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Abstract 

The purpose of this study was to compare the lz* person-fit index and the ω copying-

index in the detection of answer copying. We expected the copying-index to perform better 

than the person-fit index because it is specifically created to detect answer copying. The 

current study simulated answer copying pairs for each of 20 conditions (2 test length × 5 

amount of copying × 2 sample size) with 3 significance levels to compare the Type I error 

rate and power of the lz* person-fit index and Wollack’s ω copying-index to detect copying 

behavior. Results indicate that the lz* index has higher detection rates than the ω index in 

most conditions. Nevertheless, the conditions in which ω performed better are the conditions 

with the highest absolute levels of detection for both indices. Empirical type I error rates were 

far below its nominal level for all conditions of ω and in most conditions of lz*. However, in 

some conditions, the empirical type I error rates for lz* were about equal to or slightly above 

the nominal level. Directions for future research are discussed. 
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Comparison of the Lz* and Omega Indices in Cheating Detection 

People have to take high-stake tests in their lives many times. For instance, you 

repeatedly have to complete tests that determine your course grades at school and tests that 

determine whether you are granted a driver’s license or are hired for a job. These high stakes 

may create an incentive to cheat. There are many different ways how examinees can do this, 

e.g., they may steal answer sheets, communicate with someone outside the examination room 

or copy someone else’s answers. Studies found that approximately two-third of college 

students in the U.S. admitted to cheating at least once during college (McCabe, 1993) and 5% 

will copy answers during any given test administration (Bellezza & Bellezza, 1989; Frary & 

Olson, 1985). A later study (McCabe, Trevino, & Butterfield, 2001) found that about 60% of 

the students reported that they had copied at least once from another on a test. In the survey 

study of Rakovski and Levy (2007), 1.8% of the business college students reported that they 

had engaged in answer copying during exams more than five times. If we take into account 

social desirability these numbers may be even higher.  

The problem with cheating is that it biases the inferences about the examinee’s 

performance, i.e., the validity of the test is threatened (Meijer, 1997; Schmitt, Chan, Sacco, 

AIcFarland, & Jennings, 1999). The ability level of cheaters is often estimated higher than the 

true ability level. Because decisions are often based on test scores, inaccurate ability estimates 

of the examinees may invalidate high stake decisions. Hence, testing agencies try to prevent 

cheating by using different versions of a test, minimizing item exposure, prohibiting the use 

of communication devices and the presence of examination supervisors (Shu, 2010). 

However, it is not possible to prevent cheating from happening completely. Fortunately, 

different cheating detection methods are available that allow the detection of cheating after 

test completion. In this study, we will compare two of these cheating detection methods. More 

specifically, we will focus on copying behavior because this is a popular way of cheating (Fox 
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& Meijer, 2008). 

Person-Fit Indices 

One way to detect cheating is to assess the person-fit. Examinees who cheat may 

generate responses that are unlikely under an item response theory model. A cheating 

examinee is likely to answer more difficult questions correctly than would be expected based 

on his/her ability level. As a result, the cheating examinee might answer easier items 

incorrectly and more difficult items correctly. In other words, the person does not fit the 

model. There are many statistics that evaluate person-fit in general (for a review, see Meijer 

& Sijtsma, 2001). An often-used person-fit index is the lz statistic (Drasgow, Levine, & 

Williams, 1985). 

Cheating Indices 

There are also indices available that are specifically created to detect a particular type 

of cheating behavior – like copying behavior. Often used copying detection indices are the B- 

and H-index (Angoff, 1974), K, K1 and K2 (Sotaridona & Meijer, 2003), PAIR1 and PAIR2 

(Hanson, Harris, & Brennan, 1987), S1 and S2 (Sotaridona & Meijer, 2003), g2 (Frary, 

Tideman, & Watts, 1977) and ω (Wollack, 1997).  

In contrast to B, H, the K-indices and S1, which only use information of the incorrect 

responses, the PAIR1, PAIR2, S2, g2 and ω statistic make use of both the incorrect and correct 

responses. The advantage of this is that all the responses, thus more information, is used. The 

idea behind the first group of indices is that a suspect who has a larger number of matching 

incorrect answers than most of the other examinees in the same subgroup (with the same 

number of wrong answers) should be the one who copied answers from the source (Shu, 

2010). In the second group, a theoretical distribution to compute the likelihood of observing 

the similarity by chance is used. 
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Operationalization Cheating 

Previous studies have investigated the performance of these indices in simulation 

studies. Table 1 shows different simulation studies that examine cheating detection. As can be 

seen there, cheating is operationalized in different ways. Some studies changed the probability 

of answering particular - usually difficult - items correctly to 1.00 (De la Torre & Deng, 2008; 

Emons, 2008; Karabatsos, 2003; Meijer, 1994; Meijer, Molenaar, & Sijtsma, 2004) or 

increased this probability (Dimitrov & Smith, 2006; Jurich, Demars, & Goodman, 2012). This 

can represent many different ways of cheating, for instance, item exposure, prior item 

knowledge and answer copying. Others focused on answer copying only and changed some 

answers of one examinee into the answers of another examinee (Hanson, Harris, & Brennan, 

1987; Sotaridona, & Meijer, 2002, 2003; Wollack, 1996, 1997, 2003, 2006; Wollack & 

Cohen, 1998; Zhang & Walker, 2008; Zopluoglu & Davenport, 2011, 2012). We believe this 

is more realistic as an operationalization of answer copying than 1-scores for the copied items 

because copiers can also occasionally copy an incorrect item. 

The articles also differ in which items are affected. In most studies, the difficult items 

were copied, but there were also many studies in which random items were chosen. Some 

studies, e.g., Hanson, Harris, and Brennan (1987) and Wollack (1996; 1997) also included 

string-based copying, in which consecutive items were copied. 

