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Abstract

As air transportation continues to grow and expanding the number of run-
ways is often impractical, it has become increasingly important for Air Traf-
fic Control (ATC) to allocate runways more efficiently. The current study
focuses on predicting runway allocation for all arriving and departing flights
at Amsterdam Airport Schiphol, to enhance the capacity of ATC.

Previous research has included optimisation techniques, a heuristics ap-
proach, discrete-choice modelling and the use of neural networks to try and
solve the efficient runway allocation problem. These works have shown that
weather, traffic demand and noise abatement are all important to the ATC
decision process. The current study contributes to the literature in sev-
eral ways. One is that attention is directed to the use of the linear kernel
Support Vector Machine and Logistic Regression classification algorithms to
solve runway allocation problems. Another one is that it examines features
that have not been previously investigated as predictors for runway alloca-
tion, namely type of airplane, airplane weight, and maintenance planning.
Maintenance features, in particular, prove to be important when it comes
to predicting runway allocation.

The two algorithms yield similar classification performance, with the Lo-
gistic Regression classifier performing slightly better. They achieve consid-
erably better results than the majority baseline classifier and this yields a
promising perspective for future research.



1 Introduction

On January 4, 2016, Schiphol Group published a news report noting that
they expected a record number of visitors in the upcoming year. During the
year of their 100th anniversary, Amsterdam Airport Schiphol (AAS) would
welcome a total number of 60 million travellers. This forecast is in line with
current academic research, stating a global growth in air transportation over
the last 30 years (Busquets et al., 2015). While there are a lot of oppor-
tunities for economic gain in the rapid growth of air transportation, there
is great competition among the European hubs and the growth also entails
negative consequences (such as flight delays, increased risk of collisions, re-
duced air quality, noise pollution and climate change) (Busquets et al., 2015;
Kumar et al., 2008). As air travel continues to grow with approximately 5%
per annum and expanding the number of runways is often impractical, it
has become increasingly important for Air Traffic Control (ATC) to allo-
cate runways more efficiently while maintaining safety and keeping in check
with environmental regulations (Bennell et al., 2011). Therefore, it seems
necessary to introduce a real-time decision aid to improve ATC operations.

1.1 Context

Controlling air traffic is a complex, highly collaborative task that requires
swift responses to ever-changing situations (Mackay et al., 1998). In the
process of assigning a runway to a flight movement (runway allocation), air
traffic controllers have to consider many factors (such as the weather, traf-
fic demand and environmental considerations) to make their final decision.
This means that the capacity and safety of an airport are dependent on
human decision-makers that experience a great amount of workload (Ra-
manujam and Balakrishnan, 2015). The current study tries to reduce air
traffic controllers’ workload and enhance ATC operations by creating a real-
time decision aid for allocating runways.

There has been a considerable amount of research on modelling the ATC
decision process (see Section 2). It is well known that weather (primarily
cloud ceiling, visibility, wind speed and wind direction), traffic demand and
noise abatement at an airport are major factors in runway allocation. Thus,
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AAS, with its unstable weather conditions and complex noise preferential
runway system, is especially interesting to evaluate a decision aid for ATC
(Hesselink and Nibourg, 2011). Hesselink and Nibourg (2011) add that the
availability of runways and Instrumental Landing Systems (ILS)1 are equally
important factors.

Taking into account the major factors in runway allocation mentioned
in the literature, the present study uses supervised multi-class classification
algorithms to predict the runway an air traffic controller is likely to allocate
to under certain conditions. By combining data from various sources (such
as weather data, traffic data and airplane data), a dataset of around 3.5
million flights at AAS between January 2008 and March 2016 was created
(see Section 3). This dataset is used to predict the target feature Runway.

1.1.1 Academic Relevance

Although several studies have been conducted on modelling runway allo-
cation (Avery and Balakrishnan, 2015; Bertsimas et al., 2011; Gilbo, 1993;
Heblij and Wijnen, 2008; Janic, 2007; Kuiper et al., 2011; Nogami et al.,
1996; Ramanujam and Balakrishnan, 2011, 2015; Zhang and Kincaid, 2014)
(for a detailed overview see Section 2), little attention has been paid to
the Stochastic Gradient Descent (SGD) approach to discriminative learning
of linear classifiers to solve this issue. Most of the existing research is done
with the use of econometric models and optimisation (Bertsimas et al., 2011;
Gilbo, 1993; Heblij and Wijnen, 2008; Kuiper et al., 2011; Zhang and Kin-
caid, 2014). Research has also focused on improving the existing techniques
by applying alternative modelling methods, such as discrete-choice mod-
elling using utility functions (Avery and Balakrishnan, 2015; Ramanujam
and Balakrishnan, 2011, 2015).

One of the ways in which a SGD approach is expected to improve fore-
casts on runway allocation is its efficiency and ability to handle large-scale
machine learning problems. The ability to process an extended range of
features and training examples is likely to improve the ability to capture
the underlying behaviour of ATC. In fact, ATC is an especially interesting
application for the SGD approach because it is characterised by a large and
complex system that involves mixtures of (unstructured) data in various
formats.

Because of the complexity of ATC, it is impossible to find an optimal
solution for runway allocation and difficult to find a suboptimal one using
only the known ATC heuristics (Nogami et al., 1996). A solution might
minimise delays but cause an unnecessary amount of noise pollution to the
environment. Fortunately, machine learning classifiers are widely known as

1ILS enable aircrafts to land if pilots are not able to get a clear visual of the runway.

They do this by using transmitted radio signals.
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an effective method to extract new knowledge from data and generalise ef-
fectively. While the focus of econometric models is on optimising allocation
(for minimising delays, noise or costs), this study tries to find a suboptimal
solution within a practical computational time. Classification algorithms
analyse the relationships between historical situations and their consequent
best allocation decisions. The allocation decisions are defined by the current
ATC who keep in mind the multitude of interests involved. These relation-
ships are then used to predict future best practices, providing a suboptimal
solution for the runway allocation problem. The SGD approach gives us the
opportunity to do this quickly in real-time.

Another way in which this study contributes is the actual use of a large
amount of data. The dataset used for this research consists of all 3.5 million
flights at AAS from over the course of eight years (January 2008 to March
2016). By comparison, Ramanujam and Balakrishnan (2015) use two years’
worth of data and Hesselink and Nibourg (2011) have done their research
with just a single year of historical data.

1.1.2 Practical Relevance

For ATC, this study could be helpful in several ways. The first was al-
ready briefly discussed in this section and concerns the possibility to reduce
workload for air traffic controllers. Research by Metzger and Parasuraman
(2005) on conflict detection showed that automated decision aids could re-
duce mental workload and improve controller performance when functioning
reliably. Reduced workload can increase efficiency and overall airport capac-
ity (Gilbo, 1993). It is important to note, however, that reliability is a key
factor in this. When the information was imperfect, automated detection
performed worse than manual detection. Not only will flawed tools hurt ca-
pacity and efficiency of current ATC operations, they can also be of risk to
airport safety (Metzger and Parasuraman, 2001). Since a predictive model
can only be as good as its information, dependable information should be a
top priority (Cole et al., 2000).

Besides reducing workload, runway allocation predictions can also be
used to build new predictive models. One example is that good runway
allocation predictions can lead to good noise predictions. Communities liv-
ing around airports benefit from such a system as they will get insight into
the traffic and amount of noise they can expect (Hesselink and Nibourg,
2011). Being informed is the first step in understanding and will reduce
the number of noise complaints. Another example is the ability to build
predictive maintenance models. This can serve construction companies to
improve their activity planning by gaining insight in predicted runway use.
For example, the company might decide to shift its planned maintenance
to another day because the predicted runway use for that day is low. In
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addition, runway allocation predictions might be useful for maintenance
contractors who can anticipate on asset usage and who can, in turn, predict
their maintenance accordingly. A third example is capacity prediction. The
choice of runways is an important factor in determining airport capacity.
Airport capacity predictions are a key input to a range of air traffic man-
agement functions, such as air traffic flow management and airport surface
operations scheduling (Gilbo, 1993; Ramanujam and Balakrishnan, 2015).
Other implementations where runway allocation predictions could be use-
ful are arrival management and operations scheduling by airlines (Hesselink
and Nibourg, 2011). Hence, it proves to be very useful to predict runway
allocation.

1.2 Research Questions

The aim of this research is to predict runway allocations for individual flights
at AAS. I therefore formulate my research question as follows:

• Which features influence runway allocation?

• To what extent do the existing features influence runway allocation
and which features are most influential?

• Based on the existing features, can predictions be made about runway
allocation?

• Do these predictions yield better results than the majority baseline
classifier?

To answer the first question, the existing literature is reviewed in Sec-
tion 2. The following features were identified as relevant in runway allo-
cation: weather (primarily cloud ceiling, visibility, wind speed and wind
direction), traffic demand, noise abatement and maintenance work.

The second question will be dealt with in Section 3. An ablation study is
performed to examine the effects of individual features on the performance
of the model. As none of the features caused a large difference in Classifi-
cation Accuracy (CA) after being omitted, it was decided to try and omit
feature subsets. In this new experiment, the subset with weather features
deteriorated CA most severely and can thus be seen as most influential.

The answer to the third research question is reported in Section 4. Here,
the performance measures CA, Precision, Recall and F1-scores on the test
set are reported and evaluated. The highest CA score (0.56) was achieved by
the Logistic Regression classifier. The linear kernel Support Vector Machine
(SVM) has a similar CA performance of 0.55.
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For the final research question, the performance scores of the linear kernel
SVM and Logistic Regression classifiers are compared to the performance of
the majority baseline classifier in Section 4. As the majority baseline was
set at 0.21, both classification algorithms perform well beyond the baseline.

