
Association rule mining for
recommender systems

Rick Smetsers
ANR: 349120

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Arts in Communication and Information Sciences,
Master Track Human Aspects of Information Technology,

at the School of humanities
of Tilburg University

Thesis committee:

Dr. M.M. (Menno) van Zaanen
Dr. S. (Sander) Wubben

Tilburg University
School of Humanities

Department of Communication and Information Sciences
Tilburg center for Cognition and Communication (TiCC)

Tilburg, The Netherlands
August 2013

Abstract

Association rule mining is the task of identifying patterns in basket data –
transactions that possibly consist of multiple items. The aim of this thesis is to
better understand the applications of association rule mining for recommender
systems, by researching how such systems perform compared to state-of-the art
collaborative filtering approaches. First, we survey the tasks and purposes of
recommender systems and we present an overview of the field of current gener-
ation collaborative filtering recommender systems. Then, two novel approaches
are proposed for recommending items of low complexity. These items (such as
books, movies and music tracks) rely on little or no metadata. Our first sys-
tems uses association rules as a complete replacement of collaborative filtering
to predict item ratings, and our second system uses association rule mining to
preprocess a latent factor model. The proposed systems are compared to a third
system that uses a state-of-the art collaborative filtering approach. Our research
methodology comprises an offline evaluation of these systems on the MovieLens
dataset. We found that our systems did not improve upon the performance of
a state-of-the art collaborative filtering approach.

Contents

Preface 5

1 Introduction 7
1.1 Use case: a public library . 7
1.2 Beer and diapers . 8
1.3 Research questions and hypotheses 9
1.4 Outline . 10

2 Recommender systems 11
2.1 Recommendations defined . 12
2.2 Recommender system tasks . 14
2.3 Recommender system functions 16
2.4 Evaluating recommender systems 17

3 Collaborative filtering 21
3.1 Neighbourhood-based approaches 22
3.2 Latent factor models . 26

4 Association rule mining 33
4.1 Mining for rating predictions . 33
4.2 Preprocessing latent factor models 38

5 Experimental setup 43
5.1 Dataset . 43
5.2 Parameter selection . 44
5.3 Evaluation . 45

5.3.1 Measuring rating predictions 45
5.3.2 Measuring ranking performance 46
5.3.3 Evaluating performance 47

6 Results 49
6.1 Significance . 49
6.2 Performance . 51

6.2.1 Association rule mining 52
6.2.2 Matrix factorization of original data 53

3

6.2.3 Matrix factorization of preprocessed data 53

7 Discussion 55

8 Conclusion 59

References 63

Appendices

A System performance 71

4

Preface

Now finish the work, so that your eager willingness to do
it may be matched by your completion of it, according to
your means.

— 2 Corinthians 8:11

Despite my belief that this section is more important than any of those yet
to follow, I will only concisely express my gratitude towards those that have
helped me achieve this goal, as plenty of pages already make up for the rest of
this thesis.

First and foremost, I would like to thank my parents and sister for supporting
me and giving me the opportunity to fully focus on my study this past year.
Second, I would like to thank my supervisors. Menno, thank you for your
guidance during this thesis and the other projects that I have embarked on
during my Masters’. Also, thank you Sander, for taking time out of your busy
schedule to read this thesis. Lastly, I would like to thank Nathan and his
colleagues from Bibliotheek Midden Brabant for giving me the opportunity to
deploy our recommender system in a real-world application.

I would like to conclude this preface with a sincere “thank you” to some of
the most important people in my life, who made sure I took my mind off my
study every now and then.

Thank you Claudette, for being there when I most needed you. Thank you
Jos, for the countless cups of coffee and tea that we have shared during our
years here. Inez, thank you for making me realize that I am capable of so much
more than I thought. Thank you Suzanne, for some the worst jokes I have
heard in my life, and thank you Chris, for letting me win the occasional game
of OpenArena. Lastly, thank you Peter, for keeping my beer mug filled in the
weekends.

5

Chapter 1

Introduction

“Begin at the beginning,” the King said gravely,
“and go till you come to the end; then stop.”

— Lewis Carroll, Alice in Wonderland

As more and more information becomes available digitally, users will need help
to determine what content to read, which products to buy, what music to listen
to, or which movies to watch. The need for a digital personal assistant was
recognized two decades ago (Goldberg, Nichols, Oki, & Terry, 1992; Maes, 1994)
and ever since, recommender systems have gained a lot of attention from
experts in fields such as artificial intelligence, information retrieval, machine
learning, and marketing (Adomavicius & Tuzhilin, 2005).

This thesis proposes two novel approaches for recommender systems to iden-
tify interesting items. In this chapter, we explain the motivation for our research
(Section 1.1), we briefly introduce the relevant concepts (Section 1.2) and we
present our research questions and hypotheses (Section 1.3). We conclude this
introduction with an outline of the remainder of this thesis and the methodology
we use to evaluate our approaches (Section 1.4).

1.1 Use case: a public library

By automatically suggesting interesting content, recommender systems have
changed the way how people find interesting information in a collection of books,
movies, or music (Ricci, Rokach, Shapira, & Kantor, 2011). Utilizing past be-
havioral patterns of like-minded people, a recommender system identifies items
that are (hopefully) interesting for a user. As such, a recommender system can
be a valuable addition to an organization’s services.

For the purpose of this thesis we approached Bibliotheek Midden Brabant,
a public library that does not yet utilize this technology. While we were dis-
cussing the features of their application domain and their collection of books,

7

we discovered an important property of user data that is often overlooked in
research on recommender systems: the notion that optimal recommendations
may depend not only on the previous books read by a user, but also on the order
in which those books were read. It would be much more sensible to recommend
The Two Towers after one has read The Fellowship of the Ring, for example.
While this example is trivial, we expect such sequential patterns to be widely
evident in usage data.

Sequential decision problems are subject in studies on language modeling,
a field in which some promising results for recommender systems have been
found (Su et al., 2000; Zimdars, Chickering, & Meek, 2001; Shani, Heckerman,
& Brafman, 2005). Despite these promising results, language models do not
provide us with a proper solution for the problem at hand. The reason for this
is that books are often borrowed in (small) batches by library card holders,
which makes it impossible to effectively determine the order in which the books
were read.

In this thesis, instead of focusing the sequence of items, we focus on these
batches – or baskets – of items that are borrowed, bought or viewed together
by users.1 Let us introduce the approach that we examine, and describe how
this approach relates to traditional recommendation approaches.

