs
and four object-noun pairs.

Räsänen and Rasilo (2015) propose a probabilistic, cross-situational joint model of
word segmentation and meaning acquisition from raw speech and visual context. As is
customary in cross-situational models of lexical acquisition, the visual context in this
model consists of a set of possible referents present in the environment.

The models described above all show the benefits of integrated lexical learning, es-
pecially as a bootstrapping mechanism for early acquisition of word forms. However,
the perceptual context is significantly reduced in complexity, either by converting it to
a symbolic set of possible referents, or by taking only one visible object and stripping it
of any attributes other than form. The model of Yu and Ballard (2004) does use rich
sensory context input, but only learns a very limited set of words and referents. The
visual context available to Phoneme GRU consists of high-level visual feature vectors,
extracted from pictures that contain multiple possible referents. It is noisy, and the
relation between the language and visual data is ambiguous.

Phoneme GRU also differs with regards to the described models in that it does
not assume the sequence of phonemes has to be divided into words. The training task
of Phoneme GRU is not to segment speech into words, or to attach words to objects
in the visual context; the task is to predict the visual context based on the phoneme
sequence. Any structural language knowledge – either about word form or reference –
is acquired not because the model is explicitly looking for it, but because the recurrent
neural architecture allows to capture sequential knowledge that has predictive value over
the context.

Most joint models of lexical acquisition take the acoustic speech signal as input.
Phoneme GRU will operate on the phoneme level instead. The main aim in this study
is to investigate the possibility of acquiring meaningful language knowledge through
predicting the visual context from sub-word level, sequential language data. Using
phoneme-level input data allows us to analyse the acquired lexical knowledge (see chap-
ter 4) without the need for additional annotation. This work is certainly meant as a
first step towards a joint model of language learning that operates on raw speech and
visual data, but the additional technical challenges that speech input data pose are left
for future work.

1.2 Recurrent Neural Networks

Language data is inherently sequential in nature. Even the smallest carrier of meaning,
the morpheme, is sequential in nature; place its components, the phonemes, in a different
order, and you might end up with a meaningless sequence or a completely different
meaning. Meaning is further determined in the way morphemes are glued together to
form words, which can be composed into complex expressions by placing one after the
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other in a meaningful sentential order. When we take the word as the basic unit, it is
nevertheless possible to infer meaningful information without looking at their relative
position. Approaching a text as a ‘bag-of-words’, simply looking at which words it
contains, rather than at their constellation, may already give a good indication of what
the text is about. When taking the phoneme (or its counterpart in written text: the
character) as the basic unit of input, however, the only way to infer meaning from the
signal is to look at the sequence; a phoneme by itself carries no meaning.

Recurrent neural networks (RNNs), introduced by Elman (1990), are specifically
designed to work with sequential data. Rather than processing an instance in the input
in one go, RNNs receive a sequence piece by piece. Each unit in the input sequence
is processed at one time step. The power of RNNs is that it has ‘working memory’:
the activation pattern of a hidden layer at time step t-1 is recycled as input to that
same hidden layer at time step t (in addition to the new input). This property enables
RNNs to learn structure in sequential data, making them especially suitable to tasks in
language processing.

Although RNNs are theoretically capable of learning dependencies over long dis-
tances, in practice they face the problem of vanishing gradients. During learning, the
error signal is backpropagated through time. As it gets smaller at every timestep, weight
updates at distant timesteps are small in size, making learning of long-term dependencies
very slow. Simple Recurrent Neural Networks therefore tend to get stuck in suboptimal
solutions, that capture short-term dependencies, but disregard long-term dependencies
(see Bengio et al. (1994) for a full formal discussion of the problem). Special types of
units have been proposed to make learning long dependencies more efficient and effective,
most notably Long Short Term Memory units (LSTM) (Hochreiter and Schmidhuber,
1997) and, more recently, Gated Recurrent Units (GRU) (Cho et al., 2014). Both LSTMs
and GRUs employ a mechanism that copies part of the activation from the last step di-
rectly. This enables architectures composed of these units to capture dependencies over
long time scales (Chung et al., 2014). Both LSTM and GRU based architectures are
now used in a wide variety of natural language processing tasks.

1.2.1 Character-level Language Learning

Recent neural approaches to problems in Natural Language Processing (NLP) often
take the word as the basic input unit. An important reason for that is the popularity
and effectiveness of word embeddings in various applications. Word embeddings are
essentially distributed vector representations of the words in a lexicon, that may either be
learned during model training, or may be pre-trained in some other task. The Imaginet
model by Chrupa la et al. (2015) is based on trainable word embeddings that are shared by
the visual and language pathways. As we step down from the word level to the phoneme
level, we cannot use word embeddings. This may be a handicap, as word embeddings
typically capture meaningful semantic similarities. However, embedding vectors are
independent in principle; two morphologically related words are as different or similar
as any other word pair, at least until they are adjusted in training. As Phoneme GRU
looks at phonemes in sequence, it has the advantage of accessing the surface form over
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Imaginet. In NLP, the equivalent of phoneme-level input is character-level input, which
has recently (re)gained attention.

A model for ‘composing’ word representation vectors from their surface form is pre-
sented by Ling et al. (2015a). The model comprises bidirectional LSTMs (Bi-LSTMs)
that read every word character-by-character, where one starts at the end of the word
and the other starts at the beginning. At the last reading time step, the activation pat-
terns of both LSTMs are combined into a word vector, which is based on, and encodes
information about, the character sequence that constitutes it. There are two major
benefits of character-based word vectors. Firstly, model size can be greatly reduced by
using character-level input, as the lexicon no longer needs to be stored. Secondly, ac-
cess to word form as well as function allows to exploit meaningful similarities in form.
This improves performance in language modelling and POS-tagging, especially in mor-
phologically rich languages (Ling et al., 2015a; Plank et al., 2016). Word representa-
tions composed by Bi-LSTMs have also been used in machine translation, allowing for
character-level machine translation that is on par with word based models (Ling et al.,
2015b).

Composed word embeddings show the benefits of surface form information, but these
models essentially still operate on the word level - there is no segmentation problem to
solve. Character-level neural NLP without explicit word boundaries is studied in some
specific cases, typically when fixed vocabularies are problematic due to the nature of
the task. For example, in Chrupa la (2013), input data includes natural as well as
programming language. Xie et al. (2016) present a system that automatically provides
writing feedback, specifically dealing with misspelled words. Chung et al. (2016) present
machine translation with character level output, but the input consists of sub-word units
as in Sennrich et al. (2015), which may correspond to phonemes, but certainly also to
words or morphemes. Importantly, these units never cross word boundaries.