Person-Fit Measures vs. Copying Indices 

Hanson, Harris and Brennan (1987) concluded that indices that specifically model 

examinees who copy strings of consecutive items (e.g., H, PAIR1 and PAIR2) perform better 

– have a higher true positive rate – in the string-based conditions than more general copying 

indices (B, g2, P and CP). We believe this makes sense because the indices are specifically 

created to detect copying of strings. With the same line of reasoning, we believe that indices 

that specifically model examinees who copy answers perform better in detecting copying than 
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more general person-fit indices. The copying-indices are specifically created to detect 

copying, in contrast to the general person-fit statistics, which identify unusual response 

patterns, without specifying the cause.  

In this study, we will compare the performance in copying detection of the ω copying-

index and the lz* person-fit statistic. Different studies show that the omega performs best 

(Cizek, 1999; Sotaridona & Meijer, 2002; Wollack, 2003). However, Sotaridona and Meijer 

(2003) showed that the S1 and S2 yield higher power under certain conditions. We have 

chosen to use the omega statistic in our study because it is widely used as a copying-index 

and performs very well generally. The g2 index is structurally identical to omega, except the 

estimation of the answer match probability (Wollack, 2006). The g2 index uses classical test 

theory to compute this probability where the ω index uses the nominal response model. 

Previous studies have shown that g2 has inflated Type-I error rates (Hanson, Harris, & 

Brennan, 1987; Wollack, 1997, 2003). Reise and Due (1991) and Drasgow and Levine (1986) 

have shown that the lz index is among the best indices to detect misfit response patterns 

caused by test cheating. As we will explain later, the lz* index is the improved version of the 

lz index. We will investigate whether the ω index, which is especially designed to detect 

copying, performs better in copying detection than this statistic. Before we explain our 

expectations more thoroughly, we will describe the lz* person-fit statistic and the ω copying-

index in more detail. 
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Table 1  

Item- and Person Characteristics of Simulation Studies with Answer Copying Detection. 

    Item Characteristics  Person Characteristics 
Source  Operationalization 

cheating 
 Total # Affected % Affected Kind of 

item 
 Total # Affected % 

Affected 
Ability 

De la Torre & 
Deng (2008) 

 Correct probability 
1.00   

 10-30-50  10-30 Difficult  5,000 - - Random 

Dimitrov & 
Smith (2006) 

 Correct probability .90  10-20-30  10: 2-4 
20: 4-8 
30: 6-12 
 

20-40 Difficult  9,000 2,430 27 Low 

Emons (2003) 
chapter 2 

 Correct probability 
1.00 

 20-40 5-8-10  12.5-20- 
25-40-50 

Difficult  1,000 1,000 100 Random 

Emons (2003) 
chapter 4  

 Answer copying from 
note: correct 
probability 1.00 

 20-40 20: 5-8 
40: 5-10 

20: 25-40 
40: 12.5-25 

Difficult  1,000 1,000 100 Random 

Hanson, Harris 
& Brennan 
(1987) 

 Answer copying: 
answers copier same 
as source 

 100 10-20-30- 
40-50 

10-20-30-
40-50 

Random  9,143 
 

500 5.5 Random 

Jurich, 
Demars, 
Goodman 
(2012) 

 Prior item knowledge: 
adding .5 to correct 
probability 

 100 25-100  25-100 Random  3,000 150-300- 
750-1,500 

5-10- 
25-50 

Random 

Karabatsos 
(2003) 

 Correct response 
probability of 1.00 

 17-33-65 3-6-12 18 Difficult  500 25-50- 
125-250 

5-10- 
25-50 

Low 

*
*
*

*
*
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Table&1&Continued&
&

Meijer (1994); 
Meijer, 
Molenaar, & 
Sijtsma (2004) 

 0-scores changed to 1-
scores 

 17-33 17: 3 
33: 6 

18 Difficult  450 25-50 5.5-11 Random 

Shu (2010)  Prior item knowledge  40-80 40: 12-20-28 
80: 24-40-56 

30-50-70 Random  2,000 1,000-1,600/ 
1,600-2,000 

50-80/ 
80-100 

60%  
low 

Sotaridona & 
Meijer (2002)  
 

 Answer copying: 
answers copier same 
as source 

 40-80 40: 4, 8, 12, 16 
80: 8, 16, 24, 
32 

10-20-
30-40 

Random  2002: 
100-500-2,000 

5-25-100 5 Lower 
than 
source 
 

Sotaridona & 
Meijer (2003)  
 

 Answer copying: 
answers copier same 
as source 

 40-80 40: 4, 8, 12, 16 
80: 8, 16, 24, 
32 

10-20-
30-40 

Random  100-500 5-25-100 5 Lower 
than 
source 
 

Wollack 
(1996; 1997) 
 

 Answer copying: 
answers copier same 
as source 

 40-80 40: 4-8-12-16 
80: 8-16-24-32 
 

10-20-
30-40 

Random, 
difficult, 
string 

 100-500 5-25 5 Lower 
than 
source 

Wollack 
(2003) 

 Answer copying: 
answers copier same 
as source 

 20-40-80 20: 2-4-6-8 
40: 4-8-12-16 
80: 8-16-24-32 

10-20-
30-40 

Random  20,000: 
50-100-250-
500-1,000-
2,000-5,000-
10,000 

4-8-20- 
40-80-160-
400-800 

8 Random 

Wollack 
(2006) 

 Answer copying: 
answers copier same 
as source 

 40-80 40: 4-8-12-16 
80: 8-16-24-32 

10-20-
30-401 

Random, 
strings, 
mixed 

 20,000: 
25-50-100-250-
500-1,000-
2,000-5,000-
10,000 

2-4-8-20- 
40-80-160-
400-800 

8 Random 

&
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
1&All these percentages of items copied in each condition. 
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&
&
Table&1&Continued&
&

Wollack & 
Cohen (1998) 