1.2 Beer and diapers

The aim of recommender systems is to suggest novel, unexpected items that the
user might like – i.e. items for which the predicted rating is highest. Throughout
the years different approaches have been proposed to maximize the value that
recommendations have for a user. Our interest lies in the group of approaches
that are collectively known as collaborative filtering, which recommend to a
user the items that people with similar tastes have liked in the past. For exam-
ple, if you ponder on watching 2001: A Space Oddyssey, you might favor the
opinion of a close friend with whom you have enjoyed watching multiple movies
together over the opinion of your mother who seems to have an inexplicable
fondness for movies starring Hugh Grant. Alternatively, you might favor the
opinions of all people that liked a similar movie such as A Hitchhiker’s Guide
to the Galaxy, given that you enjoyed that movie as well.

By studying patterns of behavior, collaborative filtering automates this very
principle of “word-of-mouth” to suggest novel, unexpected items that users
might like. As such, collaborative filtering systems are centered around the
use data mining to discover knowledge in the relations between items and users
(Ricci et al., 2011). In this thesis we focus on a specific type of data mining
knowledge known as association rules. One of the most repeated examples of
knowledge discovery through association rules is the story that beer and dia-

1In the body of this thesis we will use a dataset that is more widely known in the field of
recommender systems, rather than the data from Bibliotheek Midden Brabant. However, as
the datasets share similar properties, the conclusions that are presented in Chapter 8 apply
to our use case in particular.

8

pers frequently appear together in shopping baskets. “The explanation goes
that when young fathers are sent out on an errand to buy diapers, they often
purchase a six-pack of their favorite beer as a reward”.2 Regardless of whether
this example is fact or fiction, it gives a good indication of the approach we take
on in this thesis.

Association rule mining aims to find rules that will predict the occurrence
of an item, based on other items in user’s shopping baskets (as opposed to their
complete transaction history in collaborative filtering). Despite its similarities
with collaborative filtering, association rule mining has not become mainstream
for recommender systems (Amatriain, Jaimes, Oliver, & Pujol, 2011). Never-
theless, some promising examples of recommender systems based on association
rule mining exist (Mobasher, Cooley, & Srivastava, 2000; Davidson et al., 2010).
These systems “indicate that association rules still have not had their last word”
(Amatriain et al., 2011, p.65).

1.3 Research questions and hypotheses

The aim of this thesis is to better understand the applications of association
rule mining for recommender systems, by researching how such systems per-
form compared to state-of-the art collaborative filtering approaches. Here, we
focus on items of low complexity, such as books, movies and music tracks. Our
problem definition is twofold. First, we develop a novel approach that can pre-
dict a user’s utility for an item by using the association rules that are evident in
previous interactions with the system. Accordingly, our first research question
is:

RQ1 To what extent can association rule mining be used as an alternative to
state-of-the-art collaborative filtering recommender systems?

Second, we propose a system that uses association rules in conjunction with
current state-of-the-art collaborative filtering approaches. In this approach we
use association rule mining to make the input data for a collaborative filtering
system less sparse. We formulate the following research question:

RQ2 To what extent can association rule mining be used to improve state-of-
the-art collaborative filtering recommender systems?

Based on the promising results by Mobasher et al. (2000) and Davidson et al.
(2010) we expect our novel approaches to be suitable alternatives for the current
state-of-the-art in collaborative filtering. Consequently, we hypothesize that

H1 Association rule mining can be used as a suitable alternative for current
state-of-the-art collaborative filtering approaches,

and

H2 Association rule mining can be used to improve state-of-the-art collabora-
tive filtering approaches.

2http://www.dssresources.com/newsletters/66.php

9

http://www.dssresources.com/newsletters/66.php

1.4 Outline

We start this thesis with an explanation of the relevant concepts of recommender
systems in Chapter 2. By formulating the goals and functions of recommender
systems, this chapter emphasizes the need for recommender systems and pro-
vides the reader with an intuition as to why such systems are important in the
current digital landscape.

In Chapter 3 we describe in detail how existing recommendation approaches
work. In this chapter, we limit our review to collaborative filtering, as a com-
prehensive description of alternative recommendation approaches is outside the
scope of this thesis. First, we explain the basic principles that collaborative
filtering and association rule mining approaches use to predict ratings in Sec-
tion 3.1. Then, in Section 3.2 we provide a detailed description of the current
state-of-the-art. Previous research on collaborative filtering is also thoroughly
explored in this chapter.

In our experiments we evaluate two systems based on association rule mining,
which we describe in Chapter 4. The former of these systems uses association
rules as a replacement of collaborative filtering, while the latter uses association
rule mining in conjunction with collaborative filtering to predict ratings. The
performance of these systems is compared to that of state-of-the-art collabora-
tive filtering system, which is described in Chapter 4.

Our research methodology comprises an offline evaluation of these systems.
In Chapter 5 we describe the metrics that we use to evaluate the performance
of our systems. Here, we also describe the experimental setup and dataset for
our experiments. The experimental results are presented in Chapter 6, and our
results are discussed in Chapter 7.

Chapter 8 concludes this thesis. In this chapter we formulate the answers
that we found to our research questions. Based on these answers we discuss
the extent to which association rule mining is applicable for recommending low-
complex items. Given that this thesis proposes a range of novel recommendation
approaches, we also address some future research directions in our conclusion.

10

Chapter 2

Recommender systems

People often say motivation doesn’t last.
Neither does bathing –
that’s why we recommend it daily.

— Hilary Hinton ‘Zig’ Ziglar

Recommender systems guide users in a personalized way to interesting, surpris-
ing, and useful items from a large number of possible options. The results are
known as recommendations; options that are hopefully worthy of consideration
(Burke, 2007). The motivation for recommender systems comes from the in-
creasing volume of digitally available information. The need for filtering digital
information was recognized more than two decades ago (Goldberg et al., 1992;
Maes, 1994). These early recommender systems proposed a variety of methods
to filter the increasing amounts of e-mail. Nowadays, recommender systems are
deployed in a wide variety of applications, such as e-commerce, online music
and movies, news, and digital libraries (Montaner, López, & De La Rosa, 2003).
Today, recommendations can act as a viable alternative to traditional informa-
tion retrieval methods, because they do not need keywords to search for content.
Large scale commercial systems such as YouTube, Amazon, and Netflix, show
that these recommendations are of great importance for the companies’ services.
According to Linden, Smith, and York (2003, p.76):

“[Amazon.com] click-through and conversion rates – two important
measures of Web-based and e-mail advertising effectiveness – vastly
exceed those of untargeted content such as banner advertisements
and top-seller lists.”