Hermans and Schrauwen (2013) and Karpathy et al. (2015) describe the represen-
tation of linguistic knowledge in character-level deep recurrent neural networks. Both
studies show that character level recurrent language models are sensitive to long-range
dependencies. For example, they show that certain units in the network keep track of
opening and closing parentheses over long stretches of text. Hermans and Schrauwen
(2013) describe the hierarchical organization that seems to emerge during training, with
higher layers processing information over longer timescales. Phoneme GRU is a multi-
layer recurrent model too, and similar techniques will be used to investigate timescale
processing differences. The differences in timescale processing will also be interpreted in
terms of to linguistic levels of abstraction.

Note that even in character-based approaches that do not explicitly separate words,
information about word boundaries is typically present in the input data, in the form of
whitespaces and punctuation (exceptions can be found in studies on non-Latin script,
such as the studies by Chen et al. (2015b), Ando and Lee (2000) and Feng et al. (2004)
mentioned in section 1.1.1, but the character level in these scripts does not correspond
to the phoneme-level). Since it is our goal to model a multi-modal language learning
process that includes the segmentation problem, the input data will not contain word
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boundary markers.

1.2.2 Visually grounded language learning

Interestingly, the grounding problem is now not only studied with regards to language
acquisition, but also with regards to natural language processing and computer vision.
While NLP and computer vision traditionally are separate disciplines, machine learning
research has recently seen many cross-over studies of multimodal semantic learning.
The key task in this field is automatic image captioning (see Bernardi et al. (2016) for
a recent overview). The aim is to automatically understand the content of an image,
and then produce a suitable description in natural language. This requires both human-
like image understanding as well as natural language generation, which makes it an
equally challenging task in both computer vision and NLP. The Imaginet model, on
which Phoneme GRU is based, was certainly technically inspired by image captioning
research, but is decidedly different as the aim is to predict the visual context from the
description, instead of the other way around. Image captioning research has made large
datasets of captioned images available, such as MS COCO (Lin et al., 2014; Chen et al.,
2015a), which is used in the work presented here.

Inspired both by image captioning research and cross-situational human language
acquisition, two recent Automatic Speech Recognition models learn to recognize word
forms from visual data. In Synnaeve et al. (2014), language input consists of single
spoken words and visual data consists of image fragments, which the model learns to
associate. Harwath and Glass (2015) employ a convolutional visual object recognition
model and another convolutional word recognition model, and an embedding alignment
model that learns to map recognized words and objects into the same high-dimensional
space. Although the object recognition works on the raw visual input, the speech signal
is segmented into words before presenting it to the word recognition model. Synnaeve
et al. (2014) do not consider the larger utterance context at all, as words are presented
in isolation. In this study, we are especially interested in a language learning task that
operates on full utterances.

As Harwath and Glass (2015) note, burdening a multimodal model with word seg-
mentation on raw speech significantly complicates the task at hand. We are primarily
interested in learning structure from language data that does not contain word bound-
aries. Whereas Harwath and Glass (2015) choose to pre-segment the speech signal, we
choose to take the symbolic phoneme transcription of the caption, without word bound-
aries. While the language input signal in this study is symbolic rather than continuous,
the work presented is certainly meant as a first exploration in the direction of learning
directly from full spoken utterances in visual context.

1.3 Learning Language from Phonemes and Pictures

This thesis studies Phoneme GRU, a model that learns to predict the visual context
from phoneme-level utterances. It takes the work of Chrupa la et al. (2015) one step

15



further towards the task of a language learning task, by taking phoneme-level transcrip-
tions rather than individual words as input. The learning task of the model is not to
segment speech, nor is it to connect word-sized chunks to elements of the visual scene;
it is to predict the visual context. One may wonder why this is a language learning
task. The idea is that when a child hears an utterance, she will update her language
knowledge such that the next time she hears the sentence, she is less surprised by the
visual context it appears in. If she were to hear Do you see the bird? while spotting
a robin, she would update her language knowledge so that the next time she hears Do
you see the bird?, she would expect to see a robin again. This idea is implemented in
Phoneme GRU as prediction of the visual scene. To perform the learning task, then,
Phoneme GRU will need to learn to identify visually meaningful chunks of language,
and connect them to referents in the visual scene in a cross-situational manner.

Phoneme GRU will be evaluated on its ability to perform the learning task, i.e. how
well it is able to predict aspects of the visual scene given a phoneme sequence, in chapter
3. The learning task of Phoneme GRU is arguably more complicated than the learning
task of Imaginet, because of the additional level of linguistic knowledge that needs to
be acquired. Solving the problems of reference and segmentation in an integrated fashion
may however also facilitate learning. Phoneme GRU has an advantage over Imaginet
in that it has access to word form, which may help to determine reference when lexically
related words are known.

The emergence of hierarchical linguistic knowledge is explored through various exper-
iments in chapter 4. Rather than making assumptions about how linguistic knowledge
at several levels of granularity is stored, the aim is to have a recurrent neural model
figure the levels of representation out by itself. Recent advances in visually grounded
natural language processing and character-level language modeling give reason to believe
a neural implementation of a phoneme-level image prediction model can be successful, if
it is composed of units that are designed to deal with the problem of vanishing gradients,
and comprises multiple hidden layers.
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Chapter 2

Methods

This chapter describes the architectures of the neural models analysed in chapter 4 and
5. It also describes the corpus that was used as input data, MS COCO (Lin et al.,
2014; Chen et al., 2015a), and the procedures by which the pictures in this corpus
were converted to high level visual feature vectors, and their orthographic captions to
sequences of phonemes.

2.1 Input data

The Microsoft Common Objects in Context corpus (Lin et al., 2014) is an image dataset
that is widely used in object recognition, image segmentation, and image captioning
research. It contains over 328,000 images that are annotated for the presence of objects.
A large portion of this dataset (over 163,000 images) is accompanied by at least five cap-
tions by human annotators describing the visual scene, collected through crowdsourcing
(Chen et al., 2015a). This collection of captioned images (hencefort referred to as MS
COCO) is suitable to our purposes, both because of the content of the images, and the
nature of their descriptions. The selection of images in the Microsoft Common Objects
in Context corpus is such that they contain (at least) one of 91 object types that would
be easily recognizable by a four year old. Importantly, these objects are in context :
the images depict naturally occurring scenes containing multiple objects (an average of
7.7 labelled object instances per image, to give an impression). The visual data thus
contains multiple possible referents, making reference to the scene ambiguous. For the
captions, annotators were instructed to use at least 8 words and describe all major parts
of the scene, but not the unimportant details.

Figure 2.1 shows an example image with captions. The image contains more objects
and persons than any of the captions mention. The captions also contain parts that can
not directly be mapped to objects in the scene, but show additional word knowledge or
interpretation. For example, the first caption given mentions christmas dinner, while the
dinner itself is not visible in the scene, and even gives an interpretation of the thoughts
of the depicted cat.