 Answer copying: 
answers copier same 
as source 

 40-80 40: 4-8-12-16 
80: 8-16-24-32 

10-20-
30-40 

random-
strings, 
difficulty 

 100-500 5-25 5 Lower 
than 
source 

Zhang & 
Walker (2008) 

 Responses to items 
with difficulty > 1.2 
correct 

 10-20-40 2-4-8 20 Difficult  1,0002 
 

100 10 Low 

Zopluoglu & 
Davenport 
(2011) 

 Answer copying: 
answers copier same 
as source 

 40 4-8-…-40 10-20-
…-100 

Random 
 

 500 pairs 500 pairs 100 Random 

Zopluoglu & 
Davenport 
(2012) 

 Answer copying: 
answers copier same 
as source 

 40 4-8-…-40 10-20-
…-100 

Random, 
difficulty
, string 

 500 pairs 500 pairs 100 Random 

&
 
  

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
2&At first, Zhang and Whalker (2008) also included sample sizes of 500 and 2,000, but the results were collapsed because they were very similar 
for the three sample sizes.&

&
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lz* Person-Fit Statistic 

The lz* statistic is the modified version of the lz statistic (Drasgow, Levine, & 

Williams, 1985), which is the standardized version of the l0 statistic. In the log-likelihood 

function (Levine & Rubin, 1979), 

!! = ! {!!!log!!(θ
!

!!!
)+ 1− !! !log![!!! θ ]}!, 

the likelihood of the observed responses is compared to the expected value for the population. 

!!(θ) denotes the probability of a correct score on item i (i = 1, 2, …, k) and !! θ = 1− 

!!(θ) the probability of an incorrect score on item i. 

Unfortunately, !! is not standardized. Hence, it depends on θ whether an item-score 

pattern is classified as model-fitting or misfitting. Furthermore, the null distribution of fitting 

item scores is unknown for !!, which makes it impossible to classify an item-score pattern as 

misfitting or not (Meijer & Sijtsma, 2001). Drasgow, Levine and Williams (1985) proposed a 

standardized version of the !! statistic, the !! statistic:  

!! = !
!!(θ) − ![!! θ ]
![!!(θ)]!/!

,!

where ![!! θ ] is the expectation and ![!! θ ] the variance of !!: 

! !! θ = ! !! θ log!! θ + !! θ log!! θ!
!!! , and 

! !! θ = ! !! θ !!! θ !!! θ !
!

!!!
, 

where !!!(θ) – the weights – represent !"# !!(!)
!!(!)

. 

If a respondent’s !! is below the critical value, the response pattern is classified as 

aberrant - or misfitting. Otherwise, it is classified as “normal”, which means that it is 

consistent with the model predictions (Lee, 2013).  
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In practice, the true ability (θ) is unknown and that is why it is usually estimated. 

Unfortunately, !! does not have an asymptotically standard normal distribution when the true 

ability levels are replaced by sample ability estimates (Molenaar & Hoijtink, 1990; Nering, 

1995, 1997; Reise, 1995). Several researchers have found that the null distributions are not 

even asymptotically standard normal when the true ability is used. The distributions are 

negatively skewed, and often leptokurtic, which results in a conservative classification of item 

score patterns as misfitting (Meijer & Sijtsma, 2001; Molenaar & Hoijtink, 1990; Nering, 

1995). Snijders (2001) proposed a correction for this index such that it is asymptotically 

standard normal distributed when sample ability estimates are used.  

 !!* is derived from lz by adding !! θ !!(θ) to the numerator and replacing the weights 

!! θ  by the modified weights !! θ  in the denominator (Magis, Raîche, & Béland, 2012). 

These new statistics will be discussed further on. !!* is obtained by 

!!∗ != !
!! θ − ! !! θ + !!! θ !!(θ)

![!! θ ]!/! ,!! 

where the modified variance is 

! !! θ = ! !!! θ !!! θ !!! θ !
!

!!!
. 

The modified weights !! θ !are obtained by  

!! θ = !! θ − !!! θ !!!(θ). 

In this article we will focus on the 2PL-IRT model. In this model, !! θ  and !! θ  can be 

calculated with 

!! θ = ! !!!! θ !!! θ !!!(θ)!
!!!

!!!!!! θ !!!(θ)!
!!!
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and 

!! θ = ! !!!!!! θ!
!!! !!(θ) !! θ − !!!(θ)

2! !!!!
!!! !!! θ !!!(θ)

. 

For obtaining θ, Magis, Raîche, & Béland (2012) discuss the use of 3 estimators. For 

reasons of conciseness, we used Warm’s weighted likelihood estimator θ!"# (Warm, 1989) 

as ability estimator in !! θ . 

The ω Index  

The ω index (Wollack, 1997) measures the standardized difference between the 

number of answer matches – both correct and incorrect – between a pair of examinees, and 

the number predicted by chance. An examinee – the copier (c) – is suspected of copying 

answers from another examinee – the source (s). Hcs is equal to the number of items where the 

response of the copier matches the response of the source. !!" !!  denotes the probability of 

the copier selecting the same answer k on item i as the source. This probability is calculated 

by Wollack (1997) with the nominal response model (Bock, 1972), 

!!" θ! = ! exp!(ζ!" + !λ!"θ!)
exp!(ζ!" + !λ!"θ!!!

!!!! )
,!

where ζ!" and λ!" denote the intercept and slope parameters, respectively, Vi denotes options 

for the multiple choice item i, and θ! denotes the ability level of the copier. 

The expected value of answer matches is conditional on θ!, the item response vector 

of the source (!!), and the item parameters ξ = (ξ1, …., ξI) with ξi = (ζ!!, … ζ!", λ!!, …, λ!"): 

! ℎ!" θ!,!!, ξ = ! !!" θ! .
!

!!!
 

The standard deviation of hcs is 
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!!!" = ! !!"(θ!) 1− !!"(θ!) .
!

!!!
 