In this chapter we discuss the need for recommender systems in the current
digital landscape. We begin this chapter with a formal definition of recom-
mendations (Section 2.1). Then, the various tasks for recommender systems
(Section 2.2), and their functions (Section 2.3) are explained. We conclude this

11

chapter with an overview of the various evaluation methods for recommender
systems (Section 2.4).

2.1 Recommendations defined

The purpose of a recommender system is to estimate ratings for items that
have not yet been rated by a user (Adomavicius & Tuzhilin, 2005). While
the recommendation task has been described formally more than a decade ago
(Shardanand & Maes, 1995; Hill, Stead, Rosenstein, & Furnas, 1995), we follow
the more recent formal representations proposed by Ricci et al. (2011). In their
textbook the authors present an overview of the field of recommender systems
and they describe the current generation of recommendation approaches. Their
formal representations are appropriate for our thesis, because they are consistent
across the different approaches that we present in Chapter 3 and Chapter 4.

Formally, the recommendation problem can be split into two subproblems:
the prediction problem and the presentation problem. The prediction
problem is about the estimation of an item’s utility for a user. Let U be the set
of all users and let I be the set of all possible items that can be recommended.
Moreover, let R be the set of all possible ratings that the system can record,
and let S be the range of possible values for a rating. A rating r ∈ S is a score
by a user u ∈ U for an item i ∈ I. It is defined as a tuple 〈u, i, r〉 that is denoted
as ru,i. We denote with K the subset of ratings ru,i in R that the system has
recorded.

The prediction problem arises because ratings are usually not defined for
the whole user-item space (i.e. K ⊂ R). Our goal is to come up with a utility
function f that predicts unknown ratings. We denote such predicted ratings
with r̂u,i. Formally, this means K needs to be extrapolated to the entire U×I×S
space: R (see Equation 2.1).

f : U × I × S → R
K → R

(2.1)

Once we have defined a utility function, the recommendation problem is reduced
to a problem of presentation. Let us denote with Iu the set of items that are
known to user u. Similarly, let us denote with Ui the set of users that know
item i. For the active user u we aim to return the top-n previously unknown
items i ∈ I\Iu for which the predicted rating r̂u,i is highest (see Equation 2.2).
A system that presents the top-n most relevant items to the user is known as a
top-n recommender.

argmax
i∈I\Iu

r̂u,i (2.2)

Recommender systems use various kinds of data to predict unknown ratings.
Independent of the type of approach being used, data used by recommender

12

systems consists of three kinds of objects: users, items, and interactions –
the latter being most commonly referred to as ratings (Ricci et al., 2011).

Users interact with recommender systems to discover new items. In order to
personalize recommendations, recommender systems exploit a range of in-
formation sources about the users. Accurate modeling of their interests
is required for providing good personalized recommendations (Berkovsky,
Kuflik, & Ricci, 2008). The resulting models, known as user profiles, are
subject in studies on user modeling (Fischer, 2001). In a sense, recom-
mender systems can be viewed as tools that generate recommendations by
building and exploiting user models. In personalized recommendations,
the user model will always play a central role (Berkovsky et al., 2008).
Depending on the recommendation approach, users might be modeled as
a list of the ratings they provided for some items. Other approaches might
use socio-demographic attributes such as age, gender, profession, and ed-
ucation to construct these user models (Ricci et al., 2011).

Items are the objects that are being recommended. In their extensive taxon-
omy, Montaner et al. (2003) provide an overview of item domains for which
recommender systems have been developed. These include news articles
(Sakagami & Kamba, 1997), web pages (Chen, Meng, Zhu, & Fowler,
2000), e-mail (Goldberg et al., 1992), movies (Hill et al., 1995), music
(Shardanand & Maes, 1995), and e-commerce products (Cunningham,
Bergmann, & Schmitt, 2001). The complexity of an item is of impor-
tance when selecting the most appropriate recommendation approach.
Montaner et al. (2003) argue that recommendations for more complex
items typically rely on more (meta)data. The authors consider the most
complex items in their taxonomy to be financial investments, insurance
policies, jobs, and travels. Consumer electronics, such as PCs, mobile
phones, and digital cameras are considered to be of medium complex-
ity. News items, web pages, movies, music tracks, and books are of low
complexity. In this thesis we are concerned with items of low complexity.

Interactions between users and items are either inferred by interpreting user
actions, or are explicitly expressed by users. These interactions are also
known as transactions (Ricci et al., 2011). In most recommender sys-
tems, ratings are the most important type of interaction between items
and users. Schafer, Frankowski, Herlocker, and Sen (2007) distinguish
three types of ratings:

• Ordinal ratings express an extent to which users relate to an item.
These ratings are often scalar, either expressed numerically (e.g. 1 –
5 stars), or through ordinal descriptions (e.g. “strongly agree, agree,
neutral, disagree, strongly disagree”).

• Binary ratings model choices in which the user is simply asked to
decide if a certain item is conceived positively or negatively (e.g.
“thumbs up or thumbs down”).

13

• Unary ratings either indicate that a user has rated the item pos-
itively (e.g. Facebook “like”), or has interacted with an item, for
example by observing, purchasing or borrowing it. As such, unary
ratings are either explicitly expressed, or interpreted implicitly.

Besides ratings, interactions may also consist of other data that is useful
for the prediction algorithm that the system is using. These interactions
may be expressed explicitly by a user, such as tags (e.g. Bogers, 2009),
or may be inferred implicitly by the system, such as viewing times (e.g.
Parsons, Ralph, & Gallagher, 2004).

2.2 Recommender system tasks

Recommender systems help users reduce the information overload problem in
their decision-making process. There are multiple reasons as to why users may
need help making decisions. A recommender system’s general task is to cater
these user needs. In their acclaimed work on the evaluation of recommender sys-
tems, Herlocker and Konstan (2004) describe six generic tasks for recommender
systems that help users to fulfill their goals. Some of these tasks are similar to
those of information retrieval systems. For an overview of information retrieval
tasks we refer to Manning, Raghavan, and Schütze (2008).