All models were trained on the full standard training set of MS COCO. For validation
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Captions and transcriptions

the family cat wants to join in during christmas dinner
D@famIlikatw6ntst@dZOInIndjU@ôINkôIsm@sdIn@
a cat sitting on a chair at the table with a place setting
5katsItIN6n5tSe@ôatD@teIb@lwID5pleIssEtIN
a gray cat sits in a chair next to a table that has a blue table cloth on it and is set
with silverware and cups.
5ÉąôeIkatsItsIn5tSe@nEksttU5teIb@lDath5z5blu:teIb@lkl6T6nItandIzsEtwIDsIlv@we@andk2ps
a cat sitting at a table filled with silverware ang plates
@katsItINat@teIb@lfIldwIDsIlv@we@ôaNpleIts
a cat sits on a chair at the dinner table.
5katsIts6n5tSe@ôatD@dIn@teIb@l

Figure 2.1: A picture from MS COCO with captions and phoneme transcriptions. Phonemes
are not separated in this example, but they are presented one-by-one to Phoneme GRU (even
if they are represented by two characters in the transcription).

and testing, two random samples of 5,000 images (and the corresponding captions) were
selected from the MS COCO validation set.

2.1.1 Phoneme sequences

The captions in MS COCO are in conventional English spelling (although they do contain
the occasional typo or misspelling). They were converted to phonetic representations
using eSpeak1, using the IPA-output option with separated phonemes, and the default
English voicing. Pauses and word and sentence stress markers were cleaned out. The
extra elongated i:: was converted to i: (a transcription artefact caused by the apparently
quite frequent presence of the ’Wii’ console in MS COCO). An end-of-utterance symbol
was added. Word boundaries were removed from the phoneme stream before presenting
it to the model. They were, however, preserved for use in the word boundary prediction

1Available at http://espeak.sourceforge.net/

18

http://espeak.sourceforge.net/


experiment described in section 4.3. The phoneme transcriptions are available at https:
//github.com/lgelderloos/levels_representation/tree/master/data. Figure 2.1
contains phoneme transcriptions as they are presented to the model.

2.1.2 Visual feature vectors

Rather than using raw images, the prediction objective of the multimodal models con-
sisted of fixed image feature vectors that encode high-level features of the image. All
images were fed to the 16-layer convolutional object recognition network by Simonyan
and Zisserman (2014) which was pretained on the ImageNet dataset (Russakovsky et al.,
2015). The 4096-dimensional activation vector of the pre-final layer is used as target vi-
sual feature vector. The visual input to any of the multimodal models thus did not
consist of the raw image, but rather of an activation vector that contains information
about high-level visual features of the object types that are present in the scene. This
assumes object recognition processing on the visual information. We believe this is a rea-
sonable assumption, given the capacities of very young children to form visual categories
(Mareschal and Quinn, 2001).

2.2 Models

The main topic of interest in this thesis is the Phoneme GRU model, but three other
models are described for comparison: the multimodal language learning models Word
GRU and Word Sum and the purely linguistic Language Model. The architecture
of all models is summarized in table 2.1.

Phoneme GRU is the model that learns to predict the visual scene from phoneme
The architecture of Phoneme GRU is based on the visual pathway of the Imaginet
architecture by Chrupa la et al. (2015), but takes sequences of phonemes as input, rather
than sequences of words. Phoneme GRU consists of a phoneme encoding layer, one or
more hidden layers, and mapping from the final state of the top hidden layer to the image
feature vector. As prior research has shown that a deep recurrent architect allows for
hierarchical processing of character-level data (Hermans and Schrauwen, 2013; Karpathy
et al., 2015), several versions of Phoneme GRU were explored, with varying numbers
of hidden layers. Comparison and selection is described in section 3.1.

The Language Model is similar in architecture to Phoneme GRU, but is trained
to predict the next phoneme in sequence rather than the visual context at the end-of-
sentence symbol.

Word GRU and Word Sum are defined and trained in order to compare the
performance of Phoneme GRU to word-level models. Performance of all multimodal
models on the training task is reported in chapter 3. Word GRU is a word-level, single
GRU-layer version of Phoneme GRU, taking words rather than character sequences as
input, and thus is similar to the visual pathway of Imaginet (Chrupa la et al., 2015). It
consists of a word embedding layer, a single hidden layer, and a mapping from the final
state of the hidden layer to the image feature vector. Word Sum is simply a sum of the
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embeddings of all words in a sentence, which is then mapped to the image feature vector.
It contains no word order information, and can thus be considered a continuous bag-of-
words model. Word Sum and Word GRU should not be considered baseline models
for the visual feature prediction task. Phoneme GRU may have the advantage of access
to surface form, but Word GRU and Word Sum certainly also exploit information
that is unavailable to Phoneme GRU: the location of word boundaries and the identity
of words is unambiguous to them.

As their names indicate, the hidden layers on Phoneme GRU, Word GRU and the
Phoneme GRU Language Model are built from Gated Recurrent Units (GRU), that
were proposed by Cho et al. (2014) as a solution to the vanishing gradient problem. GRU
is a simpler architecture than the earlier proposed LSTMs Hochreiter and Schmidhuber
(1997), but performs similarly on sequential tasks involving long-range dependencies
(Chung et al., 2014).

A GRU computes the hidden state at the current time step, ht, as the linear combi-
nation of previous activation ht−1, and a new candidate activation h̃t:

gru(xt,ht−1) = (1 − zt) � ht−1 + zt � h̃t (2.1)

where � is elementwise multiplication. The update gate activation zt determines the
amount of new information mixed in the current state:

zt = σs(Wzxt + Uzht−1) (2.2)

The candidate activation is computed as:

h̃t = σ(Wxt + U(rt � ht−1)) (2.3)

The reset gate rt determines how much of the current input xt is mixed in the previous
state ht−1 to form the candidate activation:

rt = σs(Wrxt + Urht−1) (2.4)

By applying the gru function repeatedly, a GRU layer maps a sequence of inputs to
a sequence of states.

GRU(X,h0) = gru(xn, . . . , gru(x2, gru(x1,h0))) (2.5)

where X stands for the matrix composed of input column vectors x1, . . . ,xn.
Two or more GRU layers can be composed into a stack:

GRU2(GRU1(X,h10),h20). (2.6)

The multi-layer Phoneme GRU and Language Model architectures are com-
posed of residualized layers. Residualization means adding the input vectors to the GRU
function to obtain the activation. Residual connections were introduced for use with
convolutional networks by (He et al., 2015) and applied in recurrent architectures by
(Oord et al., 2016). In exploratory stages of this project, it was observed that residual
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connections speed up learning in stacks of several GRU layers, which is why they are
adopted here.

