
Grounded Learning for Source Code
Component Retrieval

Ákos Kádár

THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCES IN COMMUNICATION AND INFORMATION SCIENCES,

MASTER TRACK HUMAN ASPECTS OF INFORMATION TECHNOLOGY,

FACULTY OF HUMANITIES

TILBURG UNIVERSITY

Thesis committee:

Grzegorz Chrupala

Afra Alisahi

Tilburg University

Faculty of Humanities

Department of Communication and Information Sciences

Tilburg, The Netherlands

August 2014

i

Acknowledgment

I would like to thank my supervisor Grzegorz Chrupala for giving me freedom to explore the

topic and bringing me to TiCC to present my thesis, which gave me a great opportunity to get

valuable feedback. I would also like to thank him for providing an exciting topic, a good data set,

numerous references and helping with the implementation. Furthermore, I am grateful for his

attention to detail and unforgiving commitment to sound methodology. Writing the thesis un-

der Grzegorz’s supervision and working for him as a research assistant had a great impact on my

attitude towards science. I would also like to thank Leif Johnson for his personal support with

the theano-nets module and for implementing my feature requests. Zoltán Varjú helped a lot

during this year and I cannot thank him enough for his inexhaustible support and good friend-

ship. He was the one who recommended Tilburg University to me and taught me a lot about

NLP and made me excited about the field. I would also like to thank my parents for the financial

support, my mum for providing emotional support during the harder phases of my project and

my dad for making me excited about moving to other countries to learn and for his active role in

planning my education and my life in general. I owe a great deal to the Nyelvtudományit Intézet

and in particular to the Elméleti Nyelvészet Tanszék for teaching me almost everything I know

and care about and for surviving the conditions they’ve been facing for a long time. I would like

to thank the extended family of 397, Gabriele, Talin, Dene, Bilal and Mirsim who made the grey,

rainy days in Tilburg much brighter and shiner with good food, couple of beers and interesting

conversations. They say “True friendships continue to grow even over longest distances”. We

will keep and feed our family-friendship until our next reunion. Finally, thank You Piszi for be-

ing the greatest person I’ve ever known and for being intelligent, caring, tolerant and honest and

making life worth living!

Á.K.

Contents

Acknowledgment . i

1 Introduction 1

2 Background 4

2.1 Outline . 4

2.2 Context-theoretic Semantics . 4

2.3 Computational Distributional Semantics . 5

2.3.1 Overview of the vector-space model . 5

2.3.2 Meaning captured in Hyperspaces . 7

2.3.2.1 Hyperspace Analogue to Language 8

2.3.2.2 Latent Semantic Analysis . 8

2.3.3 Latent Dirichlet Allocation . 10

2.4 Grounding . 11

3 Previous Work 13

3.1 Grounding by Translation . 13

3.2 Source-Code Retrieval . 15

3.2.1 LSI in Source-Code Retrieval . 17

3.2.2 LDA in Source-Code Retrieval . 18

3.3 Source-Code Retrieval as Translation . 20

3.3.1 Previous Work . 21

4 Methods and Data set 23

4.1 Outline . 23

ii

CONTENTS iii

4.2 Data . 23

4.3 Feature vectors . 24

4.4 Translation Models . 26

4.4.1 Linear models . 27

4.4.2 Multilayer Perceptron . 28

4.4.3 Training the neural network translation model 28

4.5 Ranking . 32

5 Experiments 33

5.1 The setup . 33

5.1.1 Data sets . 33

5.1.2 Queries . 33

5.2 Evaluation . 34

5.3 Vector Representation . 34

5.4 Retrieval engine . 36

5.5 Parameter tuning for training . 36

5.5.1 Training the Linear Models . 36

5.5.2 Neural Networks Training . 36

5.5.2.1 Implementations . 36

5.5.2.2 Network Architecture . 38

5.5.2.3 Hyper-parameter tuning . 39

6 Results 42

6.1 Results on Retrieval . 42

6.2 Word Similarity . 43

6.3 Prototype . 44

7 Future work and Conclusion 47

7.1 Future work . 47

7.1.1 More realistic evaluation . 47

7.1.2 Extensive tuning of the Multilayer Perceptron 48

7.1.3 Web-interface . 48

CONTENTS iv

7.2 Conclusion . 49

References 50

List of Figures

2.1 Joint probability distribution in LDA . 10

4.1 Original Description-Signature pairs . 25

4.2 Description-Signature pairs after preprocessing . 26

4.3 Multilayer Perceptron with one Hidden Layer . 30

4.4 Model Creation . 31

5.1 Impact of α on MRR on the validation set . 37

5.2 Effect of the number of neurons on execution time on the validation set 39

5.3 Effect of the learning-rate on MRR on the validation set 40

5.4 Effect of the learning-rate . 41

6.1 Searchbox with link to the repo . 45

6.2 Dialogue box with the suggested query . 45

6.3 Search results . 46

v

List of Tables

2.1 Tf*idf Matrix . 7

5.1 The effect of vector representations on the MRR on the validation set 35

5.2 Effect of the number of hidden-neurons on MRR . 39

6.1 Comparison of the models on the validation set . 43

6.2 Word Similarity in the hidden layer . 44

6.3 Time related terms . 44

1

Abstract

In my thesis project I show that by modelling Source Code Retrieval as a regression problem:

a) comparable results can be achieved to previous work by (Deng & Chrupała, 2014) b) The

meaning of English words can be grounded in Java method-signatures. I evaluate these regres-

sion techniques on both retrieval and grounding tasks. In contrast to traditional static source

code retrieval - where pieces of source code from a particular application are retrieved - I focus

on retrieving source code components: meaningful elements of a programming language. The

presented models are able to retrieve Java method-signatures given English queries. The doc-

umentation of the Java Standard Library is treated as a parallel corpus between Java method-

signatures and English as the Javadoc format includes method name, qualifier, return type, pa-

rameter type, names for each method with the addition of a description. These descriptions

and method-signatures are then represented in separate vector-spaces using various vector

representations and a regression model is trained to predict a method-signature-vector given

a description-vector. To use the regression model for retrieval, natural language queries are

converted to description-vectors and are used as an input to the regression models which pre-

dict a signature-vector. Given the predicted signature vector all other signatures from the col-

lection are ranked according to their cosine similarity to the query. Regression models used

as translation models include: Linear Regression, Ridge Regression and Multilayer Perceptron.

Models were evaluated on Mean Reciprocal Rank, Accuracy at 1 and Accuracy at 10. The best

performing model was the Ridge Regression with complexity parameter α = 0.2, MRR = 0.389,

Acc@1= 0.232 and Acc@10= 0.707. To test how well the models perform on grounding a matrix

constructed from all the English word-vectors is translated using the regression models. After

translation lists of similar words are constructed using pairwise cosine-similarity. This leaves us

with word similarity lists and qualitative analysis of the word similarity results is provided.

1 | Introduction

Language traditionally is described on various linguistic levels. Phonology and phonetics ex-

plore the regularities and properties of the sounds of linguistic expressions, morphology ana-

lyzes larger meaningful units such as words and syntax describes the structure of multi-word

constructions such as sentences. Semantics on the other hand deals with meaning. Meaning

is one of the oldest and most daunting problems of linguistics and there have been countless

proposals to describe how the meaning of linguistic expressions are a) related to the external

world, b) related to inner mental states and c) related to each other. Distributional Semantics

is a framework that is concerned with problem c and its main aim is to automatically extract

relations between words from large corpora. The underlying intuition of this approach is best

described by the famous quote from Firth (1957): "You shall know a word by the company it

keeps". Distributional Semantics tackles the problem of meaning in a data-driven computa-

tional fashion:

1. It takes large quantities of texts as input

2. Models the semantics using mathematical models such as linear-algebra and probability

theory

3. Implements these models in software systems

4. Analyzes the data computationally

5. Outputs a representation modelling the relationships between words or larger units

This approach to tackle semantics proved to be of unprecedented power in that it provided a

useful representation for both Natural Language Processing applications and for Cognitive Lin-

guistics research, while relying on very general and widely applicable and flexible formalisms.

1

CHAPTER 1. INTRODUCTION 2

However, a major limitation of traditional Distributional Semantics is that it only deals with the

relationships between linguistic expression and does not relate them to any sort of external real-

ity. The fundamental question that is explored in the present thesis is how to exploit the methods

of Distributional Semantics to ground the meaning of linguistic expressions in extra-linguistic

reality. Traditionally semantics deals with the issue of grounding by representing natural lan-

guage utterances with logical forms and mapping these logical forms to mathematical models

such as set theory or category theory. The theoretical vision behind the thesis is to swap-out

logical forms with a programming language which already has an underlying model based on

computational constructs. As the underlying model for programming languages is given the

grounding problem is reduced to finding a mapping between natural languages and program-

ming languages. Taking inspiration from Distributional Semantics this problem can be tackled

by exploiting the co-occurrences between natural language words and programming language

terms. The aim of the work of Deng and Chrupała (2014) is to explore the possibility of ground-

ing the meaning of natural language expressions in programming language components as well

as to create an Information Retrieval model for retrieving programming language components.

Again, this is in line with the traditional Distributional Semantics idea in that the goal is to pro-

vide a meaning representation which is both theoretically plausible and practically useful. More

precisely the system in Deng and Chrupała (2014) is able to retrieve Java methods from the Java

Standard Library given English queries and to associate English expressions with Java methods.

I base my work on Deng and Chrupała (2014) and provide a novel approach to handle the same

problem. Furthermore, I test how well the model captures the meaning of English expression by

performing word-similariy experiments. During the project I made the following contributions:

• Regression models were applied to Source Code Component retrieval.

• The baseline in Deng and Chrupała (2014) was met and one of the two models were out-

performed.

• The models’ performance on both retrieval and grounding tasks were evaluated.

• A simple graphical user-interface was created for the retrieval engine.

CHAPTER 1. INTRODUCTION 3

The goal is to provide a system where developers can query in natural language and receive ap-

propriately ranked methods in the results, but also to provide an effective framework to ground

the meaning of linguistic expressions. More and more problems that humans face are expressed

in both natural language and programming language e.g. the documentation or requirements

of an application describes the formulation of the problem and the programming language de-

scribes a candidate solution. Taking these texts as a natural-formal language parallel corpora

would provide a great opportunity to ground the meaning of natural language in some language-

external reality using proven and effective methods.

2 | Background

2.1 Outline

This chapter introduces the reader to the theoretical background of the project. Section 2.2 in-

troduces the context-theoretical approach to meaning - one of the main theoretical backbones

of the project - while Section 2.3 describes its various implementations. These sections relate

their main contents to Information Retrieval as one of the products of my Thesis project is a

Source Code Component Retrieval model for Java methods. Section 2.4 introduces the other

important theoretical foundation of the Thesis namely the problem of grounding linguistic ex-

pressions in extra-linguistic reality.