Annotation in context The original recommendation problem was defined as
a filtering task. Tapestry (Goldberg et al., 1992) and GroupLens (Resnick,
Iacovou, & Suchak, 1994) were two early recommender systems that fil-
tered through discussion postings to decide which messages were worth
reading for the user. Because in such case context of the messages is of
importance, the task required retaining the order of messages and use a
prediction model to annotate messages in context. Based on these pre-
dictions users decide which messages to read; they help users distinguish
between relevant and non-relevant content.

Find good items After Tapestry and GroupLens, systems were developed
that focused more on actual recommendations. Ringo (Shardanand &
Maes, 1995) and the Bellcore Video Recommender (Hill et al., 1995) pro-
vided users with ranked lists of the recommended items along with the
predicted rating for these items. This turned out to become the most
common core recommendation task in most commercial recommender sys-
tems (Herlocker & Konstan, 2004; Ricci et al., 2011). Nowadays, in some
cases the predicted ratings are not shown to the user. Instead, some sys-
tems display the items that the recommendations were based upon (i.e.
“Because you like Pulp Fiction, you might like these movies”).

Find all good items The problem that led to the need for recommender sys-
tems was one of information overload (Herlocker & Konstan, 2004). In
most cases, recommender systems aim to find some good items and filter

14

out a lot of bad ones. However, in some cases users are interested in all
relevant items. Lawyers, for example, often can not afford to miss a single
relevant legal document. If a recommender system is designed for such a
purpose, it should suggest all the items that satisfy the user needs, even if
this means that some items that are not interesting are presented to the
user.

Recommend sequence Instead of focusing on the generation of a single rec-
ommendation, the task is either to recommend the next item given a
sequence of items that have been rated by a user, or to recommend a se-
quence of items that is pleasing as a whole (Ricci et al., 2011; Herlocker &
Konstan, 2004). Typical examples include recommending book or movie
series, or an ensemble of musical tracks. Little research has been con-
ducted on this type of task (Hayes & Cunningham, 2001; Shani et al.,
2005; Su et al., 2000).

Recommend bundle Recommend a group of items that fit well together. A
set of books in a library, for example. Ricci, Cavada, Mirzadeh, and
Venturini (2006) present such a system in the context of travel recom-
mendations. A travel plan may be composed of a destination, a flight,
an accommodation, and some attractions that are located close to the ac-
commodation. From a user’s point of view such a bundle can be selected
as a single travel plan.

Just browsing In talking with users of Amazon.com and of several other web-
sites, Herlocker and Konstan (2004) discovered that many of them use
the sites even when they have no intentions of purchasing an item. In-
stead, they simply find it pleasant to browse. In such case, the task of the
recommender system is to help the user to find the items that are likely
to be interesting to a user for that specific browsing session (Ricci et al.,
2011). Here, not only the accuracy of algorithms is of importance, as the
interface, the ease of use, and the level and nature of information provided
also contribute to the quality of a browsing session (Herlocker & Konstan,
2004).

Find credible recommender Users do not automatically trust a recommender
system. Many of them “play around” for a while to see if the recommender
matches their tastes well. Herlocker and Konstan (2004) report on users
who are looking up their favorite movies on their system to check up on
the quality of the recommendations.

“Some users even go further. Especially on commercial sites,
they try changing their profiles to see how the recommended
items change. They explore the recommendations to try to find
any hints of bias. A recommender optimized to produce ‘useful’
recommendations (e.g., recommendations for items that the user
does not already know about) may fail to appear trustworthy

15

because it does not recommend movies the user is sure to en-
joy but probably already knows about” (Herlocker & Konstan,
2004, p.10).

2.3 Recommender system functions

Not only a user’s motivation for using a recommender system can vary. There
are various reasons as to why the service provider uses the technology as well.
It is important to be aware of these functions while designing, deploying and
evaluating the system. Here, we mention a selection of the various recommender
system functions that are described by Ricci et al. (2011):

Increase conversion rate From a commercial service provider’s point of view
an increase in the number of items sold is often the most important func-
tion for a recommender system. For such systems the conversion rate is the
number of items sold compared to the number of items viewed over time.
For non-commercial service providers the conversion rate is expressed dif-
ferently. For example, for a news recommender it might be expressed as
a relative increase in article reads.

Sell more diverse items Prediction models try to accurately predict the items
that users like. However, quite often the recommendations tend to be bi-
ased towards popular, well-known items.

“. . . in 2007 only 1% of all digital tracks accounted for 80% of all
sales. Similarly, 1,000 albums accounted for 50% of all album
sales, and 80% of all albums sold were purchased less than 100
times” (Celma, 2008, p.vii).

In some cases, this bias towards popular items decreases the effectiveness
of the recommendations. In order to sell more diverse items, prediction
models recommend unpopular items from the Long Tail to the right users.
The Long Tail describes a distribution that is composed of a small number
of popular items, and a large amount of unpopular ones (Anderson, 2008).
Such a distribution is not unique for the number of albums sold. The
words we use in our every day language, names, scientific citations and
earthquake magnitudes are also distributed in this way. In general, when
the probability of measuring a particular value of some quantity varies
inversely as a power of that value, the quantity is said to follow a power
law (Newman, 2005). Depending on the domain, this phenomenon is
known as the Long Tail, Zipf’s law or the Pareto distribution.

Increase user satisfaction The combination of effective, accurate recommen-
dations and a usable interface will increase the users’ evaluation of the
system. This in turn will increase system usage and the likelihood that
the recommendations will be accepted (Ricci et al., 2011). In essence, this

16

function is strongly related to Sell more diverse items, as accurate recom-
mendations of items in the Long Tail are generally positively perceived.
In his book, Anderson (2008) argues that the future of business is in the
Long Tail of items: selling less of more. He propagates what Celma and
Cano (2008) describe as the Hits vs. Niche paradigm:

“Until now the world was ruled by the Hit or Miss classifica-
tion, due in part to the shelf space limitation of the brick-and-
mortar stores. A world where a music band could only succeed
selling millions of albums, and touring worldwide. Nowadays,
we are moving towards the Hit vs. Niche idea, where there is
a large enough availability of choice to satisfy even the most
‘Progressive-obscure-Swedish-metal’ fan. The problem, though,
is to filter and present the right artists to the user, according to
her musical taste” (Celma & Cano, 2008, p.5:1).