1.3 Structure

The remaining structure of this thesis is as follows:

Section 2 places the current research in a broader context and discusses
our theoretical framework. Section 2.1 reviews previous academic work and
Section 2.2 highlights the research gaps that were identified in the literature.
Section 2.3 elaborates on the current study and justifies its added value.

Section 3 describes the experimental setup of this study in detail. Sec-
tion 3.1 holds the description of the dataset. Section 3.2 describes the clean-
ing and pre-processing of the raw dataset and the subsequent experimental
procedure can be found in Section 3.3. Finally, Section 3.4 reports which
evaluation scheme and which error measures were used as evaluation cri-
teria. This section provides all the necessary information to replicate the
current study.

Section 4 reports the results that were found from the experiments. It
reports the final CA scores on the test set. In Section 4.1, the classifiers’
performance is discussed in relation to each other, to the performance on
the validation set and to the literature. In Section 4.2, the majority base-
line classifier is introduced and compared to the average CA scores of the
classifiers. The performance measures Precision, Recall and F1-scores are
discussed in Section 4.3.

Section 5 evaluates the results with regard to the research questions.
Section 5.1 discusses the limitations of the current study. Its contribution
to the existing framework is found in Section 5.2 and suggestions for future
research are noted in Section 5.3. Finally, the implications for the field are
discussed in Section 5.4.

5



2 Related Work

In the past three decades, global air transport has grown substantially. This
rapid industry growth has led to airport congestion and significant flight
delays at the busiest airports around the world. Moreover, it has been
estimated that over the next 15 years air traffic in Europe and the US
will more than double, perhaps even triple (Bennell et al., 2011; Busquets
et al., 2015). Thus, many airports feel the need to increase their capacity
and maximise throughput. But as airport capacity expansion projects tend
to be expensive and take several years to complete, more efficient use of
existing airport capacity (by means of improved planning and scheduling)
can offer a less expensive and important part of the solution (Avery and
Balakrishnan, 2015). One area where there is room for capacity expansion
by improved planning is the runway system. Since the runway system is one
of the most critical operational bottlenecks for the lion’s share of airports,
efficient runway utilization is a crucial instrument for capacity management
and an especially important topic.

At any time, ATC chooses a selection of runways (and their associated
traffic directions) to handle current flights. The subset of runways — known
as the runway configuration — is of great influence on airport capacity
(Gilbo, 1993). At AAS, a runway configuration can consist of up to 4 run-
ways. The remaining runways are not used until there has been a switch in
runway configuration. During arrival surges, a runway configuration typi-
cally consists of two arrival runways and one departure runway. During de-
parture surges, ATC assigns two departure runways and one arrival runway.
This process is a necessity to ensure safety and to meet aircraft separation
requirements. Once a runway configuration has been decided upon, ATC
assigns individual runways out of this selection for arriving and departing
flights.

To perform the consequential task of allocating flights to runways, air
traffic controllers have to consider many factors such as the weather, pre-
dicted traffic demand and environmental regulations, most important noise
abatement (Ramanujam and Balakrishnan, 2015). On top of that, there
may be a number of conflicting interests concerning the allocation of flights
to individual runways. More often than not, different runways are preferred
for different reasons. For example: in a particular situation, one of the
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runways is preferred for noise reasons, whereas another one is preferred for
safety to the surrounding environment. This problem is illustrated by an
accident that occurred at AAS in 1997, when an arriving aircraft was blown
off the runway by a strong crosswind. After the crash, investigation showed
that the aircraft was assigned to the runway because of noise considera-
tions, while another would have been more favourable considering the wind
conditions at the time (Heblij and Wijnen, 2008).

At AAS, ATC personnel handles approximately 1200 flights a day. Ev-
idently, the high complexity and multitude of factors involved in this allo-
cation task leads to a great amount of workload (Mackay et al., 1998). To
assist in the efficient use of airport capacity and minimise air traffic con-
troller workload, many models have been developed to function as real-time
decision aids in runway allocation.

2.1 Previous Work

The last three decades have seen the emergence of a growing body of litera-
ture on runway allocation. In this section, the existing literature is reviewed
by highlighting some of the most important studies in the field. The sections
are organised according to the main methodology used in the study.

2.1.1 Optimisation

By far the largest amount of research on runway allocation has made use of
optimisation techniques (Bennell et al., 2011; Bertsimas et al., 2011; Gilbo,
1993; Heblij and Wijnen, 2008; Kuiper et al., 2011; van Leeuwen et al., 2002;
Stojković et al., 2002; Zhang and Kincaid, 2014). Optimisation techniques
try to find the best alternative (in terms of cost or performance) under the
given constraints, by maximizing favourable outcomes and minimizing un-
favourable ones. While most optimisation research has focused on optimising
the choice and sequence of runway configurations, Heblij and Wijnen (2008)
concentrate — like the current study — on individual runway allocation.
Their work describes the development of a runway allocation optimisation
model that optimises with respect to delay, noise and safety. Additionally,
operational runway usage, wind conditions and runway capacity are also
taken into account. The multi-objectiveness of their optimisation model is
unique in that the majority of studies aim only to minimise delay and its
appropriate costs. It allows for the possibility to perform a trade-off between
multiple objectives, providing ATC with a more practical solution.

To conduct their research, Heblij and Wijnen (2008) created three ob-
jective functions for their mixed integer linear programming model: one
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for delay, one for third-party risk1, and one for noise. The delay objective
function is a summation of all delays occurring in all periods, as a result
of the choices for certain runway configurations. Third party risk has a
similar objective function, where the total risk for each flight movement
is calculated by multiplying risk at a certain location with the number of
inhabitants. Third party risk is the summation of the total risks of indi-
vidual flight movements. Finally, the noise annoyance objective function is
a cost function that penalises both high noise levels and a high number of
inhabitants within the footprint of the flight. For every flight movement,
the number of people living within a noise levels of ≥ 60 dB(A) is summed.
The summation is the total noise annoyance.

These three objective functions are then combined in a new objective
function to reach a final solution. This procedure is based on a weighted
sum method. Instead of being determined beforehand, the weights are deter-
mined automatically such that all three objectives become equally important
when they reach their absolute minimum. The model can now generate a
new solution that will minimise for all three objectives simultaneously. It
starts from a minimum delay solution, where delay is allowed to increase a
few seconds in order to improve the other two objectives. When comparing
the performance of the optimised results with a reference scenario of run-
way usage by airport authority, both noise annoyance and third-party risk
dropped by almost 30%.

Optimisation techniques have some inherent limitations when it comes to
implementing them for complex problems like ATC. In ATC, it is impossible
to find an optimal solution, as it deals with a large number of conflicting
interests (Heblij and Wijnen, 2008; Nogami et al., 1996). Therefore, op-
timisation models need to make assumptions about certain preferences of
objectives incorporated in the model. In addition, large optimisation mod-
els have a significant computational time and are therefore limited in their
ability to process large amounts of data (Bertsimas et al., 2011; Kuiper et al.,
2011). The SGD approach to discriminative learning of classification algo-
rithms — as used in this study — tries to find suboptimal solutions within
a practical computational time. This kind of solution can be very useful to
ATC.

2.1.2 Heuristics

An alternative to optimisation models based on linear and integer program-
ming can be found in the paper by Janic (2007). In his work, a heuristic
algorithm is developed for runway capacity allocation, to minimise (current)

1The probability of a citizen living in the surroundings of an airport losing his or her

life due to an aircraft collision in a given year.
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delay costs. Like classification algorithms, heuristic algorithms find a solu-
tion close to the best one within a short time-frame. Unlike optimisation
models, the heuristic algorithm is based on ’greedy’ criteria that closely re-
flect the rules of thumb used by air traffic controllers. Using greedy criteria
implies choosing the best option for the current moment, without consider-
ing possible future events. In this case, one can only hope that making the
best choice today will lead to an optimal solution for the future.

As a reason for his work, Janic (2007) argues that the inherent com-
plexity of optimisation models might make it difficult to understand and
implement them, and therefore, decrease the likelihood of air traffic con-
trollers embracing the method. His approach might offer a more accessible
solution, as it is more closely related to the still preferred rules of thumb,
while still obtaining decent results.

While the heuristic algorithm is computationally less expensive than most
optimisation models, it also achieves worse result. In all experiments, the
heuristic algorithm performs weaker than the benchmarking (optimisation)
models. The differences in total output range from a decrease of 1.4% to
2.4% in all cases. As the algorithm is built to closely represent the rules
of thumb used by air traffic controllers, this suggests that there is room for
improvement of the current ATC operations. Still, Janic (2007) contends
that the algorithm appears to qualify since it might be very difficult to notice
such small differences.

2.1.3 Discrete-choice Models

A smaller, recently developed field of research is the use of discrete-choice
models and utility functions in runway allocation (Avery and Balakrishnan,
2015; Ramanujam and Balakrishnan, 2011, 2015). Although discrete-choice
models have been widely used in fields like transportation modelling, the
use of this approach in ATC is relatively new. All studies in this field focus
on runway configurations. However, they still have their implications on
individual runway allocation, due to their similar decision process. A key
novelty in the work of Avery and Balakrishnan (2015) is the understanding
of the ATC decision process. In short, discrete-choice models are behavioural
models in which decision makers have to choose among an exhaustive set
of mutually exclusive alternatives, called a choice set. The utility functions
used in the models are defined as linear functions of attributes that can
influence the decision. The importance of the individual features is captured
by the assigned weights in the utility functions. It is assumed that the
suitable alternative with the maximum utility will be selected by the decision
maker. Because of this, the estimated utility functions and the discrete-
choice model can be used to calculate the probability of choosing a runway
configuration alternative, given the values of their corresponding features.
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The runway configuration with the maximum probability of being chosen is
selected as the predicted runway configuration.