2.2 Context-theoretic Semantics

The terms Distributional-, Corpus-based-, Context-theoretic-, or Statistics-based semantics re-

fer to the approaches that share a usage-based or empirical view of semantics research and

meaning in general. The underlying assumption is that the distribution and general statistical

properties of words - or groups of words - play an important role in their meaning. This notion

is based on the Distributional Hypothesis (DH): “The degree of semantic similarity between two

linguistic expressions A and B is a function of the similarity of the linguistic contexts in which

A and B can appear.” (Lenci, 2008). In principle it follows from the DH that if it is true that the

context does encode certain aspects of word meaning, and that meaning is actually dependent

on the context, than the larger, more representative corpus we have, the more information we

can potentially uncover about word meaning.

4

CHAPTER 2. BACKGROUND 5

The DH might seem to be a modern approach of computational linguistics, but distributional

analysis as a methodology for linguistics was proposed by Harris in the earlier days of Ameri-

can structuralism (Nevin, 2002). His distributional methodology was first applied to phonemic

analysis and later has been generalized to multiple levels of linguistic analysis. It was Harris’

theory that the degree of similarity between words is the function of the similarity of the context

they appear in Harris (1954). He also claimed that distribution should be taken as explanation

for meaning and that similarity classes can be constructed based on co-occurrence statistics.

One of the most typical aspects of context-theoretic semantics is that distributional models are

driven by empirical observations. This data-driven approach to linguistic theory is what this

thesis adopts in its methodology. A shortcoming of distributional approaches, however, is that

they do not link linguistic expressions to extra-linguistic objects.

Indeed most of the work in related fields such as vector space semantics, only take into account

the frequencies of words in some kind of texts e.g. documents, reviews. This is largely due to the

fact that the technology for extracting features from texts is far more advanced than the tech-

nology for extracting features from images or videos (Lenci, 2008). Recently, however, there has

been research in using techniques from text based distributional semantics for extracting word

co-occurrences with image features (Mathe, Fazly, Dickinson, & Stevenson, 2008). In the present

thesis this approach to co-occurence based semantics is adopted and English descriptions of

methods provide the linguistic expressions while the co-occuring Java methods are taken as

extra-linguistic objects. A closely related approach to the present thesis involves grounding nat-

ural language in formal languages and is generally referred to as Semantic Parsing. Some of the

most relevant work in this field is described in Section 3.1. The work that I closely follow in my

thesis and which is the most relevant is by Deng and Chrupała (2014).

2.3 Computational Distributional Semantics

2.3.1 Overview of the vector-space model

A family of techniques in Natural Language Processing which rely on the distributional hypoth-

esis are often called vector semantics or vector-space semantics. This section concentrates on

CHAPTER 2. BACKGROUND 6

the description of these techniques in the context of Information Retrieval. The type of IR tech-

niques that are relevant to the thesis aim at retrieving information given some information need

from a corpus of unstructured data. To be able to find relevant information first the sources of

information must be gathered and indexed. One of the most important concepts in IR is simi-

larity and in the vector-space model (VSM) of IR the similarity between the query and the docu-

ment is measured and the documents are ranked according to their similarity to the query. The

document collections needs to be indexed and represented in a way that it enables the system to

compute similarity between queries and documents. Arguably the most popular way is to store

the tf*idf score for every term t in the high dimensional term-frequency matrix. Tf*idf stands

for term-frequency multiplied by inverse document frequency. Term frequency is the number

of times the term t occurs in the document D , but usually instead of the raw score the log(1+t f)

is stored - it can be also normalized by the number of words in the document as follows:

log(t f)

Nter m

Inverse document frequency is the total number of documents divided by the number of

documents the term occurs in.

log (
Ndoc

1+|d ∈ D : t ∈ d |)

Table 2.1 shows the tf*idf weighted term-document matrix for a document collection consisting

of two documents d1 = {i , am, a,document , and , i , am, shor t } and

d2 = {bei ng , shor t , i s,not , a,bad , thi ng }. Based on the tf*idf vectors the similarity between

query q and document d is computed as the cosine between two vectors(Singhal, 2001) calcu-

lated as:

cos(θ) = d ·q

||d || ||q||
d ·q is the dot product of the document-vector and the query-vector and ||q|| is the norm of the

query vector.

||q || =
√

n∑
i=1

q2
i

The notion of term and similarity are not inherent in the vector-space model (Singhal, 2001).

Terms can be stemmed or tokenized words, phrases or any other features. Furthermore, instead

CHAPTER 2. BACKGROUND 7

Table 2.1: Tf*idf Matrix

D1 D2

I 0.227 0

am 0.227 0

a 0.09 0.09

document 0.143 0

and 0.143 0

short 0.09 0.09

being 0 0.143

is 0 0.143

not 0 0.143

bad 0 0.143

thing 0 0.143

of using the cosine similarity different similarity measures could be used as well e.g. euclidean

distance. The described vector-space model of Information Retrieval relies on term matching

and assumes that words are semantically independent and therefore do not provide a model of

meaning. Semantic relatedness is out of the picture in this framework, which is contra-intuitive

since we know that documents with similar terms contain similar information. The following

sections introduce models which extract latent semantic features from the described vector-

spaces.

2.3.2 Meaning captured in Hyperspaces

Although, in relation to IR vector-space semantics models described in Section 2.3.2.1, 2.3.2.2

and 2.3.3 are usually treated as useful tools to handle synonymy and polysemy and in general

to improve search performance by introducing the notion of semantic relatedness, they form

a family of full-fledged approaches to study the meaning of linguistic expressions. These high-

dimensional theories of meaning model the meaning of the elements of a language as relations

between abstract, amodal and arbitrary symbols (Glenberg & Kaschak, 2002), implying that the

meaning of utterances is a function of the meaning of the elements and some sort of syntactic

CHAPTER 2. BACKGROUND 8

combination of these arbitrary symbols. Symbols are abstract in the sense that the term "table"

is used for a large variety of referents, amodal in that "table" means the same written or spoken

and arbitrary in that the form if "table" bears no relationship to its meaning. Section 2.3.2.1

and Section 2.3.2.2 describes two major vector-space semantics models. In both models the

meaning of a term is defined by its relation to all other terms in the constructed matrices.

2.3.2.1 Hyperspace Analogue to Language

In the HAL framework a word co-occurence matrix is extracted from a large collection of texts

using a sliding window of some n words (Lund & Kevin, 1997). Each row and column in the

n×n matrix is labeled by a word and the cells contain information about how close these words

are together - words adjacent to each other receive a score equal to the size of the sliding win-

dow n, words with the distance of 1 receive n − 1 and so on. The rows of the matrix give the

co-occurrence values for terms preceding the row-labels and columns gives the co-occurrence

values for terms following the column-labels. As mentioned in the tf*idf example, the similarity

between terms can be computed by the cosine-similarity measure. Under this framework words

are similar because they share similar contexts, which makes HAL a straightforward implemen-

tation of context-theoretic semantics. It was also a great breakthrough as it offers a completely

data-driven lexical semantic theory and excludes any bias from humans provided that the cor-

pus is large enough and unbiased. Lund, Burgess, and Atchley (1995) also demonstrated that

the rate of similarity among word vectors correlated with degree of priming in a lexical decision

task.

2.3.2.2 Latent Semantic Analysis

Latent Semantic Analysis or Latent Semantic Indexing is also based on the fundamental notion

of DH that words with similar contexts have similar meanings and is widely used in IR literature.

The fundamental notion of LSI is that documents with numerous common words are conceptu-

ally similar. Rather than constructing word co-occurence vectors as in the HAL framework, un-

der this approach, a collection of documents is taken as an observation from which we should

infer which terms belong to the same concepts, which terms are conceptually similar. The in-

put for the LSI system is the term-document matrix augmented by some global weighting factor

CHAPTER 2. BACKGROUND 9

such as the tf*idf weighting1 (Berry & Browne, 1999). After creating the matrix, column vectors

contain the information about the words in the documents and row vectors indicate which word

occurs in which document. Since rows and columns represent relations between terms and doc-

uments, the term-document matrix is also a term co-occurrence matrix. When LSI is employed

the co-occurrence matrix is mapped to a space with a smaller number dimensions - while try-

ing to keep as much information as possible - using a linear dimensionality reduction technique

called Singular Value Decomposition to discover associations. The resulting matrix is less sparse

and the original weighted term counts are replaced by semantic similarity scores - representing

similarities between terms - which encode the implicit latent structure of the associations be-

tween terms and documents. These similarity values can be positive or negative: the negativity

means semantic distance while positivity means semantic similarity. In essence the LSI matrix

encodes a concept of documents where the similarity between documents is based on their dis-

tance in the vector-space which represents their semantic/conceptual distance. When LSI is

used for retrieving documents given a query the query is transformed into a vector in the low di-

mensional concept space and the documents are ranked based on their similarity to the query

(Deerwester, Dumais, Landauer, Furnas, & Harshman, 1990). The fundamental advantage of

using LSI over the regular tf*idf counts is that it allows to extract concepts and semantic struc-

ture from an unstructured corpus of texts and in principle an LSI based system can return not

only documents which contain the words of the query, but documents which are conceptually

similar to the query (Dumais, Furnas, Landauer, Deerwester, & Harshman, 1988). As a theory

of meaning it is similar to HAL in essence in that it also claims that the matrices created by LSI

encode the meanings of the terms in a particular language: the actual meaning of a term is rep-

resented in an n dimensional space. In their article Landauer and Dumais (1997) the authors

make claims such as LSA is "a possible theory about all human knowledge acquisition, as a ho-

mologue of an important underlying mechanism of human cognition in general" and also “a

unified representation of knowledge”. In their study they also showed that LSA can come close

to perform in certain tasks just as a non-native English speaker e.g. in choosing synonyms for

a variety of terms and they also showed that averaging sentence vectors can predict coherence

judgements (Landauer & Dumais, 1997).

1As explained in section 2.3

CHAPTER 2. BACKGROUND 10

Figure 2.1: Joint probability distribution in LDA

θ Z wα

φβ

NM

K

2.3.3 Latent Dirichlet Allocation

LSA and HAL have in common that they both rely on linear-algebraic representations of words

and their contexts; hence the term vector-space semantics. The model described in this sec-

tion is also a framework for context-theoretic semantics, however, rather then relying on linear-

algebra it is a probabilistic model of word-meaning. More specifically it is a probabilistic gen-

erative model meaning that the data is treated as if it was generated by a probabilistic process.

The goal is to infer the probability distribution that the data was generated by and uncover la-

tent variables that correspond to the thematic structure of the document collection (Blei, Ng, &

Jordan, 2003). In other words we need to compute the conditional probabilities of the hidden

variables given the observation which is the document collection in our case. The assumption is

that every document is comprised of multiple topics. Each topic is a distribution over all terms

in the vocabulary. Different topics have different words with different probabilities. Documents

are generated by choosing a distribution over topics and than picking words according to their

probabilities given the topics. Similarly to HAL and LSI, LDA is a bag-of-words model meaning

that the order of words is not taken into account. The goal of the inference procedure in LDA

is to infer the underlying topic structure, their distribution over terms, and what topics individ-

ual documents are generated by. The K number of topics φk of the whole document collection

are drawn from a Dirichlet distribution with parameters β and are independent from all other

random variables of the model. Similarly for each document from a number of D documents a

set of topic proportions θd is drawn from a Dirichlet distribution with parameters α. Each doc-

ument consists of N words and it is assigned a topic by the topic assignment Zd ,n drawn from

θ and so each word wd in the document is dependent on the topic assignment Zd ,n as well as

β1,k . The plate diagram on Figure 2.1 provides a compact representation of the model.