In Section 2.2 we have mentioned some important motivations as to why users
may want to use a recommender system. In this section we have described a
selection of recommender system functions from a service provider’s perspective.
It is important to note here that a recommender system must balance its user
tasks and their goals with its function for the service provider in order to offer
a service that is valuable to both.

2.4 Evaluating recommender systems

Recommender systems have a variety of properties that affect the user experi-
ence, such as prediction accuracy, scalability, and robustness (Shani & Gunawar-
dana, 2011). In previous sections we have argued why it is important to balance
recommender systems’ tasks (from a user’s perspective) with its functions (from
a service provider’s perspective). Depending on these needs we decide on which
properties we need to focus when we evaluate the system. Following the termi-
nology by Herlocker and Konstan (2004) and Shani and Gunawardana (2011),
we describe three types of evaluation methods: offline evaluation, user studies
and online evaluation. We conclude this section, with a description of what can
and cannot be evaluated with each of these methods.

Evaluation methods for recommender systems are motivated by those for
related research areas. We refer to publications in the fields of machine learning
(e.g. Witten, Frank, & Hall, 2011) and information retrieval (e.g. Voorhees,
2002; Manning et al., 2008) for a more detailed discussion of the topic.

Offline evaluation methods measure the extent to which the system can pre-
dict ratings that a user has previously assigned. As such, this evaluation
metric is also known as system-centric evaluation (Celma, 2008). In
offline evaluation, computational experiments are conducted in order to
determine how a prediction model would perform in practice. The most

17

common way to do this is, is by means of a repeated “all but n” experi-
ment. Here, for each user n item ratings are “hidden” in the dataset. The
prediction model is trained on visible partition of the data, the train set.
The “hidden” partition, or test set, is used to evaluate the model. This
process is then repeated a couple of times to account for biases in the train
set.1

Offline evaluation methods can be subdivided in three categories. Prediction-
basedmetrics compare the predicted ratings to the actual values. Decision-
based metrics evaluate the fitness of the top-n recommendations for a
user. Finally, rank-based metrics compare the ordered list of a user’s
known ratings to the list of predicted ratings.

User studies are conducted by recruiting users, and asking them to perform
some tasks that involve interaction with the recommendation system (Shani
& Gunawardana, 2011). In contrast to offline evaluation methods that are
system-centric, user studies focus on user judgements of the proposed rec-
ommendations. The category refers to a wide range of methodologies that
often focus on evaluating more subjective aspects of recommendations,
such as serendipity (e.g. Bogers, Rasmussen, Sebastian, & Jensen, 2013),
or other user-perceived qualities of the recommendations. Often the eval-
uations consist of user surveys in which qualitative questions are posed.

Online evaluation methods measure the change in user behavior that a rec-
ommender system imposes. Typically, online evaluation consists of A/B
testing. This is a methodology in which two variants of a system, A and B,
are presented to a random, equal distribution of users that simultaneously
make use of the system (i.e. in the same time span). For example, in case
of an e-commerce site, A could be a version of the website that presents
the user top sellers, while B could include personalized recommendations.
The goal of A/B testing is to identify changes to a system that maximize
an outcome of interest, such as profit, the number of users, or the diversity
of the items sold.

From the three evaluation methods that we have surveyed here, user studies
provide the most insights in the extent to which a recommender system fulfills
its tasks for the users (which we have described in Section 2.2). User studies
allow the service provider to gain insight in properties of recommendations that
typically cannot be measured with the other two evaluation methods that we
survey here. On the downside, user studies are expensive to conduct compared
to offline evaluation methods. As the recruited test subjects should represent
the actual users of the system as closely as possible, the organization of user

1An “all but n” experiment is preferred over the more common n-fold cross validation
experiment (where the data is divided in n partitions and the model is trained on n − 1
partitions), because it is better to evaluate a recommender system on a per-user basis (Shani
& Gunawardana, 2011). In a n-fold cross validation experiment the size of the test set differs
for each user, which makes it harder to average the results.

18

studies require much more attention compared to offline and online evaluation
methods (Shani & Gunawardana, 2011).

From a service provider’s perspective, online evaluation is often most useful,
as it provides the strongest evidence for the true value of a recommender system
or a specific approach (Section 2.3). Through A/B testing, an increase in profit,
the number of user, or the diversity of items sold can directly be identified as
the result of a specific recommendation approach.

However, as both user studies and online evaluation are subject to resources
that are beyond the scope of this research, the evaluation in our research is
limited to offline evaluation methods. Offline evaluation has its advantages as
well. They are attractive because they allow us to compare a range of candidate
approaches at a low cost, as they require no interaction with real users. Accord-
ing to Shani and Gunawardana (2011), “the downside of offline experiments is
that they can answer a very narrow set of questions, typically questions about
the prediction power of an algorithm”. As such, we cannot directly measure a
system’s influence on user behavior in this setting. Offline methods are often
used to determine whether or not a certain recommendation approach is a valid
candidate for further evaluation. In Chapter 5, we describe offline evaluation
metrics that we use in our experiments.

19

Chapter 3

Collaborative filtering

Different roads sometimes lead to the same castle.

— George R.R. Martin A Game of Thrones

In Chapter 2 we explained the recommendation problem and the reasons why
recommender systems are of such great importance in the current digital land-
scape. In this chapter we describe how recommender systems solve the recom-
mendation problem.

The problem of recommending items has been studied extensively, and two
main paradigms have emerged. Content-based recommendation approaches
recommend items similar to those the active user has liked in the past, whereas
collaborative filtering recommendation approaches identify users whose tastes
are similar to those of the active user and recommend items they have liked
(Balabanović & Shoham, 1997). In this chapter we focus on the latter group of
approaches, as the focus of this thesis is on recommendations based on usage
data.

There are different ways to predict ratings based on collaborative filter-
ing. Neighbourhood-based approaches estimate the interest of a user for an
item by using the ratings for this item by other users that have similar rating
patterns, called neighbours (Desrosiers & Karypis, 2011). We discuss these
neighbourhood-based collaborative filtering approaches in Section 3.1.

Model-based systems use the collection of ratings to learn a probabilistic
model, which is then used to make rating predictions (Adomavicius & Tuzhilin,
2005). The field of model-based recommender methods is very diverse, as any
system that trains a prediction model belongs to this group. In Section 3.2,
we discuss an approach known as latent factor modeling. This approach is
considered as the state-of-the-art today (Koren, Bell, & Volinsky, 2009).