The previous statistics combined make it possible to calculate the ω statistic with 

 

ω!"3 =
ℎ!" − !! ℎ!" θ!,!!, ξ

!!!"
. 

The ω index is asymptotically standard normally distributed (Wollack, 1997). The 

larger its value, the higher the indication that c copied from s. 

Wollack (1997) concluded that ω had good power to detect copiers if at least 20% of 

the items was copied on an 80-item test and at least 30% on a 40-item test. Furthermore, the 

Type I error rate of ω was below alpha in virtually all conditions. We expect to replicate this 

result. 

Hypothesis 

Our hypothesis is that the copying-index ω performs better in the detection of answer 

copying than the general person-fit index lz*. More specifically, we predict that ω has an 

overall higher detection rate. Furthermore, we expect the empirical type I error rates (false 

positives) to be close to the nominal type I error rates (alpha levels) for lz* and – as in 

Wollack’s (1997) study – below its nominal level for ω. 

Previous studies (e.g., Wollack, 1996; Wollack & Cohen, 1998; Sotaridona & Meijer, 

2002, 2003; Wollack, 2003, see Table 1) manipulated the test length, amount of copying, and 

sample size. Zopluoglu and Davenport (2012) argued that, in general, the power of the indices 

increased as test length and amount of copying increased. Longer tests and higher amounts of 

copying provide more information about the answer copying, but only if it exists. 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
3 The subscript of ω here is chosen to make clear that ω says something about the source-
copier pair. However, it is not used in the rest of the paper because it is not used in the paper 
of Wollack (1997) or in other previous papers.&
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Furthermore, larger sample sizes provide more accurate parameter estimation, and thus, the 

power is more reliably estimated.  

Method 
 
Data Generation 

A simulation study was performed to evaluate the Type I error rate and power of the 

lz* person-fit index and Wollack’s ω copying-index to detect copying behavior. Data were 

generated under the two-parameter logistic IRT model (2PLM; Birnbaum, 1968). We did not 

want to include a guessing parameter because this makes it more difficult to estimate the item 

parameters. The difficulty parameter values, as well as the theta-values of examinees, were 

generated from a standard normal distribution, N(0,1). Theta-values were independently 

generated for copiers and sources. The discrimination parameter values were generated from a 

uniform distribution ranging from +0.5 to +1.5. Fox and Meijer (2008) used normally 

distributed discrimination parameters, N(1, 0.2). However, a uniform distribution does not 

allow for negative values of the discrimination parameter, which are not plausible in practice. 

New examinees were generated for each replication. A program in “R” was written that 

performed the required simulations. 

Simulation of Cheaters 

Emons (2003) fixed the probability of answering correctly to 1.00 for items with the 

highest difficulty parameter. In this way, it is simulated how examinees bring notes illegally 

and use these answers. Meijer (1994) and Meijer, Molenaar, and Sijtsma (2004) simulated 

cheating by changing some examinees’ 0-scores for the most difficult items to 1-scores. These 

two ways of simulating cheating result in the same scores for the cheaters, namely correct 

scores on cheated items. However, as mentioned before, we are specifically interested in 

answer copying from another examinee because this is a popular way of cheating (Fox & 

Meijer, 2008). So, to implement cheating, the first 5% of the lowest theta-value copiers were 
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matched with 5% randomly chosen sources. We believe that examinees with an average or 

high ability rely on their own knowledge to respond to the items. On the other hand, the 

examinees with a low ability will be more likely to copy someone else’s answers. They are 

more likely to obtain a score gain by answer copying than the other examinees. 

As can be seen in Table 1, different answer copying studies included 5% copiers (e.g., 

Hanson, Harris, & Brennan, 1987; Wollack, 1997; Sotaridona & Meijer, 2002, 2003). 

Wollack’s study (2003) included 8% copiers, but the author noted that that number “is 

probably slightly higher than the average percentage of students copying during any given test 

administration” (p. 194). This number – 5% copiers – is also consistent with the studies of 

Bellezza and Bellezza (1989) and Frary and Olson (1985) mentioned before. 

Zopluoglu and Davenport (2012) noted that random copying may not be correct in real 

life, and that other types of copying – like difficulty-weighted copying – are probably more 

correct. We think that examinees first try to answer an item themselves – especially in high-

stake tests – and only look at their neighbor’s answer if they do not know it themselves. 

Hence, we believe that the copying of difficult items happens more in practice than the 

copying of consecutive strings. The items are not ordered on difficulty, which makes it 

unlikely that respondents copy strings of items. Even if they see multiple answers of the 

source at once, they probably only copy if they have no idea themselves. That is why we 

made the copiers copy only the most difficult items. The percentage of items copied differs 

per condition. As a result, the copiers have more 1-scores than expected based on their low 

theta-values. However, in our study, also incorrect answers will be copied. Especially since 

the most difficult items are copied, not all sources will know the correct answer. 

Wollack (1997) randomly selected 5% of the examinees as copier and made them 

copy answers from a more able examinee within copying distance. In our study, it is 

theoretically possible that a copier copies from a source with lower theta-value. Even though 
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the copiers have low ability levels, it is possible that the randomly chosen source has an even 

lower ability level. However, we believe that it is possible that a low-ability copier looks at 

the answers of his or her neighbor, independent of his or her ability level. For instance, the 

copier may not know the other examinee. Furthermore, we did not use a seating chart to 

identify source-copier pairs within copying distance. We assumed that the pairs were already 

suspected of copying. 

Independent Variables 

Test length. Following Wollack (1996, 1997, 2003, 2006), Wollack and Cohen 

(1998), Shu (2011), Sotaridona and Meijer (2002, 2003), and Sijtsma and Meijer (2001), data 

were generated for two levels of test length: k = 40 and k = 80. Test length is known to affect 

the accuracy of item parameter estimation, which in turn affects person trait estimation 

(Zhang & Walker, 2008). Moreover, test length is found to increase ω’s power (Wollack, 

1997). Even though shorter tests might be used in practice, detecting person misfit for shorter 

tests is statistically almost impossible regardless of which statistical model is used (Rubb, 

2013). 