CHAPTER 2. BACKGROUND 11

As LDA is a highly flexible hierarchical Bayesian model it has been applied for a wide variety

of tasks and has been further developed including several task-specific versions. Although, it

was originally intended as a topic modelling framework it also became popular in other com-

putational semantics applications. The word-topic distributions inferred by LDA are proposed

by Cai, Lee, and Teh (2007) to be used as features for training a supervised word-sense disam-

biguation models. LDA has been employed by Materna (2012) to induce semantic frames (LDA-

frames) which capture semantic information of triplets of subject-verb-object.

2.4 Grounding

The meanings of words are largely a function of their contexts2. Computational implementa-

tions exploiting the Distributional Hypothesis offer large improvements for information search

problems and provide evidence and insight to cognitive linguistics research3. I would like to

argue, however, that defining the relationships between symbols without mapping those to a

model or "the reality" is limited in its utility. According to Roy (2005) creating models and sys-

tems that take language as a symbol manipulations system and do not connect these symbols

to extra-linguistic reality suffer from limitations and that any theory of meaning that does not

provide a non-linguistic foundation to meaning is "fundamentally limited". Symbols are primi-

tive and undefined, only by the rules and by the way rules combine them they are systematically

interpretable as having meaning. An arithmetic system is a good example of a symbol system.

Numerals ("1","2","3") might be part of such a system and formal rules define ways to combine

them into legal formulas. Making true statements based on the symbols and formal rules such

as "1 + 2 = 3" render the symbols systematically interpretable. Although, it might seem that the

symbols outside of the symbol system actually have meaning, but that is only the case for the

human reader as she is used to their everyday interpretation. For a calculator the symbols only

have meaning within the system (Harnad, 2003). Natural language under the Distributional Se-

mantics approach is such a symbol system with rules manipulating those symbols, therefore

words do not refer to any entity in the "outside world". They are only interpretable within the

natural language itself. For a symbol system to be grounded "It would have to be able to pick

2Section 2.2
3Sections 2.3.2.1, 2.3.2.2 and 2.3.3

CHAPTER 2. BACKGROUND 12

out the referents of its symbols, and its sensorimotor interactions with the world would have to

fit coherently with the symbols."(Harnad, 1990)

Trivially for any sort of artificially intelligent agent - e.g. robots - that interacts with humans

in the physical - or some virtual - world, having knowledge about the language internal rela-

tionships of linguistic elements in not enough. They must be able to map linguistic expressions

to the world they exist in e.g. consider the task of following directions or executing commands

related to an office environment.

3 | Previous Work

3.1 Grounding by Translation

The most closely related work to the present thesis comes from Semantic Parsing. It concen-

trates on learning a mapping from natural languages to some sort of formal representations

using statistical methods and innovative supervision techniques1 (Richardson & Kuhn, 2014).

The ultimate goal is to translate natural language to an unambiguous executable formal lan-

guage that can be interpreted by a program to perform certain tasks. A typical direction taken

by researchers in the field is to use some form of weak supervision where the formal meaning

representation is an already existing domain specific formal language grounded in the concepts

of the particular domain it describes and it is somehow already aligned with natural language

expressions. Typical practical uses of such systems are natural language interfaces to structured

databases and command languages (Mooney, 2007). Given the target application domain of

such systems they are typically evaluated extrinsically.

There are several different corpora developed that were constructed from parallel natural lan-

guage sentences and formal language expressions in domains such as geography and navigation

instructions (Mooney, 2007). A couple of general frameworks for Semantic Parsing have been

developed to learn statistical semantic parsers that are robust against noise and can potentially

scale up to large data sets. Probably the most notable one is WASP, which is based on statistical-

machine translation methods (Wong & Mooney, 2006). WASP does not need any knowledge

about the natural language it only assumes that the target formal language is unambiguous and

it requires a CFG that describes it. It builds a bilingual lexicon using GIZA++ to align natural

1Such as ambiguous supervision in Mooney (2008)

13

CHAPTER 3. PREVIOUS WORK 14

language words to formal language productions, which is then used to formulate production

rules within a synchronous context-free grammar (SCFG) framework. These production rules

re-write non-terminals to two strings - natural language and formal language - and therefore

simultaneously produce both natural language sentences and their formal counterparts. The

parameters for the probabilistic parser are learned by training a maximum-entropy model by

expectation maximization. If the model is fully learned, given a natural language utterance, its

most probable parse is found and its formal counterpart is returned. It has been applied by Ma-

tuszek, Fox, and Koscher (2010) to develop a system that lets robots learn from parallel corpora

of formal and English path descriptions to follow directions given natural language commands.

In more recent work Andreas, Vlachos, and Clark (2013) experiment with using off-the-shelf

statistical-machine-translation tools to perform semantic parsing on the GeoQuery data set. It

consists of 880 pairs of natural-language questions (English, German, Greek and Thai), and their

representations in a GeoQuery’s own meaning representation language, which can be used to

query a Prolog database interface. The main idea is similar to WASP as it is based on the ob-

servation that Semantic Parsing is essentially a translation problem from natural language ut-

terances to statements in some formal language. First, formulas from the GeoQuery meaning

representation language are converted to a more natural-language-like form: they take the pre-

order traversal of the formulas and annotate the functions with the number of arguments they

take, eliminating the need for bracketing, but keeping the unambiguous nature of the language,

which allows to always reconstruct a tree from a given sequence. Similarly to WASP the next

phase is to learn the alignments using IBM Model 4. They learn many-to-many alignments in

both directions. For the translation rule induction they use both phrase-based and SCFG ap-

proaches. As for the learning phase they do not assume any knowledge about the syntax of the

formal language, they learn an n-gram language model for the formal language from the train-

ing data. When predicting a sentence in the formal language they use both the translation and

language model scores and filter the best candidate translations until a well-formed sequence is

found. The last step is to convert the predicted formal sequence back to the original GeoQuery

representation. Their results on the GeoQuery data set are comparable to other purpose built

semantic-parsers and their system trains considerably faster.

CHAPTER 3. PREVIOUS WORK 15

So far there are only a few existing data sets for Grounded Learning (Richardson & Kuhn, 2014).

Some of the data sets are too restricted to learn interesting general grounded meaning repre-

sentations: the GeoQuery corpus mentioned above only contains 38 predicate-types and the

Sportcaster (Chen & Mooney, 2008) corpus only has 9 types of relations and a few dozen types

of entities. More recently there have been several attempts to create more large scale data cor-

pora including the latest UnixMan corpus from Richardson and Kuhn (2014). This data set is

very closely related to the present Thesis in that it is a resource for semantic parsing constructed

from Unix man pages by taking English descriptions and command examples as a parallel cor-

pus. Similarly, in my project the data set consists of Java method-signatures and their descrip-

tions.2

3.2 Source-Code Retrieval

Searching for information, concepts or problems in documentations and source-code are some

of the main activities of anyone who is involved in writing software or program code in gen-

eral. Source-code retrieval is concerned with retrieving code fragments which are functionally

or conceptually similar to each other or to a query. This can be done statically and dynami-

cally. Whereas in case of dynamical code retrieval the information content of the program code

is assessed during runtime, static analysis concentrates on directly analyzing the source-code

itself. My discussion about source-code retrieval concentrates on static techniques as it is more

closely related to my thesis project. The most traditional techniques used in static source-code

retrieval include regular expression matching tools like Unix grep (Poshyvanyk & Marcus, 2007).

However, to enable more elaborate search techniques semantic information can be extracted

from the source-code in form of identifiers, comments, string literals or pieces of the code itself.

The fundamental idea is that the knowledge of the developers is encoded in the comments, in-

dentifier names etc. and better software analysis can be achieved by mining this knowledge. For

different source-code retrieval applications the code can be parsed on different levels of gran-

ularity - classes, methods - depending on the users’ needs. After parsing the source-code it is

2Sections 4.2 and 5.1.1 explain the data set in detail.

CHAPTER 3. PREVIOUS WORK 16

broken down into source-code documents, where the code snippets are the documents and the

code-internal documentation in natural language serves as the features for these documents.

Various pre-processing steps are used on the natural language sentences before representing

the resulting document collections using tf*idf matrices3. These pre-processing steps include

stemming, lower-casing, stop-word-filtering and splitting up identifiers and other expressions

on hyphens, underscores or use camel-case-splitting e.g "FooBar" or "FOO_bar" or "foo-Bar" to

"foo", "bar". Both the tf*idf representation and pre-processing techniques are very typical in IR

applications. However, some source-code retrieval specific techniques can also be involved in

the indexing process such as classes inheriting a portion of the vocabulary of their superclasses

as in Kuhn, Ducasse, and Gírba (2007). After the pre-processing and vectorization steps recent

research in source-code retrieval has focused on IR models which are based on co-occurrence

statistics and have the expressive power to represent the notion of meaning in terms of distribu-

tional semantics and concepts. Distributional Semantics based IR techniques such as LSI4 and

LDA5 have been shown to cause major improvements in performance in many fields of source-

code retrieval.

One of these fields is bug-localization, which is concerned with creating technology for au-

tomating maintenance tasks in software development by directly identifying the starting point

in the source-code from which the code needs to be corrected. In this area a number of tech-

niques have been explored e.g. dependency graphs, regular expressions, but models using IR

techniques such Latent Semantic Indexing (LSI) as in Liu, Yan, Fei, Han, and Midkiff (2005) and

Latent Dirichlet Allocation (LDA) as in Lukins, Kraft, and Etzkorn (2008) proved to yield bet-

ter results and also allow users to query with the descriptions of the bugs in natural language.

Section 3.2.2 demonstrates a case study where the researchers used LDA for bug-localization.

Concept location, feature location or concept assignment6 is another area that benefits from

such IR techniques and it is concerned with retrieving parts of a source-code which imple-

ments a specific concept (Marcus, Rajlich, Buchta, Petrenko, & Sergeyev, 2005). This can be

3The tf*idf weighting scheme and the process of indexing is explained in Section 2.3
4Described in detail in Section 2.3.2.2
5Described in detail in Section 2.3.3
6In some literature these terms refer to same field in other papers they might refer to slightly different tasks. For

a comprehensive survey I refer the reader to Dit, Revelle, Gethers, and Poshyvanyk (2013).

CHAPTER 3. PREVIOUS WORK 17

useful to identify units of the source-code that implement certain feature of a given applica-

tion or to facilitate code re-use over multiple projects. Some of the work in the area on top of

code-internal documentation use other artifacts such as bug-reports and mailing-lists (Cleary

& Exton, 2006). By using both code-internal and code-external artifacts Cleary and Exton (2006)

developed the Eclipse Cognitive Assignment Plug-in, which is one of the state-of-the-art frame-

works for concept location. In their work Gay, Haiduc, Marcus, and Menzies (2009) implement

relevance feedback to the concept location system. In this framework after the ranked results

are returned the user has the opportunity to rate the returned documents as being relevant or

irrelevant. The system reformulates the query based on the feedback, returns the new results

and the user can give feedback again. Related to concept location is the identification of high-

level concept clones, where the aim is to identify code duplicates which are not a copy of a given

piece of code, but a re-phrasing of it. A case study for the identification of high-level code clones

is presented in Section 3.2.1.