GRUres(X,h0) = GRU(X,h0) + X (2.7)

The gated recurrent units use steep sigmoids for the gate activations:

σs(z) =
1

1 + exp(−3.75z)

and rectified linear units clipped between 0 and 5 for unit activations:

σ(z) = clip(0.5(z + abs(z)), 0, 5)

The phoneme encoding layer of Phoneme GRU is a lookup table E whose columns
correspond to one-hot-encoded phoneme vectors. The input phoneme pt of utterance p
at each step t indexes into the encoding matrix and produces the input column vector:

xt = E[:, pt]. (2.8)

Mapping of the final state of the (top) GRU layer hKn for the recurrent models,
and the summed embedding vector for Word Sum, is mapped to the vector of image
features using a fully connected layer:

î = IhKn (2.9)

All models were implemented in Theano (Bergstra et al., 2010) and optimized with
Adam (Kingma and Ba, 2014). Training was done in minibatches of 64 captions. The
initial learning rate was set to 0.0002.

Model Input Hidden Prediction made at Prediction

Phoneme GRU one-hot encoding 3 1024-dimensional end of sentence 4096-dimensional
of phoneme GRU layers* image feature vector

Word GRU 1024-dimensional 1 1024-dimensional end of sentence 4096-dimensional
word embedding GRU layer image feature vector

Word Sum 1024-dimensional None (word embeddings end of sentence 4096-dimensional
word embedding are summed) image feature vector

Language model one-hot encoding 3 1024-dimensional every time step phoneme at t + 1
of phoneme GRU layers

* This is the final architecture of Phoneme GRU, but several numbers of GRU layers have been explored.
See section 3.1 for details.

Table 2.1: Overview of models
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Chapter 3

Prediction of visual features

During training of all multimodal models, the loss function was the cosine distance
between the predicted and actual visual feature vector. Evaluation of the models was
done using an image retrieval task: all images in the evaluation set were ranked on
cosine distance to the predicted feature vector. The evaluation score is accuracy @ 5 :
the proportion of times the correct image was amongst the five images that most closely
corresponded to the predicted feature vector. Note that correct here refers to the image
that originally elicited the caption. In reality, a caption may of course also be applicable
to images other than the one it originally described.

3.1 Model selection for Phoneme GRU
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Figure 3.1: Validation accuracy @ 5 for dif-
ferent versions of Phoneme GRU. Reported
scores are for best performing epochs of ran-
dom three initializations.

Five different versions of Phoneme GRU
were implemented, with one to five GRU
layers in the stack. To determine the
optimal number of GRU layers, all vari-
ants were evaluated on the image retrieval
task. Figure 3.1 shows accuracy @ 5 on
the validation data, for three initializa-
tions of all versions of Phoneme GRU.
Clearly, the optimal number of GRU-layers
for Phoneme GRU was three. The
training and evaluation reported the rest
of this chapter, as well as the experi-
ments reported in chapter 4, were per-
formed on the three hidden layer-version of
Phoneme GRU. Subsequently, Phoneme
GRU refers to this version.
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Figure 3.2: Value of the loss function on validation data during training. Three random
initialization of each model are shown.

3.2 Training

Figure 3.2 shows the value of the validation average cosine distance between the predicted
visual vector and the target vector, for three random initializations of each of the model
types. For Word GRU and Word Sum, the random initialization does not make
much of a difference: the loss function trajectories can not be discerned. For Phoneme
GRU, however, the initializations lead to clearly separate trajectories. For the word
level models, the loss value diminishes much quicker than for Phoneme GRU. After
enough training, all initializations of Phoneme GRU outperform Word Sum, but not
Word GRU.

3.3 Evaluation

After each epoch in training, the models were evaluated on the image retrieval task on
the validation data. The plotted scores in figure 3.3 correspond to the optimal epoch
for each of the models. On the validation data, accuracy @ 5 for Phoneme GRU falls
in between the scores for Word Sum and Word GRU. This is consistent with the
value of the loss function reported in figure 3.2. The best performing versions of Word
GRU, Word Sum and the three-hidden-layer Phoneme GRU were selected for use in
the experiments reported in chapter 4, and evaluated on the unseen test data.
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Figure 3.3: Validation accuracy @ 5 on the image retrieval task. Three different initializations
of each model; reported scores are for best performing epochs.

Model Accuracy @ 5

Word Sum 0.158
Word GRU 0.205
Phoneme GRU 0.180

Table 3.1: Image retrieval accuracy @ 5 on
test data for the versions of Word Sum, Word
GRU and Phoneme GRU chosen by valida-
tion.

The image retrieval test scores for the
optimal models are reported in table 3.1.
The accuracy @ 5 for Word GRU is com-
parable to what Chrupa la et al. (2015)
report for Imaginet, whose visual path-
way has the same structure. Evaluation
on the test data shows the same pattern
as observed during validation: performance
of Phoneme GRU is better than that of
Word Sum, but less than the performance
of Word GRU.
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Chapter 4

Representation of linguistic
knowledge

This chapter reports several experiments that were performed to investigate the levels of
representation of linguistic information in Phoneme GRU. The time scale at which its
hidden layers operate is explored in section 4.1 by investigating for how long a permuta-
tion at the phoneme level is detectable in the activation vectors, and in 4.2 by showing
the position of shared sub-sequences in sentences with similar distributed representa-
tions. The encoding of sub-word linguistic information is studied by means of a word
boundary detection experiment in 4.3. Finally, section 4.4 describes a word activation
vector similarity experiment that studies the encoding of phonetic form and semantic
features. The code for all experiments described in this chapter is available at https:

//github.com/lgelderloos/levels_representation/tree/master/experiments.

4.1 Phoneme replacement

This experiment explores the time scale at which the three hidden layers in Phoneme
GRU operate. It is based on an exploratory analysis of the differential processing
time scales of layers in deep recurrent character-level language models by Hermans and
Schrauwen (2013). One item in a sequence is replaced by another item that is present in
the data, and the difference this makes to the activation vector at each layer is tracked
through time. Hermans and Schrauwen (2013) find substantial differences between low
layers, in which the change in activation disappears over several tens of time steps, and
high layers, in which it remains clearly detectable after a hundred time steps.

In our adaptation of this experiment, the first phoneme in a sentence is replaced by
another phoneme. Both the original phoneme sequence and the perturbed version are
fed to Phoneme GRU. For each hidden layer, the cosine distance between the activation
vectors for the original and the perturbed sequence is recorded at all time steps. The
development of this distance through time, and how this differs for the three hidden
layers, can give us a first indication of differential processing time scales in Phoneme
GRU.
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Figure 4.1: Average cosine distance between activation vector at t time steps after replaced
phoneme. Graph is cut off at t = 35; average sentence length in validation set is 34.4 phonemes,
mode is 31.