The utility functions of the model by Avery and Balakrishnan (2015)
includes features such as wind speed and direction, arrival and departure
demand, cloud ceiling, visibility, coordination with neighbouring airports
and noise abatement procedures. While most research has tried to quantify
noise, Avery and Balakrishnan (2015) use a categorical version, making
a distinction between flights that arrive and depart over the suburbs and
flights that arrive and depart over water (San Francisco Bay). As the aim
of their research is to predict runway configurations, features like inertia
(the preference of air traffic controllers to stay in the same configuration)
and switch proximity (resistance to configuration changes) are also included.
Avery and Balakrishnan (2015) state that their discrete-choice model results
in a prediction accuracy between 82% and 85%, depending on the quality of
the data available. The model is also tested on weather forecast data and
scheduled demand, as this generates a better idea of how the model would
perform in real situations, where there is only prospect data available. This
model generates an accuracy score between 79% and 82%.

The prediction approach is contradictory to both optimisation models
and the heuristic algorithm, as it does not try to optimise anything, but
rather learns from the nominal behaviour of air traffic controllers and tries
to predict their future decision behaviour. This can cause limitations as the
model does not account for potential variability in the quality of decisions.
Different decision-makers, who have varying experience, preferences and ra-
tionales will decide differently when put in the same situation. This bias is a
problem for the current research as well, as it is assumed that past decisions
of ATC are best practice.

2.1.4 Neural Networks

Nogami et al. (1996) use neural networks to create a real-time decision sup-
port for ATC. According to Nogami et al. (1996), ATC is operating in a
dynamic environment, full of stochastic elements and processes that are dif-
ficult to formulate mathematically. Other characteristics of ATC defined
by Nogami et al. (1996) are the conflicting interests and the great number
of different control variables and constraints involved. They explain that
it is impossible to find an optimal solution for the ATC problem without
interrupting operations as this is too computationally heavy. Techniques
like optimisation use exhaustive search-based methods, whereas for on-line
decisions it is more useful to find a suboptimal schedule to be made in real
time.

Neural networks are widely known as powerful methods to extract new
knowledge from (unstructured) data and generalise effectively. In the work
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of Nogami et al. (1996), inputs used for the model to approximate current
traffic situations are nominal flight plans, meteorological forecasts, radar
data, and restrictions imposed by flow control. Among the possible traffic
situations, possible anomalies like aircraft accidents are also included. The
output of the model is the best heuristic rule used in that traffic situation.
Nogami et al. (1996) use the inductive learning backpropagation algorithm
to assign weights to the connections between nodes of the neural network
layers and in this way, acquire knowledge about the relations between traffic
situations and best control actions. Depending on the amount of data the
neural networks were given, prediction accuracy could rise up to 90%.

As with discrete-choice models, neural networks try to learn the relation-
ships between past situations and the behaviour of air traffic controllers.
Again, this approach does not account for variability in the quality of deci-
sion and can introduce bias. Also, in their limitations section, Nogami et al.
(1996) argue that neural networks can sometimes be bad at extrapolation.
However, as the aim of this research is to find a sub-optimal but satisfactory
solution within a short time span, these issues can be considered trivial.

2.2 Research Gaps

To the best of my knowledge, little attention has been paid in the literature
to the use of the SGD approach to discriminative learning of linear classifiers
to solve the runway allocation problem. In the current study, the linear
kernel SVM and Logistic Regression classification algorithms are used. Like
discrete-choice models and neural networks, these classifiers are useful when
we want to learn the mapping X 7→ Y, where x ∈ X is some object and
y ∈ Y is the class label. They estimate the mapping relations between the
given input and output sets X ,Y and try to find a suitable y ∈ Y, given a
previously seen x ∈ X . While SVM is based on the simple idea of finding the
hyperplane with the largest margin to separate data classes, it often leads to
high performances as it still constructs models that are complex enough to
handle real-world applications (Hearst, 1998). Logistic Regression is similar
to the linear kernel SVM, as it also tries to linearly separate the (hyper)space
of features. The only difference between them is that Logistic Regression
does not try to maximise the margin between the classes, but instead tries
to minimise the error of the predicted values to the observed values.

While most research has focused on optimising the choice of runway con-
figurations, the current study concentrates on individual runway allocation.
Predicting individual runway allocation contributes to the current body of
literature as in some situations, where configurations consist of multiple run-
ways, this approach can be very useful. For example: in the situation where
a configuration consist of one departure runway and two arrival runways, an
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air traffic controller still has to decide which runway is most optimal for an
approaching flight. A decision-aid that is specified for individual runways
can assist in that process. It can also be used as an extra check of whether
the current runway configuration is most optimal. Additionally, Heblij and
Wijnen (2008) explain that predicting individual runways for AAS is not
a problem as the airport does not have many highly dependent configura-
tions2. As configurations remain mostly independent, it is possible for the
model to assign freely. However, for other airports that are using highly
dependent configurations more regularly, it is preferred that the model will
be extended with runway configurations.

2.3 Current Study

Since little attention has been paid to the linear kernel SVM and Logistic
Regression classifiers — that are deemed to be very useful — this study will
focus on their use. Both the linear kernel SVM and Logistic Regression are
linear supervised algorithms. In this research, they will be used to solve a
multi-class classification problem. SVM can be used for both classification
and regression. Each data item is plotted as a point in a n-dimensional
space, where n is the number of features. In classification, it tries to find
the hyperplane that provides the maximum separation between the different
classes (Vapnik, 1995). Logistic Regression is a classifier that can solve
binary problems. For multi-class classification problems like the current
one, it uses an one-vs-all approach. It creates an S-shaped curve with the
probability estimate of labels, which is very similar to the step wise function.
The classifier tries to find the best-fit logistic function for the data and then
implements a threshold of 0.5 to divide the data into two classes.

Given a set of training examples (x1, y1), . . . , (xn, yn), the classifiers learn
a linear scoring function. For both classifiers, the linear model formula for
the dependence of the predicted target on the features can be expressed by:

z = w · x + b, (2.1)

where z is the score of the linear model, x is the feature value, w is
the feature weight and b is the intercept. In order to make predictions, we
simply look at the sign of z for the SVM with linear kernel.

2As runways intersect or are situated parallel to each other with a distance closer than

762 meters (or 2500 feet) they can become dependent, meaning that the separate runways

cannot always be used at the same time. Jet blasts (rapid air movement produced by the

engines of an aircraft, particularly during take-off) and the use of a single runway for both

arrivals and departures (the so called mixed mode) can also cause dependency.
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A Logistic Regression model uses the inverse logit function to predict:

(p)pred = logit−1 · z, (2.2)

where (p)pred is a predicted probability score, varying between 0 and
1. SVM tries to maximise the margin between the classes. The hinge loss
function that the soft margin SVM tries to maximise is:

`hinge(z) = max(0, 1− y · z), (2.3)

where y is the observed value of the class, either 0 or 1. The log loss
function (or cross-entropy), which quantifies the mistakes of the Logistic
Regression classifier, can be denoted as follows:

`log(z) = −ylog(ppred)− (1− y)log(1− ppred). (2.4)

For each instance, only the predicted class actually contributes to the
sum. The Logistic Regression classifier tries to minimise the log loss function
to find the model which gives the maximum probability to the training
targets.

Hence, the present work uses a SVM with linear kernel and a Logistic
Regression classifier to analyse a dataset that consists of flights at AAS
from January 2008 until March 2016. The goal of this research is to create
a decision-aid that helps air traffic controllers in making their allocation
decisions. Using these two classifiers, the relationships between historical
situations and best allocation decisions is learned and applied to future
flight movements.

By talking to professionals from the field, it became clear that primar-
ily weather (especially wind direction), but also noise abatement regula-
tions and runway maintenance were major factors in the allocation process.
Academic literature such as work the by Avery and Balakrishnan (2015);
Ramanujam and Balakrishnan (2015) also showed that meteorological con-
ditions like wind speed, wind direction, height of the cloud ceiling and vis-
ibility, traffic demand, noise abatement, inter-airport coordination (only in
dense areas with multiple airports that are close together, like New York
City), inertia (the aversion to changing runway configurations) and configu-
ration proximity (the amount of workload associated with a certain runway
configuration switch) were important. As the last two factors are associ-
ated with runway configurations specifically and inter-airport coordination
is not directly applicable for AAS, only traffic demand was seen as a relevant
addition to this research. This answers the first research question (Which
features influence runway allocation?).

In order to really recreate the ATC allocation decision process, as many
as possible decision factors were included in the dataset. Unfortunately, not
all important features could be added due to a lack of access to this data.
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For example, it was not possible to add precise runway maintenance data
to the dataset as this data was not available. However, it was possible to
incorporate maintenance planning in the dataset. A large number of weather
features and several features about traffic demand were also included. As
AAS has different runways of different sizes that cannot host all types of
airplanes, airplane type and weight are expected to be important predictors
as well. These features, along with the maintenance features, are a key
novelty of this research. A full description of the dataset can be found in
??.