3.2.1 LSI in Source-Code Retrieval

LSI7 was successfully utilized in areas of source-code retrieval where identifying concepts and

similarities between larger structures is essential e.g. it proved to give good accuracy when iden-

tifying duplicates of pieces of source-code in development projects as in Marcus and Maletic

(2001). In their research they aimed at identifying duplicates of source-code which are not near

exact copies, but are structurally different and yet solve the same or almost the same problems.

To make this possible they extracted semantic features from the source-code and than broke

it down into source-code documents. In their approach source-code documents are contigu-

ous sets of source-code lines such as functions, blocks of declarations or class declarations rep-

resented by feature vectors extracted from their internal documentation e.g. from identifiers,

string literals and comments. They ran LSI on these extracted semantic features and created

an LSI representation of the document collection to encode the semantic similarity between

the different source-code documents, therefore between the different units of source-code. In-

corporating the LSI results they represented the software system as a relationship graph where

7Description of LSI is found in Section 2.3.2.2

CHAPTER 3. PREVIOUS WORK 18

the nodes are the source-code documents and weighted edges represent relationships between

them. In the graph edges represent semantic and structural similarity and source-code docu-

ments were then to clustered together based on their combined semantic-structural similarity

score within the software system8. After the source-code documents were clustered the user

could query with a file or a group of source-code documents to find the related high-level clones.

The system was tested on Mosaic 2.7 an application written in C consisting of 95,000 lines in 269

files. They reduced the dimensionality of the original vocabulary of 5,114 terms to 350 using LSI

for the 2,347 source-code documents and they managed to find 11 high-level concept clones

implementing linked lists. In comparison with their term-matching - they have searched for

keywords such as ’list’ - and regular expression matching baseline the technique based on LSI

reduced the search by a factor of five. Using LSI has also shown to be effective for bug localiza-

tion in Marcus et al. (2005); Marcus, Sergeyev, Rajlich, and Maletic (2004). They point out that

a significant advantage that LSI can bring to the field is that an LSI-based source-code search

engine can allow developers to use their regular search habits they got used to by using regular

search engines like Google or Youtube.

3.2.2 LDA in Source-Code Retrieval

In source-code retrieval literature Latent Semantic Indexing is one of the most popular tech-

niques borrowed from regular information retrieval, but more recent research showed that with

Latent Dirichlet Allocation(LDA) better results can be obtained. Both LSI and LDA are suited

for representing synonymy, but polysemy is better expressed with LDA9. In addition the matrix

representation makes LSI a non-transparent model i.e. numeric spatial representation is used

to model documents, queries and the results while LDA allows for the analysis of the document

collection in terms of more human readable semantics as it describes topics as probability dis-

tributions over words (Blei et al., 2003). LDA was successfully utilized by Lukins et al. (2008)

to localize bugs and they showed that LDA significantly outperforms LSI in bug-localization

tasks. They extracted semantic information from the source-code including comments, identi-

fiers and string literals on the granularity level of methods and performed stemming and stop-

8The measure used for structural similarity is not described here as it is not related to IR techniques. For more
information please refer to the original article (Marcus & Maletic, 2001)

9For more information on LDA please consult Section 2.3.3

CHAPTER 3. PREVIOUS WORK 19

word elimination. This way in their document collections each document represents a method

from the source-code and each document consists of terms from the comments, identifiers and

string literals. This document collection was the input to the LDA tool GibbsLDA++ and the out-

put of the process was a LDA model consisting of a word-topic probability distribution and a

topic-document probability distribution. The queries in their case studies consist of terms de-

scribing the bug in English and the methods which need bugfixes should be returned given the

query. The system was tested on 1.5 release 5 (1.5R5) of the software system Rhino focusing on

bugs on method-level which bugs were fixed in either version 1.5R5.1 or v1.6R1 and only valid

bugs that had been fixed were returned. Using this approach the system of Lukins et al. (2008)

achieved good results: the relevant method was retrieved in top ten in case of 77% of the bugs,

top five for 63% of the bugs, top result for 23% of the bugs.

The work from Maskeri, Sarkar, and Heafield (2008) is another clear example of how LDA can

be applied to source-code retrieval tasks. In their work they mine various business topics from

the source-code of software projects. Their research is in a very typical direction of source-code

retrieval, where the goal is to create a system that provides a high-level overview of large legacy

software systems to programmers. They focus on identifying the underlying business topics

on top of which a particular system have been implemented. The methodology employed in

their research is similar to the ones described in Sections 3.2.2, 3.2.1, 3.2: they break down the

large body of source-code into source-code documents, create a term-document matrix and, in

this case, use the LDA model to derive business topics from the source-code document collec-

tion. Their weighting scheme is different from tf*idf and is a good example of a domain specific

weightage. In their framework the importance factor wd[w, fd] for the word w in the file fd is

the weighted sum of the frequency of occurrences of w for each location type lti in the file fd .

wd [w, fd] =∑
lti

λ(lti)× v(w, fd , lti)

where v(w, fd , lti) is the frequency of occurrences of w in location type lti of the file f f . Location

type here refers to a structural position in the code such as file name, function name, comment.

Given the weighted term-document matrix they fit an LDA model on the data and given the

of top−n words they manually label the resulting topics. From Apache they extracted 30 topics

CHAPTER 3. PREVIOUS WORK 20

and found that the system can successfully model topics spanning through various files and that

synonymous words were grouped together in the same topics. They prune the resulting model

by using a cutoff value for the probability of words given a topic e.g. if for any given w given any

topic t P (w |t) < 0.001 than w does not belong to the topic t . They report that by involving some

human intervention - deciding the number of topics, setting the parameters for the importance

of location types, validating and labeling topics - their LDA based system can, in fact, provide a

good quality overview of large scale systems in terms of implemented business topics.

3.3 Source-Code Retrieval as Translation

The method employed in my thesis project is an approach to source-code retrieval introduced

by Deng and Chrupała (2014) which treats retrieval as a translation problem. This is different

from the various models described in Section 3.2 where the source-code of a particular ap-

plication is broken down into source-code documents and these documents have their code-

internal documentation (e.g. comments) as their features. These source-code documents are

than retrieved based on the semantic similarity between their internal documentation and the

English query. Under this approach English sentences from the code-internal documentation

are treated as pointers to a location in the source-code which is in contrast with the "retrieval

as a translation problem" approach employed in my project. Whereas the described approach

focuses on retrieving certain parts of a source-code in an application, in my project I focus on re-

trieving source-code components. A source-code component is a meaningful element of a pro-

gramming language such as loops, conditions, classes or methods. The approach adopted in the

Thesis involves learning a translation model from English descriptions to their described Java

method-signatures. The translation model does not involve any syntactic analysis it is merely

a bag-of-words translation model, encoding associations between terms in separate dictionar-

ies. Learning a bag-of-words translation model aims at providing a grounded model for the

meaning of English words where the individual English terms are grounded in the "method-

signature-language" space. Other than grounding the goal of the translation model is to enable

users to retrieve Java methods from the Java Standard Library given English queries. .

CHAPTER 3. PREVIOUS WORK 21

3.3.1 Previous Work

I build on the previous work of Deng and Chrupała (2014) where the authors tackle the task of

retrieving methods by implementing a language-modelling approach (Song & Croft, 1999). In

their work the rank of method m is estimated by its probability given the query q .

p(m|q) ∝ p(q|m)p(m)

They assume a uniform prior for all methods m and so they rank methods according to p(q |m),

which under the unigram language model means that:

p(q|m) = ∏
w∈q

p(w |m)

Their term-matching baseline model assumes that the queries and method-signatures share the

same vocabulary and they set p(w |q) to the maximum likelihood estimate with Jelinek-Mercer

smoothing (Zhai & Lafferty, 2001):

p(q |m) = ∏
w∈q

(1−λ) f (w |m)+λ f (w |M)

where f (w |m) is the relative frequency of the term w in the method-signature m and f (w |M) is

the relative frequency of w in the whole collection of method-signatures M . The second model

in their work is the IBM model 1 where they exploit the fact that descriptions and method-

signatures in the Java Standard Library form a parallel-corpus. IBM model 1 is an obvious choice

to solve a translation problem as it is one of the simplest translation models available. In IBM

model 1 the mapping from description terms to method-signature terms is realized in the form

of equioperable alignments between strings; it builds a translation table containing probabili-

ties for every description term w given a signature term u : p(w |u). Furthermore, the translation

probabilities are bootstrapped using expectation maximization and Jelinek-Mercer smoothing

is applied to p(w |m).

p(q|m) = ∏
w∈q

(1−λ)

[∑
u∈m

f (w |u) f (u|m)

]
+λ f (u|M)

CHAPTER 3. PREVIOUS WORK 22

The IBM model 1 is not sensitive to initialization of its parameters, which is a major advan-

tage over other similar translation models (Koehn, 2009). Therefore, it is in fact a well suited

model for the problem: it is feasible to train, it is designed to find associations between lan-

guages and it does provide a translation table for further qualitative analysis. The third and last

model they experimented with was the Polylingual Latent Dirichlet Allocation model (Mimno,

Wallach, Naradowsky, Smith, & McCallum, 2009). PLDA is designed originally to model rela-

tionships between semantically related documents in multiple languages. It is an extension of

the LDA model10; it organizes document collections in different languages to tuples where doc-

uments are about the same - or very similar - topics, but written in different languages. The

assumption of PLDA is that every document in a tuple has the same tuple-specific distribution

over topics and each topic consists of a set of distributions over words for every language sepa-

rately. Training the PLDA on the description and method-signature pairs provides distributions

of topics over method-signatures p(t |m) and word distributions of topics p(w |t).

p(q |m) = ∏
w∈q

[∑
t∈T

p(w |t)p(t |m)

]

They also improve the PLDA model by interpolation using the baseline model.

p(q|d) = (1−α)×pPLD A +α×pB ASELI N E (q |d)

Both PLDA and IBM model 1 provide a mapping between vocabularies using the assumption

that the Java Standard Library is a parallel corpus between English and Java. Chapter 4 describes

my approach in which I take bag-of-words translation as a regression problem and Section 6.1

provides a comparison between the results of the described work and my models.

10Described in detail in Section 2.3.3

4 | Methods and Data set

The "retrieval as a translation problem" idea and the data set are both borrowed from the work of

(Deng & Chrupała, 2014)1. In my project I explore a different approach and attempt to improve

their results. Rather then taking a language modelling approach descriptions and method-

signatures under my framework are represented in separate vector spaces and the translation

model is learned between the pairs of description-signature vectors using supervised regres-

sion learning. This method allows for learning highly complex non-linear functions which can

potentially result in an improvement over the IBM model 1 and PLDA models. This chapter de-

scribes my approach in more detail and I also discuss some details about the implementation

of my prototype.