Figure 4.1 shows how replacing the first phoneme in a sequence affects the activation
vectors through time. The plotted cosine distances are averages over the captions from
5,000 images in the validation set of MS COCO that were also used as validation data
in chapter 3. In the first layer, the effect of changing one phoneme quickly diminishes,
and is close to zero around t = 15. In the second and third layer, some effect of the
perturbation remains present for the duration of the sentence (the plot is cut off at
t = 35, just over the average sentence length), but this difference is considerably larger
in layer 3 than it is in layer 2. In layer 2 and 3, the activation vector distance at t = 1
is larger than at the time step of the replaced phoneme itself. This first exploration
indicates that the layers in Phoneme GRU differ in the way they retain information
over time. In the following experiments, we explore where these temporal differences
come from.

4.2 Shared subsequences in nearest-neighbour sentences

In the previous experiment we made a single alteration to the linguistic input, and ex-
plored for how long the change in the activity lingered at the different layers of Phoneme
GRU. The experiment in this paragraph also investigates time scale processing differ-
ences between the levels in the stack of GRUs, but it takes the opposite approach: it
considers sentences that show similar activation patterns in Phoneme GRU, and in-
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vestigate what parts of their phoneme sequences match. The outcome measure is the
average position of matching substrings in the original sentence. This gives an indication
of the time scale the layer operates on: if the shared properties of nearest neighbours are
all at the end of the sentence, that the activation pattern mostly depends on information
from close time steps. However, if similar end-of-sentence representations are generated
by phoneme sequences that only share substrings in the beginning of the sentence, in-
formation must be retained over the full length of the sentence. While the position of
shared substrings is arguably a less direct time scale indicator than the change in activa-
tion that was analysed in the last experiment, this experiment reflects the behaviour of
Phoneme GRU with natural utterances, which typically differ on the word level, rather
than the level of the phoneme.

Layer Mean position

1 12.1
2 14.9
3 16.8

Table 4.1: Average position
of symbols in shared substrings
between nearest neighbour sen-
tences according to Phoneme
GRU activation patterns. Po-
sitions are indexed from end of
sentence, i.e. index 0 is the last
symbol.

The captions of the 5,000 validation images for visual
feature prediction were included in this experiment. For
each sentence in this set, the nearest neighbour was de-
termined for each hidden layer in Phoneme GRU. The
nearest neighbour is the sentence in the validation set for
which the activation vector at the end of sentence sym-
bol has the smallest cosine distance to the activation vec-
tor of the original sentence. Average substring position
is quantified as the average position in the original sen-
tence of all phonemes in substrings that it shares with its
nearest neighbour, counted from the end of the sentence.
A high mean average substring position thus means that
the shared substrings appear early in the sentence, and
that information is retained for longer periods of time.
See figure 4.2 for an illustration of this idea.

As can be seen in Table 4.1, the average position of shared substrings in neighbour
sentences is closest to the end for the first hidden layer and moves towards the beginning
of the sentence for the second and third hidden layer. These findings corroborate the
findings in the last experiment: information from distant time steps is more contributive
to the activation pattern of the highest layer than to that of the lowest layer.

4.3 Word boundary prediction

To explore the sensitivity of Phoneme GRU to linguistic structure at the sub-word
level, we investigated the encoding of information about word ends in the hidden layers.
A logistic regression model was trained on activation patterns of the hidden layers at all
timesteps, with the objective of identifying phonemes that preceded a word boundary.
For comparison, several logistic regression models were trained to perform the same task
on activation vectors from the Phoneme GRU Language model, and on positional
n-gram data.

The location of the word boundaries was taken from the eSpeak transcriptions.
Mostly, these match the location of word boundaries in conventional English spelling.

27



Layer 1 A horse and rider jumping over a bar on a track.
A train carrying carts coming around a curve on a track.
5hO:sandôaId@dZ2mpIN@Uv@ô5bA:ô6n5tôak
5tôeInkaôIINkA:tsk2mIN5ôaUnd5k3:v6n5tôak

Layer 2 A horse and rider jumping over a bar on a track.
Two horse-drawn chariots racing on a track.
5hO:sandôaId@dZ2mpIN@Uv@ô5bA:ô6n5tôak
tu:hO:sdôO:ntSaôi@tsôeIsIN6n5tôak

Layer 3 A horse and rider jumping over a bar on a track.
The horse and rider are jumping over the yellow structure.
5hO:sandôaId@dZ2mpIN@Uv@ô5bA:ô6n5tôak
D@hO:sandôaId@ôA:dZ2mpIN@Uv@D@jEl@Ustô2ktS@

Table 4.2: Example of a phoneme sequence with nearest neighbours for each GRU-layer in
Phoneme GRU. Conventional spelling given for convenience. Shared subsequences of 3 or more
phonemes are printed in bold. In reality, shared subsequences of all lengths were taken into
account.

However, eSpeak models some coarticulation effects, which sometimes leads to word
boundaries disappearing from the transcription. For example, bank of a river is tran-
scribed as [baNk @v@ ôIv@]. The features for the positional n-grams are all 1- to n-grams
between t-n and t (where t is the current phoneme), marked for the position relative to
t.

All models were implemented using the LogisticRegression implementation from
Scikit-learn (Pedregosa et al., 2011) with L2-normalization. The captions of the visual
feature prediction validation data were used as training data, and those of the test
set as test data. For all models, the optimal value of regularization parameter C was
determined using GridSearchCV with 5-fold cross validation on the training set. Models
with C at the optimal value were then trained on the full training set.

Table 4.3 reports recall, precision, accuracy and F1 score on the test set. The pro-
portion of phonemes preceding a word boundary is 0.29, meaning that predicting no
word boundary by default would be correct in 0.71 of cases. At the highest hidden layer
of Phoneme GRU, enough information about the word form is available for correct
prediction in 0.82 of cases - substantially above the majority baseline. The lower levels
allow for more accurate prediction of word boundaries: 0.86 at the middle hidden layer,
and 0.88 at the bottom level. Prediction accuracy of the logistic regression model based
on the activation patterns of the lowest hidden layer is comparable to that of a bigram
logistic regression model.

Figure 4.4 illustrates the wourd boundary predictions (and errors) that are made by
each Phoneme GRU-layer based regression model.