With this dataset, we can answer the remaining research questions. The
answer to the first research question (Which features influence runway al-
location?) was solely based on academic literature and domain knowledge
from professionals in the field. Weather (especially wind direction), noise
abatement regulations, runway maintenance and traffic demand are major
factors in the decision making process of ATC. The second question (To
what extent do the existing features influence runway allocation and which
features are most influential?) is answered in Section 3, where the results are
reported of omitting each feature from the dataset once. The third research
question (Based on the existing features, can we make predictions about run-
way allocation?) is answered in Section 4, where the performance measures
CA, Precision, Recall and F1-scores of the model are reported. And finally,
the answer to the fourth research question (Do these predictions yield better
results than the majority baseline classifier?) is reported in Section 4 as
well, where the CA scores of the linear kernel SVM and Logistic Regression
models are compared to CA score of the majority baseline classifier.
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3 Experimental Setup

Three data sources were used to create the dataset used in this research.
The first data source was obtained by contacting AAS directly. As this data
is confidential, it will not be made publicly available. However, it will be
described and the code that was used to manipulate it will also be made
available. The data from AAS holds the number of similar flights per day
(between 2008 and March 2016). Flights are grouped by date, airplane
type, maximum take-off weight, arrival or departure and the runway that
was used. For each group of similar flights, the amount of times that they
occurred is stated. The data was delivered in eight separate documents, one
for each year. In total, the files contain 622,029 instances and 7 features.

The second dataset was retrieved to obtain data about the weather con-
ditions at AAS. It was obtained online from the Royal Netherlands Mete-
orological Institute (KNMI). KNMI collects data at its weather station at
AAS and makes it publicly available. The dataset contains 23,802 instances
(one instance for each day, starting from 1951) and 41 features, all related
to the weather (e.g. temperature, visibility and sunshine duration).

The third and last data source was the maintenance planning for the
years 2010 to 2016, retrieved from the website of Bezoekers Aanspreekpunt
Schiphol (BAS). These were images of calenders that contained the planned
maintenance for each runway at AAS for one year. Because maintenance
sometimes is delayed due to weather circumstances, the data from this source
cannot be trusted completely. However, as actual maintenance data has not
been collected by BAS, this is the most viable option available.

Any code and (part of) the data needed to reproduce this research can
be found in my Github repository1.

3.1 Dataset

The final dataset used in this study contains 3,529,268 instances and 48
features. It contains features about the date, type of airplanes, weather

1http://github.com/kiaeisinga/thesis

15

http://github.com/kiaeisinga/thesis


circumstances, maintenance planning and past traffic demand. The target
attribute of the dataset, Runway, is a discrete variable with 12 classes. These
classes are runway directions of six different runways. Each runway has
two separate runway directions, because there are two directions in which
planes can use the runway. For example, the Zwanenburgbaan at AAS is
represented by the directions 18C and 36C. The runway directions represent
the vector degrees (360=north, 90=east, 180=south, 270=west) on which
the runway is situated, divided by ten. The letters (R=right, C=centre,
L=left) are used to specify which runway is meant when they have the same
value for vector degrees, as there are three runways that run parallel to each
other. To further clarify this, Figure 3.1 shows the current runway map
of AAS. All 48 features included in the dataset are presented in a detailed
overview in ??.

Figure 3.1: Runway map of Amsterdam Airport Schiphol
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3.1.1 Exploratory Data Analysis

Exploratory Data Analysis (EDA) can provide a quick grasp on the dataset
and summarize its main characteristics. The following graphs help create a
deeper understanding of the dataset.

1. There is an overall increase in the amount of air transportation at
AAS.

Figure 3.2: Air traffic growth at Amsterdam Airport Schiphol

Although this plot is not directly related to the current research question,
it proves the importance of this research. The graph shows that there is an
overall increase in air transportation, a phenomenon that was previously
mentioned in the literature. Simultaneously, the literature suggested that
there was an increased importance to increase efficiency of ATC operations
because of this, which is the goal of this research.
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2. The majority of the flights are allocated to the Kaagbaan (06/24) or
the Polderbaan (18R/36L). The Oostbaan (04/22) handles the least
amount of flights.

Figure 3.3: Total number of flights for each runway

The reason for this is that the Kaagbaan (06/24) and the Polderbaan
(18R/36L) have extended areas that are lowest in habitation. Using these
runways produces the least amount of annoyance in surrounding areas and
is therefore beneficial. In fact, at night, these two runways are used exclu-
sively. In addition, the Polderbaan (18R/36L) is the longest and broadest
runway available at AAS and can thus handle a wide variety of airplanes.
On the other hand, the Oostbaan (04/22) is the shortest and oldest run-
way at AAS. It usually is not considered as a functional option by ATC.
Nevertheless, it is used to handle lightweight (≤ 7,000 kg) airplanes. As
shown in Figure 3.4, the Oostbaan (04/22) handles the greatest proportion
of lightweight airplanes.

Figure 3.3 also shows that there is imbalance in the dataset — meaning
that not all classes are equally represented. This might cause a difference in
predictability per-class later on.
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3. Light airplanes are mostly allocated to the Oostbaan (04/22).

Figure 3.4: Total number of light airplane flights (≤ 7,000 kg) for each

runway

4. Most arrivals are allocated to runway 24 (Kaagbaan) and most depar-
tures are allocated to runway 18R (Polderbaan).

Figure 3.5: Arrivals and departures on each runway
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At AAS, each runway can be used in two directions. As airplanes always
need a headwind to arrive at and depart from airports, the availability of
runway directions is highly dependent on the wind direction at the moment.
In practice, as shown in Figure 3.5, this means that there is an arrival and
departure direction at each runway. Even though the ratio between arrivals
and departures at AAS is equal, an individual runway direction is primarily
used for either arrivals or departure.

5. In the case of a northern wind, 06 (Kaagbaan) and 36L (Polderbaan)
are most preferred, whereas with a southern wind, 24 (Kaagbaan) and
18R (Polderbaan) are most preferred.

Figure 3.6: Flight distribution by wind direction

Runway preference varies by wind direction. In the Netherlands the most
common wind direction is south-west. In case of a south-western wind,
the runways 24 (Kaagbaan) and 18R (Polderbaan) are most often used.
However, in the case of northern wind, 06 (Kaagbaan) and 36L (Polderbaan)
are most preferred. This supports the claim from the previous finding that
wind direction has a great impact on runway allocation.

3.2 Cleaning and Pre-processing

After collecting data from AAS, KNMI and BAS, the first step was to pre-
process all the obtained data in R. The AAS data was stretched so that each
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instance would now reflect one flight. This way, the dataset can later on
predict the runway allocation for each flight with all the involved influence
factors. As the AAS dataset starts from January 1, 2008, the weather data
prior to this date were removed from the KNMI dataset. As the BAS data
consisted of images of calenders, the dates were transcribed from the images
and loaded into R using an ifelse-statement. Six maintenance features —
one for each runway — were created, where a value of 1 was given to all
dates when maintenance was planned.

3.2.1 Missing Values and Feature Extraction

Having missing values in the dataset can reduce the ability of a model to
classify correctly, as the estimates may be biased. Therefore, it is important
to handle missing values carefully.

The missing values from the AAS dataset were removed, as they only
made up 0.0063% of the dataset. The KNMI dataset contained three missing
values for a single date, that were also deleted as they only made up 0.0335%
of the dataset. The BAS data contained missing values for all dates in 2008
and 2009, as no maintenance planning was made for these years. These
cases were all imputed with the value 0(=No Maintenance), as this value is
true for 97.16% of the cases in the dataset.

As the features Last.year and Yesterday represent the total amount of
flights from the same date last year or from the day before, naturally, some
missing values were created. For all dates in 2008 (443,163 instances or
12.5568% of the dataset), no values were available for the Last.year. The
same holds for the feature Yesterday on January 1st, 2008 (776 instances
or 0.0220% of the dataset). In order to deal with these missing values, the
mean was imputed for both features.

In addition, all features in the KNMI dataset that were described as
’Hourly division in which . . . was measured’ were deleted from the dataset, as
these features do not contain information about the weather. The remaining
features were kept in the merged dataset as this enabled for an ablation study
later on to see which features are most important for prediction.

3.2.2 Outliers

By examining the summary statistics of the dataset, no obvious outliers were
found in the dataset. However, once a new feature called Total.flights

was created for EDA, it became evident that there were some outliers here.
Whereas the mean Total.flights — which gives the total number of

flights on a particular day — was 1461, its minimum was 2. As the first
quartile of this feature had a value of 1111, this seemed very odd. An
illustration of the data distribution of the feature can be found in Figure 3.7.
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Figure 3.7: Data distribution of Total.flights feature

From this violin plot, it is obvious that there are some outliers in the
dataset. When checking for the date, April 17, 2010, it became clear that
the cause of this low number of flights is not due to poor measurement, but
rather due to a volcano eruption in Iceland, spreading ashes and causing
AAS’ airspace to be unfit to fly in. The disturbance lasted several days,
from April 15, 2010 to April 20, 2010. Also, on May 17, 2010, a similar
event happened where a new ash cloud disrupted the daily operations.

When creating a subset for all instances that had values less than 801
(µ− 3σ) for Total.flights, it became clear that more unusual events had
had their influence on air traffic at AAS. While most of them have to do
with bad weather (heavy snowfall or strong wind), some are more unusual
events like a failed terrorist attack on December 25, 2009 and labour strikes
from the air traffic controllers in Spain on December 4, 2010. Also, on the
first day of Christmas (December 25) of each year and sometimes also on
New Year’s (December 31 and January 1), the number of flights is relatively
low.