4.1 Outline

This section introduces the data set and the models employed in my research. Section 4.2 in-

troduces the data set and Sections 4.3, 4.4 and 4.5 give short descriptions to the models used

for the retrieval system and give some details about their implementation. Section 4.4.3 de-

scribes the learning algorithm for the neural network and its hyper-parameters that were taken

into account during the project.

4.2 Data

The goal of the project is to learn a translation model from English to Java and to use this model

to retrieve Java method-signatures. The data set for this project is the documentation of the Java

1Lengthy description in Section 3.3.1

23

CHAPTER 4. METHODS AND DATA SET 24

Standard Library which conveniently contains method-signatures paired with their descrip-

tions. The idea here is to take these signature-description pairs as a parallel corpus between

English and Java to learn a mapping between English terms and Java method-signature terms.

Such a mapping allows for a) retrieving Java methods via translation and b) grounding the mean-

ing of English terms in a formal language, namely Java. The Java Standard Library is documented

in a format called Javadoc and it contains the method name, qualifier, return type, parame-

ter type, names for every method with the addition of a description. The first sentence of the

description is a short definition of what the method is used for while the additional sentences

might give practical or other details about the method itself. The documentation is broken down

into two separate document collections one containing the descriptions and the other contain-

ing the signatures. Both document collections went through a pre-processing phase. From the

descriptions stop-words and the punctuation were removed, the text was tokenized and all to-

kens were converted to lowercase. The method-signatures were tokenized in the following way:

the method FilterInputStream was converted to three terms [filter, input, stream] by breaking up

the string using upper cases as borders and then turning the terms into lower case. This process

leaves us with two sets of documents each containing a sets of terms (see Figures 4.1 and 4.2).

I use the preprocessed data from (Deng & Chrupała, 2014) and it is found online in the public

Bitbucket repository of their project: https://bitbucket.org/gchrupala/codeine.

4.3 Feature vectors

After creating separate document collections for the descriptions and their described method-

signatures separate vector-space representations are created from these collections. Dictionar-

ies from both descriptions and signatures are created separately which serve as the basis for

the creation of the description-vectors and signature-vectors. This technique allows for nu-

merous options from pruning the dictionary through experimenting with various vector-space

representations such as tf*idf2 or LSI3 to various normalizations of the values in the resulting

vectors. As a result of this process the two document collections are converted into two matri-

ces: a term-document matrix whose columns represent the descriptions and a term-document

2See Section 2.3 for more details
3See Section 2.3.2.2 for more details

https://bitbucket.org/gchrupala/codeine

CHAPTER 4. METHODS AND DATA SET 25

Figure 4.1: Original Description-Signature pairs

equals Compares this object against

the specified object

The result is true if and only if

the argument is not null

and it represents

the same proxy as this object

Two instances of Proxy represent the

same address if both the

SocketAddresses and type are equal

public final boolean equals(Object obj)

package:java.net visibility:public

boolean public obj object

superclassfulltype:java.lang.Object

fulltype:java.net.Proxy

method.fulltype:boolean

method.visibility:public

parameter.name:obj

parameter.type:java.lang.Object

Description

Signature

CHAPTER 4. METHODS AND DATA SET 26

Figure 4.2: Description-Signature pairs after preprocessing

equals compares this object against

the specified object the result

is true if and only if

the argument is not null

and it represents the same proxy

as this object two instances of

proxy represent the same address

if both the socket addresses

and type are equal

equals net public object proxy

boolean public obj object

Description

Signature

matrix whose columns represent the method-signatures. Each vector-pair in the resulting ma-

trices represents description-method pair from the original Javadoc. This representation makes

it possible to learn a bag-of-words translation model by using a regression model which approx-

imates a function that maps description-vectors to their corresponding signatures vector pairs.

The resulting function is the bag-of-words translation model from descriptions to signatures

which can be used to retrieve signatures given an English query.

4.4 Translation Models

In the training phase the above mentioned feature vector representations of the descriptions

and the method-signatures are used to train three multivariate regression models. The setting

is supervised regression learning where pairs of input description-vectors and target method-

signature vectors are presented to the learning algorithm. The vector-space representing de-

scriptions serves as the input matrix and the vector-space representation of signatures serves

as the target output matrix for the regression models. The ideal translation model, therefore,

CHAPTER 4. METHODS AND DATA SET 27

is a function T (x) that given the description vector x produces a signature vector s′ such that it

minimizes the distance D ,

D =
n∑

i=1
(si −s′i)

2

where si is the target signature vector and s′i is a predicted signature vector.

4.4.1 Linear models

The simplest model to solve a multivariate regression problem is the multivariate linear regres-

sion (Craven & Islam, 2011), which assumes that a signature vector is a linear combination of

the variables in the description vector

s′ = b +w1x1 +w2x2 + ...+wn xn

where s′ is the predicted signature-vector x1...xn are values in the description-vector, b is the

bias term and w1...wn are coefficients estimated by the model by minimizing the residual sum

of squares

ŵ = argmin
w

||X w−S′||2

where X is the matrix of all description-vectors, w is the vector of coefficients and S’ is the matrix

of all predicted signature-vectors. The issue that can arise when using this simple regression

model is over-fitting, meaning that the model perfectly fits the data, but generalizes poorly out

of sample. Ridge Regression (Theobald, 1974) penalizes the weights to prevent over-fitting and

keeps the coeficients at a moderate size so the model is less able the closely fit the training data.

It minimizes the penalized residual sum of squares

ŵ = argmin
w

||X w−S′||2 +α||W ||2

where α>= 0 is a hyper-parameter - usually referred to as the complexity parameter - that con-

trols the model’s robustness against overfitting.

CHAPTER 4. METHODS AND DATA SET 28

4.4.2 Multilayer Perceptron

Both the standard linear regression and Ridge regression fail to model complex non-linear rela-

tionships between variables, so I decided to expand the scope of the research to other models

that can represent such non-linear functions. One of the best options to solve a highly complex

multivariate function approximation problem is the Multilayer Perceptron. It is a type of feed-

forward artificial neural network consisting of at least one input, one hidden and one output

layer (Haykin, 1994). Each layer consists of several neurons. Given an input vector the values

are transformed by the input layer then the hidden layers and finally the output layer. From the

hidden layer each hidden neuron N produces its output as such

Nhn = g

(
n∑

i=1
xi ×whi

)

where Nhn is the output of the nth hidden neuron g is the non-linear activation function of the

neuron, xi is the i th term in the description vector and whi is the i th input weight. The formula

is similar to the linear models except a non-linear activation function is "wrapped around" the

weighted sum making it possible to approximate sophisticated non-linear functions. The num-

ber of parameters to be optimized for a network even with only one hidden layer is significantly

larger than the number of parameters of the linear models’: The number of parameters of the

MLP is I×H+H×O where I is the number of input neurons, H is the number of hidden neurons

and O is the number of output neurons. Furthermore, whereas in case of the linear models the

error function is convex this is not true for the Multilayer Perceptron. Section 4.4.3 describes a

widely used general purpose learning algorithm that was used in the project to train the Neural

Network.

4.4.3 Training the neural network translation model

As described in Section 4.4 the Neural Translation Model is a function f that encodes descrip-

tion vector x into a signature vectors s

s = f (x) = g (W x+b)

CHAPTER 4. METHODS AND DATA SET 29

where b is the bias and W is the weight-matrix. The parameters of the model need to be opti-

mized - weights and biases θ = {W,b} - through minimizing some cost function C (xi,θ) where xi

is the input vector and θ are the parameters. The training algorithm used during the project to

minimize the error function is the stochastic gradient descent. The gradient vector of the cost

function serves as its basis for computing the parameter updates (Bengio, 2012): ∂L(xi,θ)
∂θ

. The

most simple version of stochastic gradient descent introduces the hyper-parameter learning-

rate ε and utilizes the gradient information and updates parameters θ after each training exam-

ple as

θi ← θi−1 −εi
∂L(xi,θ)

∂θ

where xi is the training example at iteration i . Learning rate is considered one of the most im-

portant hyper-parameters and to have a large effect on the training. To make convergence easier

learning-rate decay is introducedρ, another hyper-parameter which decreases the learning-rate

at each iteration or after some number of iterations. Although, both hyper-parameters allow for

tuning the learning algorithm to the specific problem the direction of the gradient is still only

known locally which might not be the true direction, furthermore by searching and moving in

the parameter space the true direction of the descent is changing. The idea behind using the

original or mini-batch version of the stochastic gradient descent is that rather than trying to

estimate the gradient direction as close as possible on the whole training set, we do more up-

dates on smaller sets which helps the parameter search to be faster and more comprehensive

(Bengio, 2012). Using mini-batches the algorithm averages over the gradients inside each batch

B . In practice using the original stochastic gradient descent (update on one example at a time)

or the mini-batch version is much faster than training on the whole training set at once, plus

the training does not depend on the size of the data set. The batch-size can be optimized sepa-

rately from the ε and ρ as it only affects the computation time and not the performance of the

model on the data sets. However, a slight interaction between B and ρ is reported in (Bengio,

2012). To remove oscillations and hesitations of the gradient descent it is common to use a mo-

mentum term β - yet another hyper-parameter. To smooth out the stochastic gradient descent

samples during the descent a moving average of previous gradients g is computed and β of the

importance of the past samples:

g ← (1−β)g +βg

CHAPTER 4. METHODS AND DATA SET 30

Figure 4.3: Multilayer Perceptron with one Hidden Layer

I-1

I-2

I-3

I-4

I-5

I-6

I-7

I-8

I-9

I-10

H-1

H-2

H-3

H-4

H-5

O-1

O-2

O-3

O-4

O-5

O-6

O-7

O-8

Hidden

layer1

Output

layer

Input

layer

Similarly to the learning-rate the momentum can be augmented by momentum-decay term

α, leaving us with hyper-parameters Θ = {ε,B ,ρ,β,α} which need to be optimized. Optimiz-

ing hyper-parameters through exhaustive parameters search was shown to given significant im-

provements in performance (Pinto, Doukhan, DiCarlo, & Cox, 2009). Hyper-parameters Θ are

different from parameters θ in that they are not learned by the training algorithm, but need to

optimized using some other method. Rather than optimizing hyper-parameters on the whole

data set, to get the best values for Θ a validation set is used to estimate the impact of the hyper-

parameter tuning on the out-of-sample generalization of the model. In consequence the final

results need to be reported on yet another data set; the test set.

CHAPTER 4. METHODS AND DATA SET 31

Figure 4.4: Model Creation

Vector-space Creation

Pre-processing

Javadoc

Descriptions Signatures

Description Vectors Signature Vectors

Regression

Translation Model

CHAPTER 4. METHODS AND DATA SET 32

4.5 Ranking

The third and final component to the model is the ranking itself. This module receives an En-

glish query and transforms it into a query vector according to the vector- space model created

from the descriptions. The query-vector serves as the input for the translation model trained

on the description-method pairs and it predicts a method-signature-vector from the query. The

resulting method-signature vector is compared against all the other method-signature-vectors

in the method-signature vector-space and the method -signatures are ranked according to their

similarity to the query vector computed by the cosine similarity measure4.