The limitations of collaborative filtering are often addressed in studies on
more specific recommendation approaches that have emerged in the past few
years. Among these are:

21

hybrid approaches that combine collaborative filtering and content-based meth-
ods,

knowledge-based approaches that exploit deep knowledge about the under-
lying item domain,

context-aware approaches that take into account additional contextual in-
formation, such as time and location.

It it beyond the scope of this thesis to discuss these approaches, as they rely
on different types of input data. For more information on these approaches,
we refer to Adomavicius and Tuzhilin (2005), Felfemig, Friedrich, Jannach, and
Zanker (2011), and Adomavicius and Tuzhilin (2011) respectively.

3.1 Neighbourhood-based approaches

Collaborative filtering approaches predict user preferences for items by learning
from user-item interactions. In neighbourhood-based approaches (also known as
memory-based or nearest-neighbour approaches) the system guesses which
items are interesting by comparing the user’s rating pattern to other that of
other users.

“Recommender systems based on nearest-neighbours automate the
common principle of word-of-mouth, where one relies on the opinion
of like-minded people or other trusted sources to evaluate the value
of an item (movie, book, articles, album, etc.) according to his own
preferences. Due to their simplicity and efficiency, memory-based
methods enjoy a huge amount of popularity among collaborative
filtering recommender systems” (Desrosiers & Karypis, 2011, p.114).

Consider the user-item matrix in Table 3.1. Based on Desrosiers and Karypis
(2011), Example 3.1 intuitively explains how collaborative filtering works.

Example 3.1. Peter is trying to decide whether or not to watch Django Un-
chained. He knows Jeff shares very similar tastes when it comes to movies:
both of them liked Inglorious Basterds and 300, and disliked V for Vendetta
and Iron Man. Lea, on the other hand, seemingly has different tastes, since she
enjoyed the latter two movies. While Kim and Peter have a similar opinion on
Iron Man, Kim has not seen any of the other movies. Based on their rating
similarity, Peter favors Jeff opinion over Kim’s and Lea’s. He decides to watch
Django Unchained.

In User-based collaborative filtering methods, such as the one described in
Example 3.1, each user u ∈ U is represented as a vector in an n dimensional
rating space, where n is the number of items i in the system. We estimate
the rating r̂u,i of a user for an unknown item by averaging the ratings that the
users most similar to u gave to that item. These like-minded users are called

22

Table 3.1: Example user-item matrix depicting ratings for five items by four
users

Django
Unchained

Inglorious
Basterds

300 V for
Vendetta

Iron Man

Lea 1 2 1 5 4
Jeff 5 4 5 2 1
Kim 1 2
Peter ? 5 4 1 2

the nearest-neighbours. Suppose for each user v 6= u we have a value wu,v

representing the similarity between u and v.1 The k nearest neighbors of u,
denoted by N (u), are the k users v with the highest similarity to user u. When
we estimate a user’s rating for item i, we only consider its nearest-neighbours
who have rated i. We denote the set of users most similar to u who have rated
i as Ni(u).

The value of the unknown rating ru,i is an aggregate of the ratings in Ni(u)
(Equation 3.1):

r̂u,i = aggr
v∈Ni(u)

rv,i (3.1)

Various aggregation functions have been proposed in literature.2 We consider
the aggregation function of Desrosiers and Karypis (2011), because it is both
recent, simple and widely accepted. The estimated rating r̂u,i is a function of
the average ratings given to i by the neighbors in Ni(u), where the contribution
of each neighbor v is weighed by their similarity to user u (wu,v) (Equation 3.2).
Here |wu,v| is the number of nearest neighbors.

r̂u,i =

∑
v∈Ni(u)

wu,vrv,i∑
v∈Ni(u)

|wu,v|
(3.2)

Instead of relying on the opinion of like-minded users to predict a rating, item-
to-item (or item-based) collaborative filtering matches each of the user’s pur-
chased and rated items to similar items (Linden et al., 2003). We illustrate
how item-to-item collaborative filtering works by paraphrasing an example by
Desrosiers and Karypis (2011). In Example 3.2 we revisit our user-item matrix
from Table 3.1.

Example 3.2. Instead of consulting with Lea, Jeff and Kim, Peter determines
whether Django Unchained is right for him by considering the movies that he

1User similarities can be calculated in different ways. As the methods for computing the
similarity between two vectors are not specific for user-based collaborative filtering approaches,
we discuss these methods later in this section.

2For an overview, see Adomavicius and Tuzhilin (2005).

23

has already seen. He notices that people that have rated this movie have given
similar ratings (both positive and negative) to Inglorious Basterds and 300.
Given that Peter liked these two movies he concludes that he will also like
Django Unchained.

Formally, we denote by Nu(i) the set of items most similar to item i that have
been rated by user u. The rating r̂u,i is an aggregate of the ratings of the set of
items j most similar to i that have been rated by user u, Nu(i) (Equation 3.3):

r̂u,i = aggr
j∈Nu(i)

ru,j (3.3)

The reader might note that Equation 3.3 is very similar to Equation 3.1. For-
mally, item-to-item and user-based collaborative filtering approaches only differ
in their orientation of the item-user matrix. As such, any user-based rating
estimation function can be applied in an item-based approach as well. Con-
sider Equation 3.2. If we wish to use this rating estimation in an item-based
approach, we take the weighted average of the ratings given by u to the items
of Nu(i) (Equation 3.4):

r̂u,i =

∑
j∈Nu(i)

wi,jru,j∑
j∈Nu(i)

|wi,j |
(3.4)

Despite their formal similarities, the choice between an item-to-item or a user-
based approach can have significant impact on the quality of the recommenda-
tions. When choosing an approach, five criteria should be considered:

Accuracy The accuracy of neighbourhood-based recommendation approaches
depends mostly on the ratio between the number of users and the number
of items in the system. Often, a small number of high-confidence nearest-
neighbors is preferred to a large amount of neighbors with few overlapping
interactions. Therefore, in case of large commercial systems with millions
of users and only thousands of items, such as Amazon or YouTube, an
item-to-item approach yields more accurate recommendations (Linden et
al., 2003; Davidson et al., 2010).

Efficiency Computational costs also depend on the ratio between the number
of users and items. When the number of users exceeds the number of
items, item-to-item approaches require less time to compute the similarity
weights (w), making them more scalable (Linden et al., 2003).