However, as this is not faulty data and it was not clear whether these
outliers actually changed runway allocation, it was decided not to instantly
remove these dates. Rather, an experiment was run to see which dataset
(with or without these outliers) created the best classification results. As
removing the outliers (either just the ones from the volcano eruption in
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Iceland or the one below the arbitrary boundary of µ− 3σ) did not improve
the performance of the model, no outliers were removed from the dataset.

3.2.3 Feature Engineering

As mentioned in the previous section, a new feature called Total.flights

was created for EDA. It helped identify the general trend of air traffic growth
and to find some unexpected outliers. Another feature, called Name, was also
created for EDA. It indicates which runway directions (e.g. 18L) belong
to each runway (e.g. Aalsmeerbaan). However, these two features were
deleted from the dataset after EDA, as they hold information that cannot
be known about future flights and thus could not be used as predictors in
the classification task.

Other features that were engineered were Weekday, Season, Weekend,
Icao.wtc, Wind.discrete, Vmc.imc, Beaufort, Last.year and Yesterday.
Weekday, Season and Weekend were all derived from the feature Date and
can help recognise weekly or seasonal effects in runway allocation. Icao.wtc
was created from the feature MTOW and divides airplane types into four weight
classes (Light, Medium, Heavy and Super Heavy) according to the official
guidelines by the International Civil Aviation Organisation (ICAO)2. The
feature Wind.discrete was generated from the feature Wind.direc, where
each wind direction was categorised into one of four categories (North West,
North East, South West and South East).

The feature Vmc.imc classifies visibility into two classes: Visual Mete-
orological Conditions (VMC) and Instrumental Meteorological Conditions
(IMC). Because AAS is a so-called class A airspace, all planes fall under
instrument flight rules. This means that all airplanes are separated by ATC
to ensure safety and need ATC clearance to arrive and depart from AAS,
even when visibility is sufficient. Visual flight rules, where air planes are
allowed to separate autonomously under sufficient visibility conditions, are
only used at AAS by high exception. At AAS, the VMC minimum (visibility
≥ 5 km) in state for visual flight rules is used as information for pilots, but
does not mean that visual flight rules are at force. However, this information
can be used to create a division between VMC (visibility ≥ 5 km) and IMC
(visibility < 5 km) in the dataset. As not all runways at AAS are equipped
with ILS and thus cannot be used during low visibility weather conditions,
this feature should help make the relationship between visibility and run-
way allocation become more evident. Two features were used to construct
Vmc.imc: Visibility.min and Visibility.max. When Visibility.min

was ≥ 5 km, Vmc.imc was categorised as VMC and when Visibility.max

was < 5 km, it was categorised as IMC. It was possible to determine the

2http://www.skybrary.aero/index.php/ICAO_Wake_Turbulence_Category
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conditions for 2,094,250 (out of 3,527,563) of the instances. The remaining
cases were labelled as Unknown.

The Wind.speed.daily feature allowed for the creation of Beaufort, a
wind speed categorisation which was created according to the official Beau-
fort scale categories3. Finally, the features Last.year and Yesterday were
extracted from the feature Total.flights to see if the amount of traffic
demand has any influence on runway allocation.

3.3 Experimental Procedure

Since the dataset contains 3,529,268 instances, it was crucial to find a clas-
sification algorithm that was able to work with large datasets. As soon as
the pre-processing phase was finished, the dataset was loaded into Python.
Here, the categorical features Date, Icao.type and Act.description were
deleted from the dataset to save memory, as they contain lots of levels.
The remaining categorical features (Weekday, Season, Arr.dep, Icao.wtc,
Wind.discrete and Vmc.imc) were transformed into dummies. The dataset
now consists of 61 columns.

Then, the dataset was split into a training, validation and test set. As
the goal of this research is to start predicting for recent flights, the data
was split by year, where the most recent years were used as a test set. This
means that the years 2008 until 2012 were used for training, 2013 and 2014
were used for validation and 2015 and 2016 were used as a test set.

All the continuous features in the dataset operate on various ranges.
When applying classifiers that operate on Euclidean distances it is necessary
for the input to have equal distances. Therefore, the continuous features are
standardised. Standardisation is applied to all the sets because the classifiers
will not be able to work properly if the features of the different sets are not
similar. The new features with standard scores are used to replace the old
features in the training, validation and test set.

An on-line SGD approach to discriminative learning of linear classifiers
from the scikit-learn library in Python was used to train the data, as it
is able to handle large datasets very well. SGD is the stochastic approxima-
tion of the Batch Gradient Descent optimisation method. Like the Batch
Gradient Descent, it learns weights that would minimise the squared loss of
the function. But instead of going through the entire dataset each time like
the Batch Gradient Descent, the SGD estimates the gradient of the loss each
sample at a time. The model starts with w = 0 and updates the weights
along the way. This way, it is able to go through the entire dataset much
faster. In addition, it allows us to predict real-time, which is one of the aims

3http://projects.knmi.nl/hydra/faq/druk

24

http://projects.knmi.nl/hydra/faq/druk


of this research. SGD supports several loss functions: setting the parame-
ter loss to hinge or log allows us to work with the linear kernel SVM and
Logistic Regression classifiers, respectively.

3.3.1 Parameter Grid Search

A grid search was performed to find the most optimal parameters for the
linear kernel SVM and the Logistic Regression classifiers. The parameters
n iter (number of iterations) and alpha (cost) were optimised. The number
of iterations is equal to the number of passes over the training data. Increas-
ing the number of iterations can help optimise the model and achieve the
highest accuracy, but comes at the expense of computational time. For
regularisation, the general penalising parameter cost sets the complexity of
the model. It represents a trade-off between finding the hyperplane with
the maximum margin between the classes and a hyperplane that correctly
separates as many instances as possible. A large value of cost is better at
correctly separating instances, but can cause complexity to the model and
a danger of overfitting. A small value of cost prefers to find the maximum
margin between the classes, sacrificing the fact that some instances will be
misclassified. To find the most optimal values for both parameters, a nested
for-loop was created to test all possible combinations of the parameters.
The number of iterations parameter was tested for values 1 to 25, with steps
of 1. The cost parameter was tested for values 0.00001, 0.0001, 0.001, 0.01,
0.1, 1 and 10. Table 3.1 shows the results of this search: the highest CA
found for each classifier with its corresponding best parameter values.

Algorithm Cost Number of iterations CA

SVM with linear kernel 0.0001 19 0.54

Logistic Regression 0.0001 9 0.55

Table 3.1: Optimal parameters found by grid search

For both classifiers, 0.0001 is the value of cost that produces the highest
CA. The number of iterations is different: the optimal values are 19 for the
linear kernel SVM and 9 for the Logistic Regression classifier. From now on,
these optimal parameters will be used to train the model on.

3.3.2 Feature Influence

To answer the second research question (To what extent do the existing
features influence runway allocation and which features are most influen-
tial?), each feature was omitted once from the training and validation set
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to see its effect on CA. For the categorical features that were transformed
into dummy variables, the set of columns representing a single categori-
cal variable was treated as one unit and omitted all at once. The results
of these experiments are presented in Chapter B. The features that de-
creased CA most severely when being omitted were labelled as most im-
portant to the prediction performance of the model. In general, wind di-
rection (Wind.discrete), maintenance at the Buitenveldertbaan (Main.B)

and daily temperature (Temp.daily) are the most important features ac-
cording to the two classifiers used in this study, i.e., linear kernel SVM and
Logistic Regression. While Wind.discrete was identified to be of great im-
portance by previous literature, Main.B and Temp.daily are novel. As the
current study is the first to introduce maintenance as a predictor for this
problem, this defends its contribution to the existing research framework.
For the Logistic Regression classifier, the feature for maintenance at the
Oostbaan (Main.O) is also an important predictor. Surprisingly, Vmc.imc
— a categorical feature for visibility — was a rather unimportant predictor
for runway allocation, despite the fact that Heblij and Wijnen (2008) argue
that ILS are of great importance to the availability and allocation of run-
ways. Since all of the removals decreased the predictive performance of the
model, all features remained in the dataset.

Noticeably, omitting separate features did not generate great differences
in CA. Therefore, another ablation study was run where groups of fea-
tures were omitted. Four groups of features were made according to topic:
Weather, Maintenance, Airplane weights and Traffic. The Weather sub-
set contains all features listed from Wind.direc until Vmc.imc in ??. The
Maintenance subset consisted of features Main.A, Main.B, Main.K, Main.O,
Main.P and Main.Z. Features MTOW and Icao.wtc created the Airplane
weights subset and finally, the Traffic subset was made out of features
Last.year and Yesterday.

The results of these experiments are presented in Table 3.2 for the linear
kernel SVM classifier and in Table 3.3 for the Logistic Regression classifier.

Omitted feature subset CA

Weather 0.50

Maintenance 0.52

Airplane weights 0.52

Traffic 0.53

None 0.54

Table 3.2: CA results with linear kernel SVM when omitting feature subsets
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Omitted feature subset CA

Weather 0.51

Maintenance 0.53

Airplane weights 0.54

Traffic 0.55

None 0.55

Table 3.3: CA results with Logistic Regression when omitting feature subsets

As shown in Tables 3.2 and 3.3, the largest subset — Weather — is
most predictive for both classifiers. It increases CA with approximately 4%.
Maintenance, not used as a predictor in previous research, increases the CA
of the model by approximately 2%. Airplane weights, also a novel predictor,
contributes to the model with an increase of 1 to 2% in CA. The Traffic
subset, while deemed to be an important predictor in previous literature, is
the least predictive in the current experiments.