4Described in sections 2.3

5 | Experiments

5.1 The setup

5.1.1 Data sets

The data set for the experiments is the Java standard library - Standard Edition 6 API Specifi-

cation: io, lang, math, net, text, util - providing 7183 description-method pairs. Following the

traditional machine learning approach the data set is split into three smaller chunks: training

set (60%), validation set (20%), test set (20%). The translation models are trained on the training

set, the validation set is used for parameter-optimization - to estimate the out-of-sample gen-

eralization of the models - and the performance of the models on the test set is presented in

the Results section. Only training on the 60% of the data makes it more difficult to obtain good

results to report, but allows for a better estimation the models’ real-life performance. I follow

the split from Deng and Chrupała (2014).

5.1.2 Queries

The performance of the regression models are not evaluated directly on how well they perform

the regression itself, but how well they perform in the retrieval tasks. Due to the lack of ex-

isting evaluation sets providing English query and Java method-signature pairs, I follow Deng

and Chrupała (2014) where validation and test queries are generated from the validation and

test sets: queries are the first sentences of the descriptions in the held-out sets. These first sen-

tences originally contain the name of the method as their first term and these terms are removed

to make the queries a little more realistic. Arguably this is not the most realistic way of evaluat-

33

CHAPTER 5. EXPERIMENTS 34

ing the system, however these resulting queries are similar to user queries in that they are short

and describe the methods’ basic functionality 1.

5.2 Evaluation

The method-signatures relevant to queries are given by the data set; every query has only one

relevant method signature as there is a one-to-one correspondence between descriptions and

method-signatures in the data set. The models are trained on the description-signature pairs in

the training set and tested on the test queries using the whole collection of signatures as can-

didate answers. This way of ranking a large number of methods makes the evaluation more

realistic and the task more challenging. One of the evaluation metrics used to assess the perfor-

mance of the model is the Mean Reciprocal Rank. This statistic is widely used to evaluate any

system that ranks objects according to some similarity measure given a query. It takes the num-

ber of queries Nq and the position in the ranked list of the i th returned signature to the query

q i . A set of queries needs to be presented to the trained model and all the method signatures

in the collections need to be ranked according to their similarity to the query and the positions

of the relevant method signatures to these sample queries needs to be stored. Then the Mean

Reciprocal Rank is computed as follows:

MRR = 1

Nq

Nq∑
i=1

1

ranki

The other two evaluation metrics reported in the Results section are Accuracy at 1 and Ac-

curacy at 10. These metrics are perhaps more intuitive than the MRR in that they answer the

question: what proportion of the correct answers were ranked first and in the top 10 respec-

tively.

5.3 Vector Representation

As mentioned in Section 4.3 descriptions and signatures are represented in separate vector-

spaces. First a dictionary is created for descriptions and signatures separately and both dic-

1Section 7.1.1 describes an ongoing project whose goal is to develop a more realistic evaluation set.

CHAPTER 5. EXPERIMENTS 35

Table 5.1: The effect of vector representations on the MRR on the validation set

binary tf tf*idf (L2) tf*idf (L1)

MRR 0.324 0.324 0.333 0.197

The experiments were run by training the Multilayer Perceptron with 800 hidden-neurons and learning-rate: 2.0

on the training set for maximum 29 epochs.

tionaries are pruned using the same method: all terms occurring in more than half of the doc-

uments were removed. Removing extremely rare words produced worse results, therefore no

pruning was done in that direction. The final version of the dictionaries contain 6299 unique

tokens for descriptions and 1717 unique tokens for signatures. Based on the final dictionar-

ies both document collections were transformed into term-document matrices. Various vec-

tor representations were considered: binary vectors, term frequency vectors and tf*idf vectors.

The choice of vector-representation did have an effect on the performance of the learning-

algorithm. The experiments for finding the best vector-representation were run by training the

MLP with constant architecture and hyper-parameters - 800 hidden-neurons, learning-rate: 2.0,

max 29 epochs - on the various matrices and evaluating its performance on the validation set.

The performance difference was measured on the MRR. There was virtually no difference be-

tween training the network on binary or term-frequency vectors. The tf*idf vectors, however,

improve the results and the tf*idf vectors L2 normalized proved to give the best overall results.

Reducing the dimensionality of the feature-spaces using LSI made the training faster, but made

the retrieval results only slightly better than random, which is far from desired. In conclusion

the vector-spaces were constructed from L2 normalized tf*idf vectors with the dimensionality

of 6299 for descriptions and 1717 for signatures. The Gensim Python package was used for the

vector-space creation tasks (Řehůřek & Sojka, 2010). It is well suited for the task as it has an easy-

to-use interface and it provides a wide range of tools for distributional semantics. It proved to

be fast enough as for the two document collections of 7183 entries the transformation to two

vector-spaces of dimensionality 6299 and 1717 takes only 11.873s running time. The parame-

ters were tuned on the validation set, therefore the results of the experiments on Table 5.1 are

also reported on the validation set.

CHAPTER 5. EXPERIMENTS 36

5.4 Retrieval engine

Gensim provides a module to calculate the similarity between the query and all the method sig-

natures very efficiently using the cosine similarity measure. It stores all the descriptions and

methods in an index which serves as an input to a document similarity method which returns

a list of tuples. Each tuple contains the index of the method signature - its identifier -, its sim-

ilarity to the query and it also provides a ranking as the identifier-similarity tuples are ordered

according to similarity. This list of tuples serves as the actual output of the search engine and

the evaluation described in Section 5.2 is performed on it.

5.5 Parameter tuning for training

5.5.1 Training the Linear Models

The Python package Scikit-learn (Pedregosa et al., 2011) provided both the Linear Regression

and Ridge Regression models. As a baseline the simple multivariate Linear Regression was used

to approximate a function that maps the description-vectors to signature-vectors. It was the

simplest model to work with as it does not have any hyper-parameters. Ridge regression is

also an easy-to-work-with model compared to other more sophisticated machine learning al-

gorithms such as SVM. The only hyper-parameter of Ridge is the complexity parameter α. It

was estimated by varying the parameter and evaluating the resulting models on the validation

set. Figure 5.1 demonstrates the impact of the various α parameters on the validation set. The

best results were obtained by using Ridge withα= 0.2 . Ridge Regression was a very quick model

to train: 1m24.320s.

5.5.2 Neural Networks Training

5.5.2.1 Implementations

When training the Neural Network there is an abundance of choices in terms of network archi-

tecture, learning algorithms and hyper-parameters, furthermore, there are a number of pack-

ages and libraries available for Neural Networks in Python. The obvious choices for a Python li-

CHAPTER 5. EXPERIMENTS 37

Figure 5.1: Impact of α on MRR on the validation set

The experiments to find the best value for α were run on the training set using tf*idf vectors and the results are

shown on the validation set.

brary that has Neural Networks for Machine learning purposes are PyBrain (Schaul et al., 2010),

Theano (Bergstra et al., 2010) and maybe less obvious Theano-Nets2. With the linear models

the choice for Scikit-Learn was straightforward, but given the number of parameters of a neural

network model and the available learning algorithms and hyper-parameters, finding the appro-

priate library turned out to be a major bottleneck. The first package to be implemented within

the project was PyBrain. It was easy to work with and it proved that the MLP is a good choice

for solving the problem, but it turned out to be very slow, which made the hyper-parameter

tuning infeasible. The two libraries that were more successful were Theano and Theano-nets.

Theano is a Python library that is built for optimized compilation of complex mathematical

expressions to C code, running on both CPU and GPU. Theano is suitable for building Neu-

ral Networks given it’s features such as it provides a high-level description language for matrix

and tensor operations and performs automatic construction of symbolic graphs to compute

gradients. Theano-nets is a library under development that implements the most widely used

networks and training algorithms using Theano. Both packages were experimented with dur-

2The package is still under developement and there is no reference available. It can be downloaded from
https://github.com/lmjohns3/theano-nets

https://github.com/lmjohns3/theano-nets

CHAPTER 5. EXPERIMENTS 38

ing the project. In theano-nets the stochastic gradient decent did not seem to converge3 and

the Hessian-free training algorithm was used, but it was too slow and hyper-parameter tuning

was again unfeasible. As a result I used a very simple Multilayer Perceptron neural network with

stochastic gradient decent implemented in Theano, which produced slightly better results in

the end than the experiments with theano-nets. The network was implemented by Grzegorz

Chrupala and it is available at https://bitbucket.org/gchrupala/neuralnet.

5.5.2.2 Network Architecture

The most obvious choice for the architecture was a Multilayer Perceptron with a single hidden

layer. This is a model that has been used for decades and therefore all the details regarding

its training and hyper-parameters are referred in a large body of literature. It is also a simple

model in the world of Neural Networks which makes the learning algorithms perform on it very

well as they are designed to handle much more complex architectures as well. Apart from the

number of layers the number of neurons in each layer is also a variable. The regressor’s num-

ber of input neurons equals to the number of values in the input vector - number of terms in

the description dictionary - and the number of output neurons equals to the number of val-

ues in the target vector - number of terms in the signature dictionary. The number of neurons

in the hidden-layer did affect the results when keeping the hyper-parameters and the type of

vector-representation constant. Since the L2 normalized tf*idf vectors gave the best results, the

experiments regarding the number of hidden-neurons were run on tf*idf term-document matri-

ces. The hyper-parameters for the experiments were the same as for the feature-vector selection

experiments: learning-rate = 2.0. max 29 epochs. The final architecture of the network is: 6299

input neurons, one hidden layer with 2500 neurons, 1717 output neurons. The increase in MRR

from 800 neurons to 2500 is 0.019. Given the time constraints of the project the impact of fur-

ther increase was not evaluated: The execution time with 800 neurons was 42m45.370s, with

2500 neurons it was 90m17.020s, while 2500 neurons only provided a slight increase in MRR

(0.001) over 2000 neurons. Table 5.2 shows the results on the validation set for the experiment

regarding the number of hidden-neurons. Figure 5.2 shows that the relationship between the

3The reason is unclear as it demonstrated no problem on the classification of the iris data set. The bug has been
reported and might have already been dealt with. I still strongly recommend theano-nets for experimentation.

https://bitbucket.org/gchrupala/neuralnet

CHAPTER 5. EXPERIMENTS 39

Table 5.2: Effect of the number of hidden-neurons on MRR

Size of hidden-layer 800 1000 1500 2000 2500

MRR 0.333 0.333 0.342 0.351 0.352

Execution time 42m45.370s 50m25.633s 63m47.261s 72m27.255s 90m17.020s

The Multilayer Perceptron was trained on the training set with learning-rate = 2.0 for maximum 29 epochs. The

results are reported on the validations set.

Figure 5.2: Effect of the number of neurons on execution time on the validation set

The Multilayer Perceptron was trained on the training set with learning-rate = 2.0 for 29 epochs.

number of neurons in the hidden-layer and the execution time is close to linear.