Stability Item-based methods are preferred if the list of available items is fairly
static in comparison to the users of the system. Similarity weights can then
be computed at infrequent time intervals. In applications where the list
of available items is constantly changing, user-based methods could prove
to be more stable (Desrosiers & Karypis, 2011).

Transparency Item-to-item collaborative filtering can easily justify a recom-
mendation by listing the items that caused an item to occur in the list of

24

recommendations (Davidson et al., 2010). User-based recommendations
can be justified less easily in this sense, because the user typically does
not know the other users of the system.

Serendipity Because they work with user similarity, user-based approaches
are more likely to make serendipitous recommendations. A user’s nearest
neighbors, despite being similar to the active user, might have rated a
broad variety of interesting items that are unknown to the user. Item-
based recommendations tend to recommend items that are more strongly
related to those appreciated by the user at hand.

Regardless of the user-based or item-to-item approach, two decisions need to be
made when we apply memory-based collaborative filtering. We need to decide
on how the similarity weights are computed, and whether or not we normalize
the rating. Below, we describe the considerations for these decisions. The
descriptions and the equations are partly derived from Desrosiers and Karypis
(2011):

Computation of the similarity weights Various metrics have been used to
compute the similarity weight w for two users u ∈ U and v ∈ V. A common
method is to measure the cosine of the angle between their rating vectors
~u and ~v (Equation 3.5):

wu,v = similarity(u, v) = cos(~u,~v) =
~u · ~v

‖~u‖‖~v‖
(3.5)

The cosine similarity can be calculated for two items, i ∈ I and j ∈ I as
well. Each vector then corresponds to an item rather than a user, and the
vector dimensions correspond to the users who have rated that item. The
values correspond to the ratings by these users for the item.

Mobasher et al. (2000) and Davidson et al. (2010) propose another metric
to calculate similarity weights for item-based approaches. They make use
of a concept known as co-visitation to compute the similarity weights
between items. For each pair of items (i, j) they count how often they
were co-visited by users. A pair of items is co-visited if a user has rated
both items within a certain transaction (usually defined as a one-day
time period). Let us denote this co-visitation count with ci,j . Then the
similarity of item i to item j is defined according to Equation 3.6.

wi,j = similarity(i, j) =
ci,j
cicj

(3.6)

The denominator cicj acts as a normalization function for the co-visitation
counts, as it takes the popularity for i and j in account. Here, ci and cj are
the total occurrence counts for items i and j respectively. The approach
we describe in following chapters, known as association rule mining, is
closely related to the one proposed by Mobasher et al. (2000) and Davidson

25

et al. (2010). Instead of using the co-visitation counts, we use association
rules to calculate the similarity weights. In Chapter 4 we will describe
this method in more detail.

Normalization of the ratings Each user has its own personal scale when it
comes to assigning ratings to items. We need to decide if we want to take
these personal rating scales in account. The most straightforward way
of doing this is by mean-centering, or normalizing a user’s ratings. In
user-based approaches, a rating ru,i for an item i by a user u is normalized
by by subtracting the average rating r̄u of the user. (Equation 3.7):

h(ru,i) = ru,i − r̄u (3.7)

When predicting a rating r̂u,i using this approach, Equation 3.2 is not
sufficient. A user-based prediction of a rating is obtained by taking in
account both the active user’s average rating r̄u and neighbors’ average
ratings v ∈ Ni(u) : r̄v (Equation 3.8):

r̂u,i = r̄u +

∑
v∈Ni(u)

wuv(rvi − r̄v)∑
v∈Ni(u)

|wuv|
(3.8)

Mean-center normalization of ru,i can also be applied in an item-based
collaborative filtering approach. Here, a rating is transformed to a mean-
centered one by subtracting to ru,i the average r̄i of the ratings given to
item i by users in Ui. When predicting ratings, we now need to take in
account the average rating r̄i for item i and the average ratings for neigh-
boring items j ∈ Nu(i) : r̄j . Equation 3.4 thus becomes Equation 3.9.

r̂u,i = r̄i +

∑
j∈Nu(i)

wij(ruj − r̄j)∑
j∈Nu(i)

|wuv|
(3.9)

Memory-based collaborative filtering methods have been applied in various do-
mains, such as e-commerce (Linden et al., 2003; Cunningham et al., 2001), movie
and video recommendations (Hill et al., 1995; Good et al., 1999; Davidson et
al., 2010), music recommendations (Celma, 2008; Shardanand & Maes, 1995;
Hayes & Cunningham, 2001), web recommendations (Balabanović & Shoham,
1997), and netnews filtering (Resnick et al., 1994). The most notable systems
are listed in Table 3.2. Besides operating in different domains, these systems use
different collaborative filtering approaches (item-based or user-based), and dif-
ferent methods for selecting neighbors. Table 3.3 lists the various combinations
of approaches and methods that have been studied.

3.2 Latent factor models

Due to their simplicity and efficiency, neighbourhood-based approaches enjoy a
huge amount of popularity among collaborative filtering recommender systems.

26

Table 3.2: An overview of pioneering collaborative filtering recommender sys-
tems and their domains.

Name Reference Domain

Amazon.com Linden et al. (2003) e-commerce
Bellcore Hill et al. (1995) movie recommendations
Fab Balabanović and Shoham (1997) web recommendations
FOAF Celma (2008) music recommendations
GroupLens Resnick et al. (1994) netnews filtering
MovieLens Good et al. (1999) movie recommendations
Ringo/FireFly Shardanand and Maes (1995) music recommendations
WebSell Cunningham et al. (2001) e-commerce
YouTube Davidson et al. (2010) video recommendations

Table 3.3: Filtering approaches and neighborhood selection methods for
memory-based collaborative filtering systems.

Name Filtering approach Neighborhood selection

Amazon.com item-to-item cosine similarity
Bellcore user-based Pearson r correlation
Fab user-based cosine similarity
FOAF hybrid RDF graph similarity
GroupLens user-based Pearson r correlation
MovieLens user-based cosine similarity
Ringo/FireFly hybrid mean squared difference, Pearson r

correlation
WebSell user-based case-based reasoning with Pearson r

correlation
YouTube item-to-item association rule mining

27

However, a significant amount of research has been done on model-based col-
laborative filtering in the past ten years. In Section 3.1 we have described
how neighbourhood-based methods use ratings to calculate similarities between
users or items. These similarities are then used to predict unknown ratings.
Because this generalization is delayed until a request is made to the system,
neighbourhood-based approaches are classified as lazy learning methods. In
contrast to lazy learning methods, eager model-based approaches use the set of
user-item ratings to learn a prediction model in an initial training stage. This
model is then used to predict ratings (Adomavicius & Tuzhilin, 2005).