Activation vectors of the Phoneme GRU Language model at any level provide
enough information for accurate prediction of word boundaries in over 0.94 of cases.
Although Phoneme GRU shares the architecture of this model up to the prediction
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Model Accuracy Precision Recall F1

Majority baseline 0.71

Phoneme GRU Layer 1 0.88 0.82 0.78 0.80
Layer 2 0.86 0.79 0.71 0.75
Layer 3 0.82 0.74 0.60 0.66

Language Model Layer 1 0.94 0.90 0.92 0.91
Layer 2 0.96 0.92 0.94 0.93
Layer 3 0.96 0.92 0.94 0.93

n-gram n = 1 0.80 0.79 0.41 0.54
n = 2 0.87 0.79 0.78 0.79
n = 3 0.93 0.86 0.90 0.88
n = 4 0.95 0.90 0.93 0.92

Table 4.3: Word boundary prediction scores of linear regression models based on activation
vectors of Phoneme GRU, the Language Model, and positional n-grams

layer, its activation vectors contain considerably less information that allow for accurate
and precise word boundary prediction. There is a distinct difference with regards to
recall in particular, which in the Phoneme GRU-based classifiers is always smaller than
precision, whereas it is in fact larger than precision for the Language Model-based
classifiers.

These results indicate that information on sub-word structure is only partially en-
coded by Phoneme GRU. It is mostly absent by the time the signal from the input
propagates to the top layer, at which point only 0.60 of word ends are correctly iden-
tified as such. Although the bottom layer does learn to encode a fair amount of word
boundary information, the recall of 0.78 indicates that it is rather selective.

Original 5 smO:l blak d6g standIN @Uv@ô 5 pleIt 6v fu:d A small black dog standing over a plate of food

Layer 1 5 smO:l blak d6g stand IN @Uv@ ô5 pleIt 6v fu:d A small black dog stand ing ove ra plate of food
Layer 2 5 smO:l blak d 6g s tand IN @Uv@ ô5 pleIt 6v fu:d A small black d og s tand ing ove ra plate of food
Layer 3 5 smO:lblak d 6g st and IN @Uv@ô5pleIt6v fu:d A smallblack d og st and ing overaplateof food

Original tu: zEbô@ havIN 5 faIt 6n t6p @v@ dôaI gôas fi:ld Two zebra having a fight on top ofa dry grass field

Layer 1 tu: z Ebô@h avIN 5 faIt6n t 6p @v@ dôaIgôasfi:ld Two z ebrah aving a fighton t op ofa drygrassfield
Layer 2 tu: z Ebô@havIN 5 faIt6n t6p @v@ dôaIgôasfi:ld Two z ebrahaving a fighton top ofa drygrassfield
Layer 3 tu: z Ebô@havIN 5faIt6nt6p@v@dôaIgôasfi:ld* Two z ebrahaving afightontopofadrygrassfield*

* in this case, the word boundary at the end of the sentence was missed, too.

Table 4.4: Two sentences segmented according to word boundary predictions by classifiers
based on activation patterns in Phoneme GRU. Conventional spelling equivalents provided for
convenience.
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All words Frequent words

Phoneme GRU Layer 1 0.09 0.12
Layer 2 0.21 0.33
Layer 3 0.28 0.45

Word GRU 0.48 0.60

Word Sum 0.42 0.56

Table 4.5: Spearman’s correlation coefficient between word-word cosine similarity and human
similarity judgements. Frequent words appear at least 100 times in the training data. All
correlations significant at p < 1e−4.

4.4 Word similarity

The previous experiments have indicated that the layers in the stack of GRUs in Phoneme
GRU operate on different time scales, and that information about word form is mostly
encoded in the lowest layer, and dissipates as the input signal propagates through the
network. This experiment studies where information about word form and meaning is
represented in Phoneme GRU. The correlation of cosine similarity between word pairs
with human similarity ratings is investigated, as well as their correlation with surface
form similarity.

To understand the encoding of semantic information in Phoneme GRU, the cosine
similarity of activation vectors for word pairs from the MEN dataset Bruni et al. (2014)
were compared to human similarity judgements. The MEN dataset contains 3,000 word
pairs that are rated for semantic relatedness. For each word pair in the MEN dataset,
the words were transcribed phonetically using eSpeak and then fed to Phoneme GRU
individually. For comparison, the words were also fed to Word GRU and Word
Sum. Word pair similarity was quantified as the cosine similarity between the activation
patterns of the hidden layers at the end-of-sentence symbol.

Table 4.5 shows Spearman’s rank correlation coefficient between human similarity
ratings from the MEN dataset and cosine similarity at the last timestep for all hidden
layers. In all layers, the cosine similarities between the activation vectors for two words
are significantly correlated with human similarity judgements. The strength of the cor-
relation differs considerably between the layers, ranging from 0.09 in the first layer to
0.28 in the highest hidden layer. Correlations for both Word GRU and Word SUM
are considerably higher than for Phoneme GRU. This is expected given that these are
word level models with explicit word embeddings, while Phoneme GRU builds word
representations by forwarding phoneme-level input through several layers of processing.

The second column in Table 4.5 shows the correlations when only taking into account
the 1,283 word pairs of which both words appear at least 100 times in the training data.
For all cosine similarities, but most distinctively for those of the third layer of Phoneme
GRU, the correlations with human similarity ratings are considerably higher when only
taking into account well known words.

The relative contribution of surface form information to activation pattern in Phoneme
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GRU is analysed through the correlation of cosine similarity with a measure of phonetic
difference: the Levenshtein distance between the phonetic transcriptions of the two
words, normalized by the length of the longer transcription.

Table 4.6 shows Spearman’s rank correlation coefficient between the normalized edit
distance of word pairs and the cosine similarity of activation vectors at the hidden layers
of Phoneme GRU. As expected, edit distance and cosine similarity of the activation
vectors are negatively correlated, which means that words which are more similar in
form also have more similar representations in Phoneme GRU. (Note that in the MEN
dataset, meaning and word form are also (weakly) correlated: human similarity judge-
ments and edit distance are correlated at −0.08 (p < 1e−5).) The negative correlation
between edit distances and cosine similarities is strongest at the lowest hidden layer
and weakest, though still present and stronger than for human judgements, at the third
hidden layer.

Layer ρ

1 −0.30
2 −0.24
3 −0.15

Table 4.6: Spearman’s rank correlation coefficient between Phoneme GRU cosine similarity
and phoneme-level edit distance. All correlations significant at p < 1e−15.

Table 4.7 shows the 20 most similar pairs of well-known words in the MEN dataset
for each layer in Phoneme GRU, as determined by calculating the cosine distance at
the end of sentence symbol. Only pairs of words that occur at least 100 times in the
training data are included in this table. In the first layer, all most-similar word pairs are
similar in phonetic form, and most word pairs are related in meaning. A couple of word
pairs, however, are similar in form, but not in meaning, such as “licking - sitting”. In
the second layer, although almost all word pairs are still similar in form, all word pairs
are also similar in meaning, which is reflected in the high semantic similarity ratings.
At layer 3, several word pairs are similar in meaning, yet do not share substrings (larger
than one phoneme), such as “sandwich - burger” and “city - town”.