5.5.2.3 Hyper-parameter tuning

As mentioned in Section 5.5.2.1 one of the major bottlenecks for the project was to imple-

ment the Neural Network itself. After experimenting with multiple libraries a simple Multilayer

Perceptron implemented in Theano provided the best results. The MLP was trained using the

Stochastic Gradient Descent algorithm, which is one of the simplest and most general purpose

trainers. It is a gradient propagation based algorithm and is explained in detail in Section 4.4.3.

The only hyper-parameter that was experimented with in the project was the learning-rate. The

experiments to determine the best value for the learning-rate were run on the training set and

the performance was evaluated on the validations set. The setup involved tf*idf vectors, 800

CHAPTER 5. EXPERIMENTS 40

Figure 5.3: Effect of the learning-rate on MRR on the validation set

The experiments to determine the best value for the learning-rate were run on the training set with tf*idf vectors,

800 neurons in the hidden-layer and 29 maximum iterations. The maximum values for MRR are shown on the

graph.

neurons in the hidden-layer and 29 maximum iterations and the best value for the learning-rate

was found to be 2.0. Figure 5.3 shows the results of these experiments. The goal of the learning

was not to minimize the cost, but to maximize the MRR. The cost function of the training-

algorithm for this project was the mean squared error. To test how appropriate mean squared

error was for the task, for every epoch the value for the cost function and for the MRR was stored

and analyzed. A significant, strong, negative correlation was found between cost and MRR -

p < .001 r = .972, with learning-rate 2.0 -, which means that minimizing the cost function does

maximize the MRR. Figure 5.4 demonstrates the relationship between the cost function and

MRR.

CHAPTER 5. EXPERIMENTS 41

Figure 5.4: Effect of the learning-rate

The graph shows the MRR and the cost function of the MLP when training on the training set and validating on the

validation set with tf*idf vectors, 800 neurons in the hidden-layer, learning-rate=2.0 for 29 iterations. The values for

the cost function are shown on the y-axis to the left and for the MRR on the y-axis to the right.

6 | Results

6.1 Results on Retrieval

This section reports the models’ evaluation on the retrieval task. As described Section 5.2 the

evaluation metrics used to measure retrieval performance are mean reciprocal rank, accuracy at

1 and accuracy at 10. The models are compared against the models in the previous work by Deng

and Chrupała (2014)1. Linear Regression produced the worst overall results with MRR = 0.129,

Acc@1= 0.073 and Acc@10= 0.238 giving a performance significantly worse than the baseline in

Deng and Chrupała (2014). On the other hand Linear Regression performed significantly bet-

ter then ranking documents at random, which proved that the bag-of-words translation can be

phrased as a regression problem. The best preforming model was Ridge Regression with com-

plexity parameter α = 0.2, MRR = 0.389, Acc@1= 0.232 and Acc@10= 0.707. On both MRR and

Acc@10 the model outperforms the term-matching baseline and PLDA from Deng and Chrupała

(2014) and almost matches it on Acc@1 - worse with 0.1. The Multilayer Perceptron produced

comparable results to Ridge Regression- MRR = 0.341, Acc@1= 0.202, Acc@10= 0.640 -, but

whereas Ridge Regression clearly beats PLDA, the Multilayer Perceptron performs even worse

on Acc@1 than the Ridge Regression. However, the MLP does have comparable performance as

the PLDA on MRR and has a better Acc@10. In conclusion, none of the models developed in my

thesis project managed to perform better than the IBM model 1 in Deng and Chrupała (2014),

both the MLP and Ridge Regression gave better Acc@10 and MRR than the PLDA and Ridge Re-

gression outperformed the PLDA overall. Results are shown in Table 6.1 comparing the results

of the present thesis with the results of Deng and Chrupała (2014).

1Decribed in Section 3.3.1

42

CHAPTER 6. RESULTS 43

Table 6.1: Comparison of the models on the validation set

Results from the Thesis

Model MRR Acc@1 Acc@10

Linear Regression 0.129 0.073 0.238

Ridge Regression(α= 0.2) 0.389 0.232 0.707

Multilayer Perceptron(ε= 2.0) 0.341 0.202 0.640

Term-matching 0.332 0.223 0.530

PLDA 0.352 0.242 0.562

IBM model 1 0.493 0.339 0.793

Above are the models employed in the thesis and below the models from Deng and Chrupała (2014). All models

were trained on the training set using tf*idf vectors and the results are reported on the test set. The Multilayer

Perceptron with 2500 hidden neurons was trained with maximum iterations of 29.

6.2 Word Similarity

After successful training the model is able to retrieve method signatures give English queries, but

also to ground the meaning of English terms. To test how well the model captures the meaning

of the English terms, the words in the descriptions are embedded in the space of the hidden

layer of the network. This involves creating separate vectors for every word in the description

dictionary - vectors with 6298 zeros and 1 one value - and feeding the resulting matrix to the

model and retrieving the transformation from the hidden layer. A matrix containing the trans-

lated word-vectors is the result of this process. By calculating the pairwise cosine similarity for

all word-vectors with all other vectors we get a sense of how well semantic relatedness between

words have been captured by our model. There was no quantitative analysis of the success of

the model’s grounding performance. Table 6.2 shows the word-similarity lists obtained by the

method explained in this section. Table 6.3 demonstrates that date-related terms are clustered

together after this translation. Hopefully the tables give the impression to the reader that the

meaning of English words is captured by the model with examples such as: (true, tests, whether,

boolean, false). These results demonstrate that the bag-of-words translation approach to Source

Code Component retrieval can be used to ground the meaning of natural language with Java-

CHAPTER 6. RESULTS 44

Table 6.2: Word Similarity in the hidden layer

zip currency http true scale cos

compressed symbol cookie whether preferred argument

compression countries connection boolean rounding trigonometric

checksum currency registers equality true cosine

defaultcompression represent urlconnection switching decimal angle

uncompressed territories proxy false big oneargument

Table 6.3: Time related terms

timezone zones sep gmstring yyyy

eastern west oct gmtstring sep

thisget utcthisget nov sep oct

zones massachusetts mm oct nov

west eastern jun nov mm

utcthisget sun s jul jun jun

terms using distributional methods.

6.3 Prototype

I have created a simple prototype for my thesis, which is a user interface for the search en-

gine where the user can give an English query and the prototype returns a list of Java method-

signatures from the Java Standard Library along with their descriptions. It is intended to test

and demonstrate what the evaluation scores mean in a real-life application. I created it so that

in further research possibly students can use the prototype to evaluate the system with real-life

users. The prototype uses the Ridge Regression model as it provided the best results from the

models implemented in my thesis. There was an experiment conducted if it would be beneficial

to implement a simple spelling corrector to handle potential typos in the prototype. The ex-

periments were run using Peter Norvig’s spelling corrector example from http://norvig.com/

spell-correct.html. It is a very simple spelling corrector and was trained on the description

http://norvig.com/spell-correct.html
http://norvig.com/spell-correct.html

CHAPTER 6. RESULTS 45

Figure 6.1: Searchbox with link to the repo

Figure 6.2: Dialogue box with the suggested query

document collection and it successfully corrected some simple test typos such as "add someth-

gin to teh lst" to "add something to the list". To test whether the spelling corrector wrongfully

corrects correct queries, the validation and test queries were concatenated and ran through the

spelling corrector. It was found that 9.34% - 224 out of 2396 - were wrongfully corrected and

therefore by default the corrector is disabled and it can be enabled optionally. If the spelling

corrector is enabled and the users query and the suggested query are not equal, a dialog box

asks whether the user would like to query with the original query or with the suggested one. The

intention behind implementing the spelling corrector was only to provide a more complete pro-

totype for my thesis project. All the data files and scripts to run the experiments can be found in

https://bitbucket.org/kadar_akos/search-engine-for-java-method-signatures. Run-

ning GUI.py runs the prototype. The two screens and the dialogue box of the interface are shown

in Figures 6.1, 6.2 and 6.3.

https://bitbucket.org/kadar_akos/search-engine-for-java-method-signatures

CHAPTER 6. RESULTS 46

Figure 6.3: Search results

7 | Future work and Conclusion

7.1 Future work

7.1.1 More realistic evaluation

The objective of the project Mining specialized knowledge from online communities at Tilburg

University is to build a data set consisting of pairs of questions and relevant answers to evaluate

the models on a more realistic data set. The corpus is built by choosing appropriate questions

from Stackoverflow and annotating the structure of the answers. It was an obvious decision

to choose Stackoverflow as a source of relevant data for the project: It is a large Q&A website

dedicated to questions and answers in a wide variety of topics related to computer science and

especially to programming. The annotation process for the project is designed to collect rele-

vant question-answer pairs to evaluate the method retrieval prototype. The annotators input

a filter in the Stackoverflow search-box - to filter out irrelevant questions - and open questions

one-by-one. For each of the questions they decide which are the relevant answers and from

each relevant answer they identify the relevant methods. The result of the annotation process

is a data set consisting of pairs of real-life questions and relevant methods. This is an ongoing

project and so far annotators store the id for every question and answers they find relevant and

the names and classes of the methods. Other necessary information for the method-signature

retrieval is missing at this stage such as number of arguments or argument types. This method-

signature resolution part is currently unfinished, therefore in the present thesis I am not able

to use this evaluation set and it is subject to future work. Source-code, data and details for the

project are found on https://bitbucket.org/kadar_akos/data-collection1.

1The repository for the project is public, but please note that it is an ongoing and unfinished project.

47

https://bitbucket.org/kadar_akos/data-collection

CHAPTER 7. FUTURE WORK AND CONCLUSION 48

7.1.2 Extensive tuning of the Multilayer Perceptron

During my project the possibility of using regression models for Source Code Component Re-

trieval was explored and the results were promising. The models match the baseline in Deng and

Chrupała (2014) and even outperform the PLDA model. From the results it is clear that the MLP

is a potential candidate to solve the problem. However, it was outperformed by Ridge Regres-

sion, which is due to the fact that its error function is convex, while for the MLP it has a number

of local minima. In Section 5.5.2.1 I mention that the implementation of the Neural Network

was a large bottleneck and consequently one of the shortcomings of the project was that the

parameter optimization on the MLP was not extensive enough. The network architecture in my

project was fixed to a Multilayer Perceptron with a single hidden-layer and the impact of more

hidden-layers has not been tested. Furthermore, the only hyper-parameter that was used dur-

ing my project was the learning-rate. The fact that Ridge Regression outperforms Linear Regres-

sion draws to the conclusion that one of the most important hyper-parameter that should be

experimented within further work for the MLP is the L2 regularization of weights. Other impor-

tant hyper-parameters include learning-rate-decay, momentum and momentum-decay. All of

the mentioned hyper-parameters should be experimented within further work, preferably using

wide coverage grid-search. If trained properly the MLP has the potential to outperform Ridge

Regression as it is able to model more complex non-linear functions. Section 4.4.3 I introduces

the set of hyper-parameters I would have used given more time.