3.4 Evaluation Criteria

To evaluate the different models (in terms of parameters and feature sub-
sets), a validation set was used. CA was the most important measure to
evaluate the outcomes, as the goal of this research is to create an as accu-
rate as possible decision aid for ATC. The parameter values that produced
the highest value for CA were selected as optimal and used in the rest of
the models. When comparing the performance of the model after omitting
a feature or feature subset, (the decrease in) CA was also used as a criteria
to signal the most important features.

Next, the insights of these experiments were used on the test set. The
test set is preprocessed in the same way the train set is preprocessed and
again, the same optimal parameters are used to train the model on. The
results of this final experiment are presented in Section 4. In addition to
CA, the performance measures Precision, Recall and F1-scores will also be
reported.
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4 Results

In this section, the performance results of the classification task are pre-
sented. It will provide an answer to the most important research question
of this study (Based on the existing features, can predictions be made about
runway allocation? ). The current study focuses on introducing a real-time
decision aid to improve ATC operations. It does this by using an on-line
SGD approach to discriminative learning of linear classifiers to predict run-
ways for future flights. The SGD is updated along the way and is therefore
very efficient in processing large amounts of data and is able to predict in
real-time. With SGD, it is possible to choose from a number of classifiers
to train the model on, among them the linear kernel SVM and the Logistic
Regression classifier used in this study.

As mentioned in Section 3, a grid search was used to find the optimal
parameters for both algorithms. Section 3 also describes that individual
features were tested to see their effect on the CA of the model. Since none of
the removals improved the predictive performance of the model, all features
were kept in the dataset.

Thus, the optimal parameters and all existing features were used to train
the model and test the classifiers’ performance on the test set. Table 4.1
shows the results of the models when used on the test set.

Algorithm CA

SVM with linear kernel 0.55

Logistic Regression 0.56

Table 4.1: CA after testing on the test set

4.1 Performance of the Model

Both algorithms yield similar classification performance, with the Logistic
Regression classifier performing slightly better. When comparing it to the
results stated in Table 3.1, it is noticeable that the predictive performance
on the test set is better than it is on the validation set. This could mean that
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the model was slightly underfitted. In that case, the model is too simple with
regards to the data it is trying to model and it has a high bias. Increasing
the cost parameter can increase the complexity of the model and ensure a
better fit. Changing the parameters of the classifiers after evaluating on the
test set is not advised, however, as it causes overfitting on the test set. The
difference in predictive performance might also be caused by chance, when
the test set is simply easier to classify than the validation set.

Compared to previous research (Avery and Balakrishnan, 2015; Nogami
et al., 1996), which reports CA scores of 79% and more, these models perform
considerably worse. However, this is a trivial point as the predictive perfor-
mance of a model will always greatly depend on the available data: number
of labels, balance between classes and available features and instances. The
limitations of this study and its dataset will be further elaborated on in
Section 5.

Hence, previous literature might not be a fair comparison. One way to
justify the results of classifiers is by comparing them to the results of the
baseline and showing that they are indeed better than majority predictions.

4.2 Baseline

To define the baseline for this study, a majority classifier was used. The ma-
jority baseline classifier is a classifier that predicts the most frequently used
runway direction for each flight movement. Table 4.2 shows the frequencies
of all class labels in the dataset and their corresponding percentages.

Runway Count Percentage Runway Count Percentage
04 20988 0.59 22 70972 2.01
06 365919 10.37 24 723392 20.50
09 90561 2.57 27 204347 5.79

18C 276374 7.83 36C 194377 5.51
18L 329360 9.33 36L 425032 12.04
18R 650959 18.44 36R 176987 5.01

Table 4.2: Number of flights per runway

As displayed by Table 4.2, runway direction 24 is most frequently used
for flight movements at AAS. It is used in 20.5% of all cases. Therefore,
a majority baseline classifier predicting 24 for each arriving or departing
flight at AAS, will have a CA of 0.21. This is well below the achievements
of the current classifiers. This means that we can answer our final research
question (Do these predictions yield better results than the majority baseline
classifier? ) positively.
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4.3 Precision, Recall and F1-score

Depending on the classification task, different performance measures are
more important. As the goal of this study is to create an as acurate as
possible decision aid for ATC, CA is deemed to be most important here.
Therefore, all previous models were evaluated and selected to achieve the
highest CA. In this section, other performance measures will also be ex-
amined, namely Precision, Recall and F1-scores. Precision tells us what
proportion of flights that were allocated to (e.g.) runway 24 by our model,
actually should have been allocated to 24. It can be denoted by the following
formula:

Precision =
TP

TP + FP
, (4.1)

where TP is the number of True Positives (correctly identified as 24) and
FP is the number of False Positives (incorrectly identified as 24). Recall is
a little different: it tells us what proportion of flights that should have been
allocated to 24, actually were allocated to 24 by our model. This can be
expressed using:

Recall =
TP

TP + FN
, (4.2)

where TP is again the number of True Positives (correctly identified as
24) and FN is the number of False Negatives (incorrectly rejected as 24).
Sometimes we want to have a single number to describe the performance of
the model. Therefore, the two measures Precision and Recall can be used
to compute the F1-score, which is their harmonic mean:

F1 = 2 · Precision ·Recall
Precision+Recall

. (4.3)

The overall results of these performance measures for both classifiers are
presented in Table 4.3.

Algorithm CA Precision Recall F1-score

SVM with linear kernel 0.55 0.49 0.55 0.47

Logistic Regression 0.56 0.51 0.56 0.49

Table 4.3: Average performance scores on test set

Again, both algorithms produce similar results, but the Logistic Regres-
sion classifier is performing slightly better on all performance measures.
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4.3.1 Per-class Performance

To get a more detailed view on how the classifiers predict, we can have a
look at their confusion matrices. The confusion matrices of the linear kernel
SVM and the Logistic Regression classifier are presented in Chapter C. The
diagonal numbers in the matrix represent the number of correctly identified
classes. By dividing the correctly identified class by its row sum, we can
compute its Recall. The same can be done for Precision by dividing the
correctly identified class by its column sum.

The per-class results of Precision, Recall and F1-scores on the test set are
presented in Table 4.4 for the linear kernel SVM classifier and in Table 4.5
for the Logistic Regression classifier.

Runway Precision Recall F1-score

04 0.66 0.30 0.41

06 0.59 0.79 0.68

09 0.14 0.07 0.09

18C 0.39 0.03 0.05

18L 0.40 0.09 0.15

18R 0.57 0.91 0.70

22 0.58 0.21 0.31

24 0.60 0.79 0.68

27 0.41 0.20 0.27

36C 0.07 0.00 0.01

36L 0.54 0.88 0.67

36R 0.27 0.08 0.12

Table 4.4: Precision, Recall and F1-scores for linear kernel SVM

For the linear kernel SVM, we see that the performance differs greatly
between classes. While the classifier performs well on the runways that
are used most frequently (Kaagbaan (06/24) and Polderbaan (36L/18R)) or
almost never at all (Oostbaan (04/22)), it performs poorly on runways that
vary in the amount of use (Zwanenburgbaan (36C/18C), Buitenveldertbaan
(09/27) and Aalsmeerbaan (36R/18L)). In other words, constant use of the
runways improves their predictability. A similar pattern is found for the
Logistic Regression classifier.
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Runway Precision Recall F1-score

04 0.64 0.30 0.41

06 0.54 0.80 0.65

09 0.24 0.06 0.10

18C 0.50 0.10 0.17

18L 0.42 0.10 0.17

18R 0.60 0.85 0.71

22 0.78 0.20 0.32

24 0.59 0.82 0.68

27 0.40 0.34 0.37

36C 0.00 0.00 0.00

36L 0.55 0.85 0.67

36R 0.32 0.09 0.14

Table 4.5: Precision, Recall and F1-scores for Logistic Regression

Hence, performance differs greatly between classes. The reason for this
is that the dataset is unbalanced, meaning that not all classes contain the
same number of observations. This becomes very clear from the confusion
matrices. It is not always possible to recognise imbalance from the main
results. In unbalanced datasets, the model might be biased towards the
majority class and could be reporting various values of performance measure
for different classes.
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5 Discussion and Conclusion

The present study focuses on introducing a real-time decision aid to improve
ATC operations. This decision-aid will assist in predicting the most suitable
runway allocation for each arriving and departing flight at AAS. In order to
achieve this goal, the following research questions are considered:

• Which features influence runway allocation?

To answer the first research question, the existing body of literature is ex-
plored in Section 2. Weather (primarily cloud ceiling, visibility, wind speed
and wind direction), traffic demand and noise abatement all prove to be
important for the ATC decision process. Whereas weather and traffic data
are embedded in the current dataset, it was not possible to obtain data on
noise abatement or noise measurements for AAS. However, it was possible
to add some novel features to the model that have not been used before in
the prediction of runway allocation. After consulting with professionals in
the field, it turned out that maintenance had great influence on runway allo-
cation, as sometimes runways are not available to ATC due to maintenance
and replacements. Therefore, this feature was added as a predictor to the
model. Other novel features that were included in the analyses were type of
airplane and airplane weight, as the runways at AAS have different widths
and lengths and not all of them are able to process the entire spectrum of
airplane types.