The correlations of cosine similarities with edit distance on the one hand, and hu-
man similarity rating on the other hand, indicate that the different hidden layers in
Phoneme GRU reflect increasingly abstract levels of representation. Qualitative anal-
ysis of the most similar word pairs shows the same pattern: whereas information about
phonetic form is gradually lost as the input signal propagates up through Phoneme
GRU, semantic information becomes more prominent.
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Chapter 5

Discussion

This study analysed the behaviour of Phoneme GRU, a model of visually grounded lan-
guage learning from phoneme-level data. Phoneme GRU processes the input phoneme-
by-phoneme, and predicts the visual context after arriving encountering the end of the
sentence. The language knowledge encoded in Phoneme GRU was examined in a series
of experiments. Evaluation on the learning task and exploratory analysis of the encoded
knowledge showed that Phoneme GRU learns to encode word forms as well as visually
grounded meaning, supporting the idea that lexical acquisition can be understood as
interactive, rather than separate processes of word segmentation and cross-situational
meaning acquisition.

5.1 Findings

The ability of Phoneme GRU to predict high level image features from phonetically
transcribed caption was evaluated in an image retrieval task. Phoneme GRU was
outperformed by the word-level recurrent Word GRU model. Interestingly, however,
it was more accurate than Word Sum, the analog of a bag of words model. The word-
based models have a definite advantage over Phoneme GRU in this task: they know
exactly what the words in the sentence are. Phoneme GRU outperforms the summed
word embedding-model despite this handicap.

The role of the three layers in the final architecture of Phoneme GRU was analysed
in a series of experiments. Exploratory analysis showed differential processing time
scales: replacing one phoneme in the sequence with another phoneme lead to a change
in the activation vectors that became untraceable roughly halfway the sentence in the
first layer, but in the second and third layer, it remained noticeable for the duration
of the sentence. This is consistent with the findings of Hermans and Schrauwen (2013)
of differential time scales in character-level language modelling. Differential processing
time scales were also observed when comparing nearest neighbour sentences, as judged
by cosine similarity. The average position of shared subsequences in nearest neighbours
was closest to the end of the sentence for the first layer, and around the middle of the
sentence for the third layer, with the second layer falling in between.
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The rationale behind this analysis was that sentences that lead to similar activation
vectors share parts of their form, but that the place of these parts may differ due to
processing timescale differences. This interpretation is corroborated by the findings of
the replacement experiment, but it may not be the whole story. It may also be that the
third layer is simply less sensitive to form than the lower levels, and operates on more
abstract semantic representations. If we were to pick two sentences at random, it is most
likely that the average position of subsequences is around the middle of the sentence. Of
course we are not picking sentences at random here - hopefully, we are picking sentence
pairs that may appear in similar visual contexts. Could it be that the third layer cares
more about (visual aspects of) meaning, whereas the lower layers care more about form?

A word boundary prediction experiment indicated that the lowest layer is most in-
volved in encoding information about word form, as its activation pattern provided the
most accurate predictor of word boundaries. Indeed, the higher levels were less reliable
sources of information to make this prediction. A word similarity experiment on the
MEN dataset showed that cosine similarity at any hidden layer and edit distance of
two word pairs were negatively correlated, most strongly so in the lowest hidden layer,
again indicating that information about word form is represented low in the stack of
GRUs. Human judgements of semantic relatedness of word pairs, on the other hand,
were correlated most strongly with cosine similarities between activation vectors of the
third hidden layer, and decreasingly so for the lower layers.

These results indicate that there is indeed not just a difference in the timescale at
which the layers operate, but also in the type of information they encode: the lowest
layer mostly attends to form, and as the signal propagates through the stack of GRUs,
representations become more semantic.

Similarity of activation patterns in the hidden layers of the word-based models were
a much closer match to human similarity judgements than those in Phoneme GRU.
We proposed that access to word form may help to determine the meaning of unfamiliar
words, which might give Phoneme GRU an advantage in this respect, an effect that is
present in NLP-applications that incorporate character information (Ling et al., 2015a;
Plank et al., 2016). We did not observe a beneficial effect of the access to word form, but
also did not look at unfamiliar forms specifically. It would be interesting to do additional
analysis of the interpretation of novel forms by Phoneme GRU, taking into account
well-known words that are similar in form.

If the beneficial effect of access to word form exists, it may be obscured by the
advantage that the word level models have in our study: they know where the word
boundaries are. There is no ambiguity between a sequence form and a word, as there
is for Phoneme GRU. The correlations between human word similarity ratings and
cosine similarities of activation vectors in Phoneme GRU are stronger for frequent
words, suggesting that the disambiguation is learnable.

Taking the poorer encoding of semantic information into consideration, the fact that
Phoneme GRU outperformed the Word Sum model on the retrieval task is especially
impressive. Clearly, Phoneme GRU is well able to use sentence order information, as
this is the advantage it has over Word Sum. The better performance of Word GRU
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may be due to the better encoding of semantic information, but it could also have been
an indication of better capturing of long-range dependencies. The fact that Phoneme
GRU outperforms Word Sum makes the latter explanation unlikely.

The word boundary prediction experiment showed that Phoneme GRU is quite
selective in the information about word form it holds on to. The Language Model
showed that the architecture itself in principle is well capable of tracking word form, yet
even at the lowest level, Phoneme GRU only encodes about as much information about
word form as a bigram model. Because Phoneme GRU was never explicitly instructed
to identify word units, these results cannot really be interpreted in terms of under- or
oversegmentation, as is often done for segmentation models. However, the fact that
recall is particularly low in all levels (which is certainly not the case for the Language
Model) does give the impression that some parts of the sequence form are simply
forgotten about, or not attended to, by Phoneme GRU. A possible explanation is that
not all sequence parts are of equal importance for the objective function: the prediction
of the visual context. Kádár et al. (2016) show that the language and visual pathways of
Imaginet attend to different parts of the language input. The visual pathway is much
more attentive to content than to function words. It is very possible that this is also the
case in Phoneme GRU.

The hierarchical representation of linguistic structure is not absolutely separated be-
tween the layers. Although there is a clear pattern of short-timescale information in the
lower layers and larger dependencies in the higher layers, the third layer still encodes
information about the phonetic form: its activation patterns were predictive of word
boundaries, and similarities between word pairs at this level were more strongly corre-
lated with edit distance than human similarity judgments are. It would be interesting to
investigate exactly what information that is. In humans, both word phonological form
and word meaning can act as primes, which hints that human representations encode
both aspects. This may be the case in Phoneme GRU. It may also be that the model
holds on only to semantically relevant aspects of form; for example, suffixes that indicate
plurality.