Amount of items copied. Following Sotaridona and Meijer (2002, 2003), Wollack 

(1996, 1997, 2003) and Wollack and Cohen (1998), the proportion of items copied (m) was 0, 

.1, .2, .3 or .4. Thus, in the 40-item conditions, 0, 4, 8, 12 or 16 items are copied, and in the 80 

item conditions, 0, 8, 16, 24 or 32 items. The situation without answer copying was included 

to estimate empirical type I error rates. Wollack (1997) concluded that ω’s power to detect 

answer copying was higher when more items were copied. 

Sample size. Both 1,000 and 10,000 copier – source pairs were generated. According 

to Zhang and Walker (2008), sample size is related to the statistical power of fit statistics. 

However, Wollack (1997) did not find an effect of sample size on empirical power. 
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Significance level. Following Zopluoglu and Davenport (2011, 2012), the theoretical 

Type I error rates (significance levels) used were .05, .01 and .001. Meijer (2003) noted that 

relatively large alpha levels, e.g., .05 and .10, are preferable because most person-fit statistics 

have relatively low power at low alpha levels because of limited test length. Furthermore, he 

mentioned that extreme person-fit values will only alert the researcher that the behavior is 

unexpected and worth studying more closely. However, Sotaridona, Van der Linden, and 

Meijer (2006) and Shu (2010) argued that conservatism is often more desirable in answer 

copying detection. False positives can have serious consequences for particular examinees, 

especially when the results of the test are not used for screening but as cheating test. It is 

usually less bad to fail to detect a cheater (false negative) than to incorrectly accuse someone 

of cheating (false positive). To study the effect of these different possible choices for alpha, 

we compared the results for different levels of alpha. 

The interaction of conditions resulted in a 2 (test length) x 5 (amount of items copied) 

x 2 (sample size) x 3 (significance level) design, for a total of 60 testing conditions. New data 

were generated for 20 different conditions (2 test length x 5 amount of copying x 2 sample 

size). The dataset in the 1,000 copier-source pairs conditions was replicated 1,000 times per 

condition and – due to increasing computation time - 100 times in the 10,000 copier-source 

pairs conditions. The higher the number of replications, the smaller the standard errors of the 

false positives and false negatives – up to a point of diminishing returns (Rubb, 2013). 

Dependent Variables 

The performance of the ω copying-index and the lz* person-fit statistic in detecting 

copying behavior is determined by the trade-off between the Type I error rate and the 

detection rate. An optimal index should be powerful enough to detect true answer copiers, but 

at the same time should not pick out the non-copying examinees too often. The empirical 

Type I error rate is the proportion of non-copiers incorrectly identified as copier (false 
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positives). Hence, the proportion of falsely detected pairs of both indices was computed based 

on 1,000 or 10,000 non-copying pairs for each level of test length and theoretical alpha level. 

The detection rate – or power – is the proportion of copiers correctly identified as copier. The 

detection rate for each statistic was computed as the proportion of simulated copiers who were 

identified as copying by the indices.  

For the lz* statistic, a pair of examinees was identified as copying if the lz*-value was 

below the one-tailed critical value corresponding to the alpha level (i.e., critical values of -

1.64, -2.32, and -3.09 for the alpha level of .05, .01, and .001, respectively). For the ω index, 

on the other hand, a pair is identified as copying if the ω-value is above the one-tailed critical 

value corresponding to the alpha level (i.e., critical values of 1.64, 2.32, and 3.09 for the alpha 

level of .05, .01, and .001, respectively). 

Results 

Performance of the Indices 

Detection rates. For the three significance levels, Table 2 shows the detection rates of 

lz* and ω for detecting answer copying under 20 combinations of test length, sample size and 

number of items copied. As expected, the detection rates increased – for both lz* and ω – as 

the theoretical alpha level, test length and amount of copying increased. However, the 

detection rates were almost equal for both sample sizes.  

In general, the detection rate was quite low. The detection rate was extremely low for 

small alpha levels (.001 and .01) and low amounts of items copied (m = .1 and m = .2). 

However, better detection rates were found for higher amounts of items copied (m=.40) and 

high alpha levels. For instance, the detection rate for ω was .777 for n = 1,000, 80 items, an 

alpha level of .05 and 40% items copied. The detection rate of lz* in this condition was .521.  

When we look at the relative performance of the indices, we see that lz* performs 

better than ω in almost all conditions. The conditions in which ω performs better than lz* are 



COMPARISON&OF&THE&LZ*&PERSON;FIT&INDEX& 19&

bolded in table 2. When 30% of the items were copied, ω performs better than lz in the 80 

items and α = .05 conditions. When 40% of the items were copied, ω performs better than lz* 

in the conditions with α = .05 and in the conditions with α = .01 and 80 items. Importantly, 

the conditions in which ω performs better are the conditions with the highest absolute levels 

of detection for both indices. 

Table 2 
 
Detection Rates for Answer Copying 
 

  n = 1,000a  n = 10,000a 
  k = 40  k = 80  k = 40  k = 80 
α  lz* ω  lz* ω  lz* ω  lz* ω 
  m = .1 
.05  .061 .044  .106 .064  .062 .047  .108 .060 
0.01  .025 .006  .055 .011  .027 .007  .056 .010 
.001  .008 <.001  .024 .001  .010 <.001  .024 .001 
  m = .2 
.05  .174 .106  .278 .191  .176 .108  .285 .201 
.01  .105 .020  .194 .046  .107 .021  .199 .051 
.001  .055 .002  .124 .005  .055 .002  .126 .006 
  m = .3 
.05  .288 .231  .419 .474  .291 .234  .417 .465 
.01  .199 .059  .328 .180  .204 .061  .324 .176 
.001  .124 .007  .238 .033  .130 .008  .238 .031 
  m = .4 
.05  .390 .450  .521 .777  .390 .455  .525 .776 
.01  .290 .163  .429 .464  .292 .166  .434 .465 
.001  .196 .028  .336 .149  .198 .029  .337 .153 