7.1.3 Web-interface

I have created a prototype search engine with a graphical user-interface that retrieves Java method-

signatures and their descriptions given an English query using Ridge Regression. It is intended

to help future researchers to evaluate the various retrieval models on real-life users. It would be

beneficial to develop a web-interface for the search engine to enable researchers to evaluate the

model on a larger number of users. The development of such an interface is subject to future

work.

CHAPTER 7. FUTURE WORK AND CONCLUSION 49

7.2 Conclusion

The main goal of my project was to develop new models to perform source-code component

retrieval. I based my research on the work of (Deng & Chrupała, 2014) where the authors use

Polylingual Latent Dirichlet Allocation and IBM model 1 to learn a bag-of-words translation

model between Java-method signatures and English descriptions and use these models to re-

trieve method-signatures given English queries. My aim was to take a different path and use re-

gression models as bag-of-words translation models and hopefully outperform the models pre-

sented in (Deng & Chrupała, 2014). The other goal was to evaluate how well these models cap-

ture the meaning of English words. The system developed during my thesis project manages to

outperform the baseline and PLDA from (Deng & Chrupała, 2014). The Ridge Regression outper-

forms PLDA overall evaluation measures. The Multilayer Perceptron have comparable result to

PLDA on MRR and beats it on Acc@10. Although, both models perform decently and the project

can be considered a success in that regard, they do not beat the IBM model 1 from (Deng &

Chrupała, 2014). The other main aim was to test whether the models ground the meaning of En-

glish expressions in Java method-signature terms. To test if this was successful a word-similarity

experiment was conducted using the Multilayer Perceptron. It was found that both models

provide intuitively good results in grounding. Furthermore, the research project has proved

that learning a bag-of-words translation model is possible using general purpose regression-

models widely used in many fields of Machine Learning. Furthermore, a prototype was cre-

ated, which can be used to retrieve method-signatures given English queries and it can found

on https://bitbucket.org/kadar_akos/search-engine-for-java-method-signatures.

https://bitbucket.org/kadar_akos/search-engine-for-java-method-signatures

References

Andreas, J., Vlachos, A., & Clark, S. (2013). Semantic Parsing as Machine Translation.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures.

In Neural networks: Tricks of the Trade (pp. 437–478). Springer.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., . . . Bengio, Y. (2010,

June). Theano: a CPU and GPU math expression compiler. In Proceedings of the python

for scientific computing conference (SciPy). (Oral Presentation)

Berry, M. W., & Browne, M. (1999). Understanding search engines: mathematical modeling and

text retrieval (Vol. 8). Siam.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. the Journal of machine

Learning research, 3, 993–1022.

Cai, J. F., Lee, W. S., & Teh, Y. W. (2007). NUS-ML: Improving word sense disambiguation using

topic features. In Proceedings of the 4th International Workshop on Semantic Evaluations

(pp. 249–252).

Chen, D. L., & Mooney, R. J. (2008). Learning to sportscast: a test of grounded language ac-

quisition. In Proceedings of the 25th international conference on Machine learning (pp.

128–135).

Cleary, B., & Exton, C. (2006). The Cognitive Assignment Eclipse Plug-in. In ICPC (pp. 241–244).

Craven, B., & Islam, S. M. (2011). Ordinary least-squares regression. SAGE Publications.

Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., & Harshman, R. A. (1990). Index-

ing by latent semantic analysis. JASIS, 41(6), 391–407.

Deng, H., & Chrupała, G. (2014). Semantic approaches to software component retrieval with

English queries. LREC.

Dit, B., Revelle, M., Gethers, M., & Poshyvanyk, D. (2013). Feature location in source code: a

50

REFERENCES 51

taxonomy and survey. Journal of Software: Evolution and Process, 25(1), 53–95.

Dumais, S. T., Furnas, G. W., Landauer, T. K., Deerwester, S., & Harshman, R. (1988). Using latent

semantic analysis to improve access to textual information. In Proceedings of the SIGCHI

conference on Human factors in computing systems (pp. 281–285).

Gay, G., Haiduc, S., Marcus, A., & Menzies, T. (2009). On the use of relevance feedback in IR-

based concept location. In Proccedings of the ICsM 2009. IEEE International Conference

on software Maintenance (pp. 351–360).

Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic bulletin

& review, 9(3), 558–565.

Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear Phenomena, 42(1),

335–346.

Harnad, S. (2003). Symbol-grounding problem. Encyclopedia of cognitive science.

Harris, Z. S. (1954). Distributional structure. Word.

Haykin, S. (1994). Neural networks: a comprehensive foundation. Prentice Hall PTR.

Koehn, P. (2009). Statistical machine translation. Cambridge University Press.

Kuhn, A., Ducasse, S., & Gírba, T. (2007). Semantic clustering: Identifying topics in source code.

Information and Software Technology, 49(3), 230–243.

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic

analysis theory of acquisition, induction, and representation of knowledge. Psychological

review, 104(2), 211.

Lenci, A. (2008). Distributional semantics in linguistic and cognitive research. Italian journal of

linguistics, 20(1), 1–31.

Liu, C., Yan, X., Fei, L., Han, J., & Midkiff, S. P. (2005). SOBER: statistical model-based bug

localization. ACM SIGSOFT Software Engineering Notes, 30(5), 286–295.

Lukins, S. K., Kraft, N. A., & Etzkorn, L. H. (2008). Source code retrieval for bug localization using

latent dirichlet allocation. In Proceedings of the WCrE, 2008. 15th Working Conference on

Reverse Engineering. (pp. 155–164).

Lund, C. B., & Kevin. (1997). Modelling parsing constraints with high-dimensional context

space. Language and cognitive processes, 12(2-3), 177–210.

Marcus, A., & Maletic, J. I. (2001). Identification of high-level concept clones in source code.

REFERENCES 52

In Proceedings of aSE 2001. 16th annual International Conference on Automated Software

Engineering (pp. 107–114).

Marcus, A., Rajlich, V., Buchta, J., Petrenko, M., & Sergeyev, A. (2005). Static techniques for con-

cept location in object-oriented code. In Proceedings of the IWpC 2005. 13th International

Workshop on program Comprehension (pp. 33–42).

Marcus, A., Sergeyev, A., Rajlich, V., & Maletic, J. I. (2004). An information retrieval approach to

concept location in source code. In Reverse engineering, 2004. proceedings. 11th working

conference on (pp. 214–223).

Maskeri, G., Sarkar, S., & Heafield, K. (2008). Mining business topics in source code using latent

dirichlet allocation. In Proceedings of the 1st India software engineering conference (pp.

113–120).

Materna, J. (2012). LDA-Frames: an unsupervised approach to generating semantic frames. In

Computational Linguistics and Intelligent Text Processing (pp. 376–387). Springer.

Mathe, S., Fazly, A., Dickinson, S., & Stevenson, S. (2008). Learning the abstract motion seman-

tics of verbs from captioned videos. In Computer Vision and Pattern Recognition Work-

shops, 2008. cVPRW’08. IEEE computer Society conference on (pp. 1–8).

Matuszek, C., Fox, D., & Koscher, K. (2010). Following directions using statistical machine trans-

lation. In Proceedings of the 5th ACM/IEEE international conference on Human-robot in-

teraction (pp. 251–258).

Mimno, D., Wallach, H. M., Naradowsky, J., Smith, D. A., & McCallum, A. (2009). Polylingual topic

models. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language

processing: Volume 2-Volume 2 (pp. 880–889).

Mooney, R. J. (2007). Learning for semantic parsing. In Computational Linguistics and Intelli-

gent Text Processing (pp. 311–324). Springer.

Mooney, R. J. (2008). Learning to Connect language and Perception. In AAAI (pp. 1598–1601).

Nevin, B. E. (2002). The Legacy of Zellig Harris: Language and information into the 21st cen-

tury. Volume 1: Philosophy of science, syntax and semantics (Vol. 228). John Benjamins

Publishing.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duchesnay, E.

(2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research,

REFERENCES 53

12, 2825–2830.

Pinto, N., Doukhan, D., DiCarlo, J. J., & Cox, D. D. (2009). A high-throughput screening approach

to discovering good forms of biologically inspired visual representation. PLoS computa-

tional biology, 5(11), e1000579.

Poshyvanyk, D., & Marcus, A. (2007). Combining formal concept analysis with information

retrieval for concept location in source code. In Program Comprehension, 2007. ICpC’07.

15th IEEE International Conference on (pp. 37–48).

Řehůřek, R., & Sojka, P. (2010, May 22). Software Framework for Topic Modelling with Large Cor-

pora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks

(pp. 45–50). Valletta, Malta: ELRA.

Richardson, K., & Kuhn, J. (2014). UnixMan Corpus: A Resource for Language Learning in the

unix Domain. LREC.

Roy, D. (2005). Semiotic schemas: A framework for grounding language in action and percep-

tion. Artificial Intelligence, 167(1), 170–205.

Schaul, T., Bayer, J., Wierstra, D., Sun, Y., Felder, M., Sehnke, F., . . . Schmidhuber, J. (2010).

PyBrain. Journal of Machine Learning Research, 11, 743–746.

Singhal, A. (2001). Modern information retrieval: A brief overview. IEEE Data Eng. Bull., 24(4),

35–43.

Song, F., & Croft, W. B. (1999). A general language model for information retrieval. In Proceedings

of the eighth international conference on Information and knowledge management (pp.

316–321).

Theobald, C. (1974). Generalizations of mean square error applied to ridge regression. Journal

of the Royal Statistical Society. Series B (Methodological), 103–106.

Wong, Y. W., & Mooney, R. J. (2006). Learning for semantic parsing with statistical machine

translation. In Proceedings of the main conference on Human Language Technology Con-

ference of the North American Chapter of the Association of Computational Linguistics (pp.

439–446).

Zhai, C., & Lafferty, J. (2001). A study of smoothing methods for language models applied to

ad hoc information retrieval. In Proceedings of the 24th annual international ACM SIGIR

conference on Research and development in information retrieval (pp. 334–342).

	Acknowledgment
	Introduction
	Background
	Outline
	Context-theoretic Semantics
	Computational Distributional Semantics
	Overview of the vector-space model
	Meaning captured in Hyperspaces
	Hyperspace Analogue to Language
	Latent Semantic Analysis

	Latent Dirichlet Allocation

	Grounding

	Previous Work
	Grounding by Translation
	Source-Code Retrieval
	LSI in Source-Code Retrieval
	LDA in Source-Code Retrieval

	Source-Code Retrieval as Translation
	Previous Work

	Methods and Data set
	Outline
	Data
	Feature vectors
	Translation Models
	Linear models
	Multilayer Perceptron
	Training the neural network translation model

	Ranking

	Experiments
	The setup
	Data sets
	Queries

	Evaluation
	Vector Representation
	Retrieval engine
	Parameter tuning for training
	Training the Linear Models
	Neural Networks Training
	Implementations
	Network Architecture
	Hyper-parameter tuning

	Results
	Results on Retrieval
	Word Similarity
	Prototype

	Future work and Conclusion
	Future work
	More realistic evaluation
	Extensive tuning of the Multilayer Perceptron
	Web-interface

	Conclusion

	References