• To what extent do the existing features influence runway allocation and
which features are most influential?

The EDA in Section 3.1.1 makes it clear that airplane weights impact
runway allocation: almost all light airplanes are allocated to the Oostbaan
(04/22) for both arrival and departure. In Section 3.3.2 an ablation study is
described to find the most predictive features for the target Runway. In gen-
eral, wind direction (Wind.discrete), maintenance at the Buitenveldert-
baan (Main.B), and daily temperature (Temp.daily) are the most impor-
tant features according to the two classifiers used in this study, i.e., linear
kernel SVM and Logistic Regression. While Wind.discrete was already
identified as an important predictor by the existing literature, the results
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for Main.B and Temp.daily are novel. For the Logistic Regression classifier,
the feature for maintenance at the Oostbaan (Main.O) is also an important
predictor. However, omitting single features did not generate substantial dif-
ferences in CA. Therefore, another ablation study was executed, this time
to omit feature subsets. The largest subset, Weather, was most predictive
for both classifiers. It enhances the accuracy of the predictions by approx-
imately 4%. Its runner-up, Maintenance, turns out to be an important
predictor for runway allocation at AAS as well, as it increases the CA of the
model by approximately 2%.

• Based on the existing features, can predictions be made about runway
allocation?

The third research question is answered in Section 4, where predictions
are made on the test set. The linear kernel SVM and the Logistic Regression
classifier are used to predict runway allocation for arriving and departing
flights at AAS. Although by and large the classifiers perform rather similar,
the Logistic Regression classifier consistently performs slightly better. The
final experiment on the test set yields a CA score of 0.55 for the linear
kernel SVM and 0.56 for the Logistic Regression classifier. Compared to
previous literature, the classifiers perform rather poorly. However, this is a
trivial point as the predictive performance of a model depends heavily on
the available data: number of labels, balance between classes and available
features and instances.

• Do these predictions yield better results than the majority baseline clas-
sifier?

The answer to the fourth research question can be found in Section 4.2. A
majority classifier, which predicts the most frequently used runway direction
for each flight movement, was used as a baseline. In the current study, the
baseline majority classifier predicts runway 24 for all flight movements and
has a CA of 0.21. Thus, the CA performance of both the linear kernel SVM
(0.55) and Logistic Regression (0.56) models are well beyond the majority
baseline classifier, showing that they indeed perform better than majority
predictions.

5.1 Limitations

There are several limitations to the current study. For starters, the time
spans in the dataset may be insufficiently detailed. In the current dataset,
weather, traffic and maintenance averages were measured on a daily basis.
For a complex environment as ATC, instant up-to-date data is of utmost im-
portance. Because weather, traffic and maintenance can change frequently
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during the course of a day, it is best to collect data with shorter time spans,
such as 10 minutes. Especially at AAS, with its unstable weather conditions,
up-to-date weather information is crucial (Hesselink and Nibourg, 2011).
Avery and Balakrishnan (2015) used 15-minute time intervals in their mea-
surements and that may be one of the reasons their model achieved higher
performance.

Second, the current dataset does not contain all the features that were
deemed to be predictive for runway allocation in the literature. Most im-
portantly, it was not possible to obtain data about noise abatement or data
from sound level meter to map the relationships between noise pollution of
individual flights and runway allocation.

Another flaw of the current dataset concerns the moderate reliability of
the maintenance data. While maintenance proved to be an important pre-
dictor, it is expected to perform even better when its reliability increases.
In the current dataset, maintenance planning was used to estimate the days
on which there was maintenance work on a particular runway. However,
practice shows that maintenance is sometimes delayed due to weather cir-
cumstances. Also, it would be desirable to distinguish between small and
large maintenance projects. Small projects were not included in the plan-
ning but still can put a runway out of use for a couple of hours — something
ATC has to take into account. Thus, more frequent and detailed data would
be beneficial to the maintenance features as well.

A final limitation concerns the methods that were used. Classification
algorithms like the linear kernel SVM and Logistic Regression try to learn
the relationships between historical situations and best allocation decisions.
However, they do not account for the variability in the quality of the deci-
sions. Different decision-makers, who have varying experience, preferences
and rationales will decide differently when put in the same situation. This
unobserved heterogeneity introduces bias in the model estimates as it is
assumed that past decisions of ATC are best practice.

5.2 Contribution to the Existing Framework

The current study contributes to the existing body of literature in several
ways. The first is the use of the on-line SGD approach to discriminative
learning of linear classifiers. While many previous approaches to the runway
allocation problems are computationally very expensive, the SGD allows us
to process large amounts of data quickly and in real-time. This enhances
its practical applicability, as air traffic controllers often have to make their
runway allocation decision in a matter of minutes.

The second way is that attention is directed to the use of the linear kernel
SVM and Logistic Regression classification algorithms to study the runway

35



allocation problem. Like discrete-choice models and neural networks, these
classifiers are useful in learning the mappings between an object and a class
label. Although based on simple ideas, SVM and Logistic Regression often
lead to high performances as the models are still complex enough to handle
real-world applications (Hearst, 1998). The current method recognises that
there is no optimal solution for the decision in the ATC environment, due
to sometimes conflicting interests (e.g., the solution that produces the least
amount of noise annoyance might not always be the safest). Whereas in
optimisation techniques assumptions about preferences have to be made,
classification algorithms like linear kernel SVM and Logistic Regression map
according to historical decisions.

Another way in which this study contributes is the use of a large amount
of data. Although not very detailed, the dataset used for this research con-
sists of all 3.5 million flights at AAS from over the course of eight years
(January 2008 to March 2016). By comparison, Ramanujam and Balakrish-
nan (2015) use two years’ worth of data and Hesselink and Nibourg (2011)
have done their research with just a single year of historical data.

The fourth way in which this research is novel is that it introduces fea-
tures that have not been previously used before to model runway allocation,
namely type of airplane, airplane weights, and maintenance planning. Our
experiments indeed show that maintenance planning and airplane weights
contribute to the predictive ability of the classifiers used, as maintenance
and airplane weights increase the CA of the models by approximately 2%
and 1 to 2%, respectively.

The final way is its focus on individual runway allocation, instead of
runway configurations (combinations of runways). This can be very useful
in situations where a configuration consists of more than one runway.

5.3 Future Research

Future research addressing runway allocation at airports should first and
foremost focus on obtaining high frequency and detailed data. Best practice
would be to include measurements covering 10-minute intervals to model
the most recent situation at AAS. The availability of these kind of measures
will increase the models ability to reveal uncovered patterns in the data
and improve their performances. Also, including predictors related to noise
abatement — missing from the current dataset — and reliable maintenance
data would be a valuable addition.

Another suggestion for future research is to compare the performance
of the model when trained on forecasts, for example weather forecasts or
scheduled demand, instead of observed data. This has previously been done
in the paper by Avery and Balakrishnan (2015) and although it decreased
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the performance of the model, it did generate a better idea of how the model
would perform in real situations, when only prospect data is available. This
insight will be very useful for ATC, as it gives a better idea of the usefulness
of these models in real-life application.

5.4 Implications for the Field

Unfortunately, our results cannot be directly translated to the actual situ-
ation at AAS because of some of the key assumptions and simplifications
in the design of the model. As stated earlier in Section 1.1.2, flawed tools
can actually hurt ATC capacity, rather than enhance it. Therefore, reliable,
high frequency data should be a top priority when trying to model the ATC
decision process.

However, as the model performed quite well for some of the classes (the
most consistently used runways), it yields a promising perspective for future
research. If the quantity and quality of data increases, runway allocation
can most definitely be predicted by the model. Therefore, it is likely that
the efficiency of ATC at AAS can be improved by predicting runway alloca-
tion, something that has become very important in recent years due to the
increasing capacity constraints at airports around the globe.
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A Dataset description

Below you will find a detailed description of the features in the dataset used
to perform this research.

Date The date that a particular flight occurred, ranges from
2008-01-01 to 2016-03-01 (yyyy-mm-dd)

Weekday The day of the week, string feature with seven possible
values

Weekend Whether the day of the week is either a Saturday or
Sunday or another day of the week, binary feature (1=Yes,
0=No)

Season The season, string feature with values summer, fall,
winter and spring

Icao.type Type of airplane defined by the ICAO, e.g. A320

Act.description Full name of the type of airplane, e.g. AIRBUS A320-2

MTOW Maximum take-off weight of the plane (in tons of kilos),
discrete variable with a range from 1 to 640

Icao.wtc Airplane weight class defined by the ICAO, discrete fea-
ture with possible values light, medium, heavy and su-
per heavy

Arr.dep Whether the flight was an arrival or a departure flight,
binary feature (A=arrival, D=departure)

Wind.direc Vector mean wind direction in degrees (360=north, 90=east,
180=south, 270=west, 0=calm/variable), discrete vari-
able

Wind.speed.vec Vector mean windspeed (in 0.1 m/s), continuous feature
with values between 1 and 153
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Wind.speed.daily Daily mean windspeed (in 0.1 m/s), continuous feature
with values between 9 and 154

Wind.speed.max Maximum hourly mean windspeed (in 0.1 m/s), contin-
uous feature with values between 20 and 220

Wind.speed.min Minimum hourly mean windspeed (in 0.1 m/s), contin-
uous feature with values between 0 and 140

Wind.gust.max Maximum wind gust (in 0.1 m/s), continuous feature
with values between 40 and 320