Note. k denotes the test length, m denotes the proportion of items copied by the copiers, and α 

denotes the theoretical alpha level. The bolded detection rates denote the conditions in which 

ω performs better than lz*. 

a 1,000 or 10,000 source-copier pairs 

 
Empirical type I error rates. Table 3 shows the empirical Type I error rates for both 

indices within each amount of copying for different theoretical alpha levels. Test length and 

sample size did not appear to have an effect on the error rates of both indices. Hence, Type I 

error rates were averaged across the two test lengths and the two sample sizes (see Appendix 
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A for the Type I error rates in each condition). The empirical type I error rates for ω never 

exceed the nominal level in any of the conditions. Rather, as expected, they were much 

smaller than their nominal levels. The empirical type I error rate for lz* was equal to its 

nominal level for α = .001 and 40% of items copied, and slightly below its nominal value for 

α = .01 and no items copied4. However, it (slightly) exceeds its nominal level in most 

conditions with an alpha level of .001, with a maximum empirical type I error rate of .0017. 

In the remaining conditions, the empirical type I error rates for lz* were much smaller than 

their nominal levels, as with the type I error rates for ω. 

In the conditions without answer copying, the ω index was more succesful to hold the 

Type I error rate around its nominal level at an alpha level of .05 than lz*, but ω was less 

succesful to do this than lz* at alpha levels of .01 and .001. In the conditions with answer 

copying, the ω index was less succesful than lz* to hold the Type I error rate around its 

nominal level at alpha levels of .05 and .01. At an alpha level of .001, the Type I error rate of 

the ω index was about equally far below its nominal level as that of the lz* index above its 

nominal level. An increase in amount of copying appeared to decrease the empirical type I 

error rate for lz* and slightly increase ω’s empirical type I error rate.  

      
 
 
 
 
 
 
 
 
 
 
 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
4&Inspection of the Type I error rates for each condition (see Appendix A) reveals that the 
Type I error rate for lz* in the condition with α = .01, m = 0, k = 40, and n = 10,000 was 
0.0102, while lz*’s average Type I error rate for α = .01 and m = 0 was only 0.0098. So, 
although the difference between these two values is very small, this made the difference 
between a type I error rate slightly above and slightly below its nominal value.&
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     Table 3 
 

     Empirical Type I Error Rates 
 

α  lz* ω 
  m = 0 
.05  .0380 .0346 
.01  .0098 .0052 
.001  .0017 .0003 
  m = 0.1 
.05  .0333 .0341 
.01  .0082 .0050 
.001  .0013 .0003 
  m = 0.2 
.05  .0303 .0347 
.01  .0073 .0054 
.001  .0012 .0004 
  m = 0.3 
.05  .0285 .0356 
.01  .0069 .0055 
.001  .0011 .0004 
  m = 0.4 
.05  .0270 .0361 
.01  .0065 .0057 
.001  .0010 .0004 

 
   Note. m denotes the proportion of items copied by the copiers,  

   and α denotes the theoretical alpha level. 

 

Discussion 

This was the first article to compare the lz* person-fit statistic and ω copying-index 

directly. The hypothesis stated that the ω copying-index would perform better in the detection 

of answer copying (i.e., have higher detection rates than the lz* person-fit statistic). Against 

our expectations, lz* performed better than ω in most conditions. Nevertheless, the conditions 

in which ω performed better are the conditions with the highest absolute levels of detection 

for both indices.  
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In contrast to Wollack’s (1997) findings, the detection rate for ω was only high (about 

.8) for large amounts of items copied (m = .4), a test length of 80 items and an alpha level of 

.05. The detection rate for lz* did not reach this detection rate level in any of the conditions.  

In real-life testing situations, the test length and alpha level can be controlled by the 

test administrator. That is why it is possible to make a trade-off beforehand between the 

detection rate and empirical type I error rate. You want to detect cheating, but not at the 

expense of innocent examinees. An ideal index maintains the empirical type I error on or 

slightly below the nominal level, but not too far below. If it is far below its nominal level, the 

type I error rate is lower than you decided it to be beforehand, which decreases the detection 

rate. The reasons for this is that the detection rate is lower for smaller alpha levels, and thus, 

the indices have lower power than if the empirical type I error rate would have been equal to 

alpha.  

The results revealed that the empirical type I error rate was (far) below its nominal 

value in all conditions for ω and in most of the conditions with alpha levels .05 and .01 for lz*. 

However, lz*’s empirical type I error rates were equal to or (slightly) above the nominal value 

in the conditions with α = .001 and in the conditions with α = .01 and no items copied. Hence, 

lz* is slightly liberal for most conditions with α = .001, but conservative for most conditions 

with alpha levels of .05 and .01. The ω index is conservative in all conditions.  

Test length did not appear to influence the empirical type I error rates. Because the test of 

80 items had higher detection rates than the test of 40 items, we recommend using more items 

whenever possible. Unfortunately, the amount of items copied is usually not known 

beforehand. Because the detection rates of both lz* and ω are extremely low for a small 

amount of items copied, but are larger when more items are copied, it is hard to say 

something about the power of the indices in practice. Nevertheless, you might argue that it is 
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less bad to fail to detect an answer copier if the examinee only copied a few items than when 

he/she copied many items. 

 Besides the detection rates and empirical type I error, there are other differences 

between the lz* and ω index. First of all, the ω index is created to test for already suspected 

source-copier pairs. More specifically, the index says something about the likelihood of 

response matches in a source-copier pair. On the other hand, lz* says something about the 

likelihood of the responses of one examinee under the model. So, lz* does not require 

designating a source. Secondly, lz* is a general person-fit index that detects general aberrant 

behavior. Hence, it might detect other kinds of misfit – like guessing – as well. So, examinees 

may become falsely accused of cheating, while they actually perform other – allowed or not – 

aberrant behavior. The ω copying-index is probably less affected by these other behaviors 

because it focuses specifically on answer copying.  