5.2 Limitations

MS COCO does not consist of child-directed speech, and the input data misses many of
the cues available to children. Word- and sentence stress markers from the input signal
have been cleared out from the input signal, but given the potential role of these cues
in word segmentation (Cutler and Butterfield, 1992), it may have been better to include
them. However, the good encoding of form information in the Language Model
suggests that Phoneme GRU selectively ignores certain information about form, rather
than simply not being able to grasp it.

The MS COCO dataset does not contain visual social cues such as eye-gaze of the
speaker, or the object that the speaker is holding, which have been proposed to play a
role in language development in general and word learning in particular (e.g. Law et al.
(2012), Yu and Smith (2013)). Exploitation of these cues has been implemented suc-
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cessfully in computational models of cross-situational learning with word-level language
input (Frank et al., 2007; Lazaridou et al., 2016). Phoneme GRU may learn to use
these cues, when given input data in which they are present.

Perhaps the most serious shortcoming of Phoneme GRU is that there is no mecha-
nism in place for segmentation of speech without visual information. Infants do display
the ability to segment speech without non-linguistic cues (Saffran et al., 1996a; Thiessen
and Saffran, 2003). This limitation becomes all the more serious when we consider that
the only study that investigated the use of visual cues for word segmentation in infants,
did not find evidence that these cues were in fact exploited, whereas statistical cues in
the language signal were (Thiessen, 2010). Phoneme GRU cannot account for these
findings.

5.3 Future work

Phoneme GRU learns to encode information of word form as well as meaning, but
it is rather selective in what word form knowledge it learns to encode, and is unable
to learn from language unaccompanied by visual data. These shortcomings could be
addressed by adding an explicit language learning task. A similar implementation as
the multi-purpose Imaginet (Chrupa la et al., 2015) model is probably not suitable to
phoneme-level input. Being able to predict the next word, as in Imaginet, requires
much more meaningful knowledge than predicting the next phoneme does, and a shared
phoneme embedding layer probably does not provide the same benefits as a shared word
embedding. However, some other implementation may be possible. As an example, we
might add a phoneme prediction output layer which gets input from the first hidden layer
and is trained on predicting the next phoneme in sequence. The first hidden layer would
then be trained both on a language modelling task and the visual output prediction task,
urging it to encode more information about form.

In chapter 1, it was mentioned that the work in this thesis is meant as an interme-
diate step towards grounded language learning from raw perceptual data: continuous
visual input and acoustic speech. Phoneme GRU assumes knowledge of phonetic cat-
egories, but in reality, the developmental periods for word segmentation and phonetic
category acquisition overlap. Perhaps counter-intuitively, it is possible that stepping
down to the speech signal would also result in acquiring more knowledge about form,
as lexical knowledge facilitates learning of phonetic categories (Feldman et al., 2013).
Raw speech also incorporates non-phonemic acoustic cues to word boundaries, which
Phoneme GRU does not have access to now.

Stepping down from phoneme transcriptions to acoustic speech will be a challenging
endeavour, but worthwhile; it would result in a grounded model of language learning
that covers the full scope of language learning, incorporating learning at and interaction
between all intermediate levels of granularity.
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5.4 Conclusion

Phoneme GRU acquires knowledge of word form, meaning, and sentential ordering,
through visually grounded language learning from phoneme-level input in highly noisy
and ambiguous visual context. The hidden layers in the deep recurrent architecture
show a hierarchical organization, both in processing timescales, and in abstraction: lower
levels encode more aspects of form, and higher levels encode more semantic knowledge.
The results support an integrated view of language learning, and bode well for future
endeavours in recurrent neural language learning from raw perceptual data.
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gap between speech segmentation and word-to-world mappings: Evidence from an
audiovisual statistical learning task. Journal of Memory and Language, 63(3):295 –
305.

Cutler, A. and Butterfield, S. (1992). Rhythmic cues to speech segmentation: Evidence
from juncture misperception. Journal of Memory and Language, 31(2):218–236.

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2):179–211.

Fazly, A., Alishahi, A., and Stevenson, S. (2010). A probabilistic computational model
of cross-situational word learning. Cognitive Science, 34(6):1017–1063.

Feldman, N. H., Griffiths, T. L., Goldwater, S., and Morgan, J. L. (2013). A role for the
developing lexicon in phonetic category acquisition. Psychological Review, 120(4):751–
778.

Feng, H., Chen, K., Deng, X., and Zheng, W. (2004). Accessor variety criteria for
Chinese word extraction. Computational Linguistics, 30(1):75–93.

Frank, M. C., Goodman, N. D., and Tenenbaum, J. B. (2007). A Bayesian framework
for cross-situational word-learning. In Advances in Neural Information Processing
Systems, volume 20.

Glicksohn, A. and Cohen, A. (2013). The role of cross-modal associations in statistical
learning. Psychonomic Bulletin & Review, 20(6):1161–1169.

39



Goldwater, S., Griffiths, T. L., and Johnson, M. (2009). A bayesian framework for word
segmentation: Exploring the effects of context. Cognition, 112(1):21–54.

Harwath, D. and Glass, J. (2015). Deep multimodal semantic embeddings for speech and
images. In 2015 IEEE Workshop on Automatic Speech Recognition and Understanding
(ASRU), pages 237–244. IEEE.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385.

Hermans, M. and Schrauwen, B. (2013). Training and analysing deep recurrent neural
networks. In Advances in Neural Information Processing Systems, pages 190–198.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computa-
tion, 9(8):1735–1780.

Johnson, M., Demuth, K., Jones, B., and Black, M. J. (2010). Synergies in learning
words and their referents. In Advances in neural information processing systems,
pages 1018–1026.

Jusczyk, P. W., Houston, D. M., and Newsome, M. (1999). The beginnings of word
segmentation in English-learning infants. Cognitive psychology, 39(3):159–207.

Kádár, A., Chrupa la, G., and Alishahi, A. (2016). Representation of linguistic form and
function in recurrent neural networks. CoRR, abs/1602.08952.

Karpathy, A., Johnson, J., and Li, F.-F. (2015). Visualizing and understanding recurrent
networks. arXiv preprint arXiv:1506.02078.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980.

Law, B., Houston-Price, C., and Loucas, T. (2012). Using gaze direction to learn words
at 18 months: Relationships with later vocabulary. LANGUAGE, 4:3–14.

Lazaridou, A., Chrupa la, G., Fernández, R., and Baroni, M. (2016). Multimodal se-
mantic learning from child-directed input. In The 15th Annual Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and
Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In Computer
Vision–ECCV 2014, pages 740–755. Springer.
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