Temp.daily Daily mean temperature in (0.1 degrees Celsius), con-
tinuous feature with values between -115 and 264

Temp.min Minimum temperature (in 0.1 degrees Celsius), contin-
uous feature with values between -188 and 201

Temp.max Maximum temperature (in 0.1 degrees Celsius), contin-
uous feature with values between -56 and 337

Temp.10.min Minimum temperature at 10 cm above surface (in 0.1
degrees Celsius), continuous feature with values between
-215 and 191

Sun.dur Sunshine duration (in 0.1 hour) calculated from global
radiation (-1 for < 0.05 hour), continuous feature with
values between 0 and 154

Sun.dur.prct Percentage of maximum potential sunshine duration,
continuous feature with values between 0 and 94

Radiation Global radiation (in J/cm2), continuous feature with
values between 20 and 3070

Precip.dur Precipitation duration (in 0.1 hour), continuous feature
with values between 0 and 240

Precip.daily Daily precipitation amount (in 0.1 mm) (-1 for < 0.05
mm), continuous feature with values between -1 and
605

Precip.max Maximum hourly precipitation amount (in 0.1 mm) (-1
for < 0.05 mm), continuous feature with values between
-1 and 275

Sea.press.daily Daily mean sea level pressure (in 0.1 hPa) calculated
from 24 hourly values, continuous feature with values
between 9729 and 10449
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Sea.press.max Maximum hourly sea level pressure (in 0.1 hPa), con-
tinuous feature with values between 9768 and 10469

Sea.press.min Minimum hourly sea level pressure (in 0.1 hPa), con-
tinuous feature with values between 9615 and 10434

Visibility.min Minimum visibility; 0: < 100 m, 1:100-200 m, 2:200-
300 m,..., 49:4900-5000 m, 50:5-6 km, 56:6-7 km, 57:7-8
km,..., 79:29-30 km, 80:30-35 km, 81:35-40 km,..., 89:
> 70 km)

Visibility.max Maximum visibility; 0: < 100 m, 1:100-200 m, 2:200-
300 m,..., 49:4900-5000 m, 50:5-6 km, 56:6-7 km, 57:7-8
km,..., 79:29-30 km, 80:30-35 km, 81:35-40 km,..., 89:
> 70 km)

Cloud.daily Mean daily cloud cover (in octants, 9=sky invisible),
discrete feature

Humidity.daily Daily mean relative atmospheric humidity (in percents)

Humidity.max Maximum relative atmospheric humidity (in percents)

Humidity.min Minimum relative atmospheric humidity (in percents)

Evapo Potential evapotranspiration (Makkink) (in 0.1 mm),
continuous feature with values between 0 and 57

Wind.discrete Wind direction, string feature with values north-east,
north-west, south-east and south-west

Beaufort Beaufort scale for wind speed, discrete feature with val-
ues from 1 to 7

Vmc.imc Whether there are VMC (visibility ≥ 5 km) or IMC
(visibility < 5 km) at AAS, binary feature

Main.A Whether or not there is maintenance work at runway
Aalsmeerbaan, binary feature (1=Yes, 0=No)

Main.B Whether or not there is maintenance work at runway
Buitenveldertbaan, binary feature (1=Yes, 0=No)

Main.K Whether or not there is maintenance work at runway
Kaagbaan, binary feature (1=Yes, 0=No)

Main.O Whether or not there is maintenance work at runway
Oostbaan, binary feature (1=Yes, 0=No)
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Main.P Whether or not there is maintenance work at runway
Polderbaan, binary feature (1=Yes, 0=No)

Main.Z Whether or not there is maintenance work at runway
Zwanenburgbaan, binary feature (1=Yes, 0=No)

Last.year Total number of flights on the same date last year, dis-
crete feature that ranges from 2 to 1445

Yesterday Total number of flights on the day before, discrete fea-
ture that ranges from 2 to 1461

Runway Target feature. Runway code, string feature with twelve
possible values

Exploratory Data Analysis

Name The full name of the runway, string feature with six
possible values

Total.flights Total number of flights per day, discrete feature with
values between 2 and 1461
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B Results ablation study

The following tables show the effect on CA when omitting individual features
from the dataset.

Omitted feature CA Omitted feature CA
Wind.discrete 0.518644 Sun.dur.prct 0.529281

Main.B 0.520454 Cloud.daily 0.529405
Temp.daily 0.521245 Main.A 0.529533
Yesterday 0.523031 Main.P 0.529964
Weekend 0.524226 Precip.max 0.530043
Sun.dur 0.526015 Wind.speed.min 0.530212

Wind.speed.max 0.526230 Wind.speed.daily 0.530600
Season 0.526341 Wind.direc 0.530888

Sea.press.max 0.526931 Temp.min 0.531209
Temp.10.min 0.526933 Arr.dep 0.531598

Main.Z 0.527032 MTOW 0.532071
Humidity.daily 0.527246 Temp.max 0.532082
Wind.gust.max 0.527275 Precip.dur 0.532604
Wind.speed.vec 0.527900 Humidity.max 0.532930
Visibility.min 0.527919 Evapo 0.533895
Precip.daily 0.527920 Visibility.max 0.534054

Icao.wtc 0.527929 Last.year 0.534430
Main.K 0.528023 Weekday 0.534507
Main.O 0.528399 Sea.press.min 0.534723

Radiation 0.529048 Beaufort 0.535158
Sea.press.daily 0.529055 Vmc.imc 0.538182

Humidity.min 0.529165 None 0.538872

Table B.1: CA results for ablation study with linear kernel
SVM
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Omitted feature CA Omitted feature CA
Main.O 0.536601 Cloud.daily 0.545799

Wind.discrete 0.539650 Sea.press.daily 0.545967
Main.B 0.539825 Precip.daily 0.546151

Icao.wtc 0.541084 Evapo 0.546188
Temp.daily 0.542107 Yesterday 0.546257
Beaufort 0.542227 Vmc.imc 0.546429
Main.K 0.542908 Sun.dur 0.546448

Wind.speed.daily 0.543233 Sea.press.max 0.546515
MTOW 0.543298 Main.P 0.546517

Precip.max 0.543444 Last.year 0.546543
Wind.speed.vec 0.544065 Radiation 0.546663

Temp.10.min 0.544256 Main.A 0.546744
Sea.press.min 0.544589 Wind.speed.min 0.546774
Visibility.max 0.544622 Wind.speed.max 0.546832
Wind.gust.max 0.544833 Weekday 0.546984
Sun.dur.prct 0.544868 Temp.min 0.547394
Humidity.min 0.544872 Temp.max 0.547931

Weekend 0.544916 Main.Z 0.547935
Wind.direc 0.545026 Season 0.548115

Humidity.daily 0.545166 Arr.dep 0.548383
Visibility.min 0.545285 Humidity.max 0.548632

Precip.dur 0.545629 None 0.549264

Table B.2: CA results for ablation study with Logistic Re-
gression
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C Confusion matrices

This appendix contains the confusion matrices for the performances of the
linear kernel SVM and Logistic Regression classifiers on the test set.

Predicted

04 06 09 18C 18L 18R 22 24 27 36C 36L 36R
∑

04 693 331 12 7 16 32 298 58 24 4 812 12 2299

06 92 37528 3 312 0 5408 204 6 2484 222 43 1318 47620

09 8 100 880 2 969 0 11 2992 0 7 7555 0 12524

18C 2 1037 0 1160 608 36263 384 1662 683 184 301 424 42708

18L 1 0 1403 13 5288 0 32 45527 0 404 4026 0 56694

18R 3 4623 0 737 0 97469 367 0 2705 0 0 965 106869

True 22 166 175 45 18 181 8000 2942 2074 109 15 400 20 14145

24 3 89 2579 53 5401 1082 171 90056 155 147 14514 31 114281

27 5 3477 0 445 46 20534 453 2191 7142 192 267 765 35517

36C 7 2102 784 48 141 1629 53 761 2055 106 14080 614 22380

36L 21 0 806 1 715 0 25 5274 0 73 50020 0 56935

36R 44 13954 0 151 0 1407 107 0 2086 224 0 1559 19532∑
1045 63416 6512 2947 13365 171824 5047 150601 17443 1578 92018 5708 531504

Table C.1: Confusion matrix for the linear kernel SVM classifier
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Predicted

04 06 09 18C 18L 18R 22 24 27 36C 36L 36R
∑

04 700 369 35 9 13 23 292 87 19 0 737 5 2289

06 47 37914 1 687 1 4366 72 7 2870 0 43 1612 47620

09 10 100 788 0 675 0 6 3949 0 0 6996 0 12524

18C 1 1610 75 4249 1194 32280 29 1181 1574 0 301 214 42708

18L 1 0 348 0 5893 0 14 46767 0 0 3671 0 56694

18R 0 6402 0 2073 0 90637 94 0 7064 0 0 599 106869

True 22 238 130 20 385 212 5440 2819 2163 2352 0 375 11 14145

24 8 208 706 37 5272 786 110 93314 374 3 13455 8 114281

27 3 5343 0 912 166 13987 132 2104 12092 2 232 544 35517

36C 26 2747 201 54 43 1173 15 1704 2005 0 13804 608 22380

36L 32 0 1059 0 615 0 19 6930 0 2 48278 0 56935

36R 24 14862 0 67 0 1250 21 0 1617 0 0 1691 19532∑
1090 69685 3233 8473 14084 149942 3623 158206 29967 7 87892 5292 531504

Table C.2: Confusion matrix for the Logistic Regression classifier
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