We computed the lz* and ω index for all 1,000 (or 10,000) examinee pairs. However, we 

must note that test administrators should be careful by using these indices as general 

screening for answer copying. Some examinees – a proportion equal to the type I error rate - 

will be falsely indicated as cheater, and these false positives can have serious consequences 

for the examinees concerned. Because the ω index is specifically designed for the detection of 

already suspected source-copier pairs, it should not be used for all possible pairs of 

examinees. 

This study has some limitations. First of all, Snijders (2001) proposed a modification of 

the lz such that it follows an asymptotically standard normal distribution when the ability level 

is estimated. Unfortunately, the mean of lz* was not close to zero in our study. Rather, the 

mean lz* was about 0.3 in conditions with 40 items and even about 0.4 in conditions with 80 

items. The standard deviation of lz* ranged from 1.07 to 1.30. We mainly looked at the 

conditions without copying, but the means and standard deviations of the other conditions 
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were quite similar. Van Krimpen-Stoop and Meijer (1999) did also find a mean of lz* above 

zero, with a mean of about 0.1 for P&P (paper-and-pencil) tests, and even reaching levels of 

0.4 for a Computerized Adaptive Test (CAT). The relatively high mean of lz* leads to a more 

conservative index. As a result, fewer examinees are falsely identified as answer copier, but 

also fewer answer copiers are correctly identified.  

We had to compute the lz statistic in order to compute lz*, which made it possible to 

compare the distribution of these two statistics. This reveals that although the lz statistic has a 

mean closer to zero (ranging from 0.189 to 0.255) than lz*, lz* is less negatively skewed than 

lz. As an illustration, figure 1 and 2 show the distributions of both lz and lz*, respectively, for 

one sample of 1,000 source-copier pairs, without copying and k = 40. We are not sure what 

caused the relatively high mean of lz*. One possibility is that Snijders (2001) corrected for the 

fact that theta is estimated, but he does not correct for the fact that the item parameters are 

estimated. However, this does not explain why lz* has a higher mean than lz because lz does 

not take into account this either. 

Fortunately, the ω index appeared to follow a standard normal distribution. Its mean was 

about zero and its standard deviation about, but slightly below, one. See Appendix B for the 

average means and standard deviations in each condition for lz*, lz and ω. 

 

 

 

 

 

 

 

Figure 1 and 2. Distribution of the lz and lz* statistic. 
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Secondly, the copiers in our study were the 5% examinees with the lowest theta-

values. We argued before that people only copy answers if they have no idea themselves. 

However, the copiers in our study have extremely low theta-values, and thus, they probably 

do not know the answers of most items. Both the copiers’ theta-values and the difficulty 

parameter values were generated from a standard normal distribution, so the copiers have a 

correct probability of less than 50% on at least 95% of the items. As a result, it would be 

realistic if these people copy even more than 40% of the items. Nevertheless, it might be not 

possible to copy more than 40% of the items because of measures taken to reduce answer 

copying – like examination supervisors. Furthermore, the detection rates are likely to be lower 

when the copiers are not the examinees with the lowest theta-values, but have higher theta-

values. In that case, the differences in theta between the source and copier are lower, which 

results in less deviation from their actual score without answer copying, and thus, less misfit. 

Nevertheless, we believe that examinees with the lowest theta-values are most likely to 

engage in answer copying because they are most likely to obtain a score gain and are least 

able to complete the items on their own.  

Another possible limitation is that we replicated the conditions with 10,000 source-

copier pairs only 100 times instead of 1,000 due to increasing computation time. As a result, 

the 10,000 source-copier pairs conditions are more prone to sampling fluctuations. However, 

the differences in detection rate and empirical type I error rate between the two sample sizes 

were uniform and so small that they gave no reason to increase the replication rate. 

As we argued before, answer copying threatens the validity of tests, which in turn 

affects high-stake decisions. Hence, it is important that well-performing copying detection 

statistics are created. These can be used in practice to increase test validity. Unfortunately, we 

believe that copying detection methods are not often enough used in practice. For instance, 

teachers in colleges could use these methods to detect suspected source-copier pairs. Software 
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is available that makes it possible to apply these copying indices, for instance “R” packages 

(e.g., CopyDetect, Zopluoglu, 2013), but this software is not easy-to-use. Therefore, the 

creation of user-friendly software can highly facilitate the practical use of these methods. In 

this way, the validity of tests can be increased. But first, it is important that copying detection 

methods are found that have high detection rates, while keeping the empirical type I error rate 

under control. In this study, we compared a copying-index and a general person-fit statistic. 

We were positively surprised by the performance of lz* compared to ω, even though its 

detection rates were low in general. This provides information about which index to use in 

which condition. 

We have several recommendations for future research. First of all, it is interesting to 

compare more different person-fit and copying-indices. The lz index – and thus probably also 

lz* – was among the best person-fit indices to detect cheating (Reise & Due, 1991; Drasgow 

& Levine, 1986). Hence, it is possible that lz* was only an exception, and that ω performs 

consistently better than other person-fit statistics. It is also possible that other copying-indices 

than ω perform better than lz* or even better than both lz* and ω. The lz* and ω index do not 

distinguish between the copier’s true ability and the gain in ability due to cheating. When 

copiers copy answers from a high ability source, they are likely to copy correct answers and 

increase the observed ability estimates (Zopluoglu & Davenport, 2012). In our study, the 

ability estimates of the low-theta copiers are likely to be biased because they gain in ability 

due to answer copying. As illustration, for one situation with 1,000 source-copier pairs, 40 

items and 10% of the items copied, the theta-value of the examinee with the lowest ability 

was -3.8, while it was estimated to be only -2.4. Hence, methods that do take into account this 

gain in ability due to cheating might be better.  

Wollack (2006) already combined different copying-indices. It may be interesting to 

combine person-fit and copying-indices and see how these combinations perform in the 
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detection of copying. As mentioned before, the disadvantage of general person-fit indices is 

that they also detect other types of misfit. Hence, a combination of general and specific 

indices with more specific copying-indices might lead to better copying-detection. 

Furthermore, Van der Linden and Sotaridona (2006) concluded that the power to 

detect answer copying was greater when the pairs of examinees had larger differences in 

estimated abilities. In the study of Van der Linden and Sotaridona (2006), best power was 

obtained for cases with low ability for copier and higher ability for the source. Lewis and 

Thayer (1998) noted that the power in detecting true answer copying pairs is very likely to 

decrease as the ability of the source examinee increase. Moreover, Zopluoglu and Davenport 

(2012) concluded that the empirical type I error rates were highest when both examinee’s 

ability levels were below zero, and were smallest when both examinee’s ability levels were 

above zero. In our study, we did not compare the power and empirical type I error rate at 

different levels of the copier’s and source’s ability. We would like to include this in our future 

studies. 

In our simulation study, all examinees responded to all items. However, this is not 

likely to happen in practice. Zhang and Walker (2008) examined the effect of missing data on 

person-model fit and person trait estimation. They concluded that the higher the proportion of 

missing data, the larger the number of persons incorrectly diagnosed. The pairwise deletion 

method led to the best recovery of person-model fit and person trait level. To make the 

simulation study even more realistic, it might be interesting to include non-response.  
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Appendix A 

Empirical Type I error rates for all conditions. 
 
  n = 1,000a  n = 10,000a 
  k = 40  k = 80  k = 40  k = 80 
α  lz* ω  lz* ω  lz* ω  lz* ω 
  m = 0 
.05  .0361 .0343  .0392 .0353  .0377 .0336  .0388 .0350 
0.01  .0097 .0051  .0098 .0054  .0102 .0050  .0097 .0055 
.001  .0017 .0003  .0015 .0004  .0019 .0003  .0015 .0004 
  m = .10 
.05  .0322 .0337  .0335 .0347  .0335 .0333  .0340 .0347 
.01  .0083 .0051  .0080 .0056  .0087 .0048  .0080 .0054 
.001  .0014 .0003  .0013 .0004  .0015 .0003  .0012 .0004 
  m = .20 
.05  .0294 .0338  .0309 .0358  .0305 .0340  .0303 .0354 
.01  .0074 .0051  .0072 .0057  .0076 .0051  .0071 .0056 
.001  .0013 .0003  .0011 .0004  .0013 .0003  .0010 .0004 
  m = .30 
.05  .0280 .0349  .0282 .0366  .0290 .0345  .0288 .0366 
.01  .0071 .0053  .0066 .0060  .0074 .0050  .0065 .0058 
.001  .0011 .0003  .0010 .0004  .0013 .0003  .0010 .0004 
  m = .40 
.05  .0264 .0347  .0270 .0374  .0276 .0349  .0269 .0375 
.01  .0066 .0053  .0063 .0060  .0068 .0053  .0064 .0061 
.001  .0011 .0003  .0009 .0005  .0011 .0003  .0010 .0005 
Note. k denotes the test length, m denotes the proportion of items copied by the copiers, α 

denotes the theoretical alpha level, and n denotes the sample size. 

a 1,000 or 10,000 source-copier pairs 
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Appendix B 
 
Average means and standard deviations for the lz, lz* and ω index. 
 

n = 1,000a 
  k = 40  k = 80 
m  lz lz* ω  lz lz* ω 
0  0.238 

(0.87) 
0.404 
(1.11) 

0.019 
(0.92) 

 0.187 
(0.87) 

0.318 
(1.08) 

-0.016 
(0.92) 

.1  0.245 
(0.86) 

0.405 
(1.10) 

0.004 
(0.92) 

 0.197 
(0.86) 

0.313 
(1.07) 

0.015 
(0.92) 

.2   0.252 
(0.88) 

0.407 
(1.12) 

0.032 
(0.92) 

 0.204 
(0.90) 

0.309 
(1.13) 

0.056 
(0.94) 

.3  0.253 
(0.92) 

0.404 
(1.16) 

0.062 
(0.94) 

 0.207 
(0.97) 

0.310 
(1.21) 

0.099 
(0.98) 

.4   0.253 
(0.97) 

0.407 
(1.21) 

0.091 
(0.97) 

 0.204 
(1.07) 

0.309 
(1.30) 

0.141 
(1.04) 

n = 10,000a 
  k = 40  k = 80 
m  lz lz* ω  lz lz* ω 
0  0.239 

(0.87) 
0.401 
(1.11) 

0.019 
(0.92) 

 0.189 
(0.86) 

0.323 
(1.08) 

-0.018 
(0.92) 

.1  0.246 
(0.86) 

0.407 
(1.10)  

0.004 
(0.92) 

 0.198 
(0.86) 

0.310 
(1.07) 

0.014 
(0.92) 

.2  0.253 
(0.87) 

0.410 
(1.12) 

0.032 
(0.92) 

 0.207 
(0.89) 

0.317 
(1.13) 

0.057 
(0.94) 

.3  0.255 
(0.91) 

0.407 
(1.16) 

0.062 
(0.94) 

 0.208 
(0.97) 

0.306 
(1.21) 

0.097 
(0.98) 

.4  0.254 
(0.97) 

0.410 
(1.21) 

0.091 
(0.97) 

 0.204 
(1.07) 

0.308 
(1.30) 

0.140 
(1.04) 

Note. k denotes the test length, m denotes the proportion of items copied by the 

copiers and n denotes the sample size. Standard deviations are in parentheses. 

a 1,000 or 10,000 source-copier pairs 

 