In the past years various probabilistic models have been proposed. In this
section, instead of surveying the entire domain, we focus on a specific group of
prediction model. Latent factor models approach collaborative filtering with
the goal to uncover latent features inferred from the known rating patterns.
High-dimensional input data is represented in a latent factor space of lower
dimensionality. In a sense, these dimensions, or factors are a computerized
alternative to the human notion of genres.

“For movies, the discovered factors might measure obvious dimen-
sions such as comedy versus drama, amount of action, or orienta-
tion to children; less well-defined dimensions such as depth of char-
acter development or quirkiness; or completely uninterpretable di-
mensions. For users, each factor measures how much the user likes
movies that score high on the corresponding movie factor” (Koren
et al., 2009, p.43).

Examples of latent factor models include Latent Dirichlet Allocation (LDA),
in which users are represented as random mixtures over latent topics, where
each topic is characterized by a distribution over items (Blei, Ng, & Jordan,
2003); Probablistic Latent Semantic Analysis (pLSA), which introduces
latent features in a mixture model to discover user clusters and prototypical user
profiles (Hofmann, 2004); and Restricted Bolzmann Machines (RBMs), a
type of artificial neural network for modeling tabular data.

A technique that is of particular interest to us ismatrix factorization (also
known as singular value decomposition, or SVD). Matrix factorization is a
well known dimensionality reduction technique to uncover latent semantic fac-
tors in high dimensional data (Deerwester, Dumais, Furnas, & Landauer, 1990).
Typically usage data for recommender systems is of a very high dimensional
nature. In user-based nearest-neighbour approaches each item is considered a
dimension, and in item-based approaches each user is considered a dimension.

Factorization is a technique that groups strongly correlated dimensions to-
gether to form more descriptive dimensions. Once the prediction model has
factorized the input data, both users and items are represented in a joint la-
tent factor space of lower dimensionality. This reduces the problem that data
sparsity imposes, because ratings are now represented in a space of lower dimen-
sionality. This allows us to find interesting combinations more easily. Items and
users are expressed as a vector of factors inferred from their original rating vec-
tors. These factors may represent the extent to which an item or user is “geared

28

towards males or females” or “serious or escapist”, for example. Because items
and users are represented in a single latent space, ratings can be estimated by
simply computing the cosine similarity of any user - item combination.

Another benefit of latent factor models compared to memory-based collabo-
rative filtering models is that it is more flexible in dealing with various aspects
of input data (Koren & Bell, 2011). Rating normalization can not only be ap-
plied to account for personal user scales, but also for other biases that can not
be measured in neighbourhood-based approaches, such as temporal dynamics.
Moreover, ratings can be predicted as simple dot products, as both items and
users are represented in the same latent semantical space.

Formally, we denote the joint latent factor space of dimensionality f with
Mf . Each item i ∈ I is associated with a vector qi ∈ Mf , in which each element
measures the extent to which the item possesses a factor. Each user u ∈ U is
associated with a vector pu ∈ Mf , in which the elements measure the extent of
interest the user has in items that are high on the corresponding factors (Koren
et al., 2009). An item is recommended to a user when high correspondence
between their factor vectors is found. As such, once the prediction model has
learned the mappings users and items to factors, it can estimate a rating r̂u,i by
taking the dot product of these factor vectors (Equation 3.10). This captures
the latent similarities between user u and item i – the user’s interest in the
item’s characteristics (Koren et al., 2009).

r̂u,i = qipu (3.10)

The main challenge for recommender systems based on latent factor models is
to learn the mappings of the original user-item space to the latent factor space.
It is this task that matrix factorization attempts to solve. To get an intuition
on how this is achieved one needs to understand how regression analysis and
dimensionality reduction by means of principal component analysis (PCA) work.
In Example 3.3 we illustrate this in a simple example.

Example 3.3. In this example we describe the process of reducing dimension-
ality with principal component analysis. Consider the user-item rating matrix
in Equation 3.11):

K = R =

r1,1 r1,2
r2,1 r2,2
...

...
rn,1 rn,2

 (3.11)

Here, ratings by users u for items i are in the form ru,i. Our example system
thus contains two items and n users. Furthermore, ratings are known for all
user-item combinations, thus K = R.

The attentive reader should note that there is no use for a recommender
system in our example. After all, in a user-item space that is fully dense, there
are no ratings left to predict. Nonetheless, this example allows us to clearly
relate the concepts of users, items and ratings to matrix factorization. Like in

29

dislike like

d
is
li
k
e

li
k
e

i 2

i1

(a)

dislike like

d
is
li
k
e

li
k
e

i 2

i1

(b)

dislike like

d
is
li
k
e

li
k
e

i 2

i1

(c)

dislike likei1, i2

(d)

Figure 3.1: Reducing dimensionality with principal component analysis

30

a regular, sparse user-item space, users u are represented by their ratings r for
items i1 and i2. Figure 3.1a is a graphical representation of this user-item space.
Each user’s ratings are plotted in our two-dimensional item-space. Intuitively,
we see a strong correlation between ratings for i1 and i2. We would like to exploit
this correlation by reducing the dimensionality of each user vector [ru,1, ru,2] =
~ru to a single value pu. This is done by finding a model q for our data, that
defines the direction on which we map our single values pu. This process is
known as principal component analysis (PCA), and the ideal model that
describes the maximum variance is known as the first principal component
of our data. We calculate the first principal component by minimizing the
mean squared error between our data ~ru and the reconstructed data points pu
(Equation 3.12). Figure 3.1b depicts the first principal component of our data.

minp,q
∑
u

(~ru − puq)
2 (3.12)

If we fix q, the best pu is simply the projection of ~ru on our model q. What
is important to note here is that, given the strong correlation between i1 and
i2, qpu approximates the rating for i1 and i2, and thus describes the extent to
which user u likes both items (Equation 3.13).

qpu ≈ ~ru (3.13)

In Figure 3.1c, the pu values are mapped to the principal component q. Let
us denote these predicted ratings with r̂u,i. Given that r̂u,1 = r̂u,2 in our
example, having two dimensions to describe our approximations is redundant.
In Figure 3.1d we see these values projected on a single dimension. Here, we
have factored our original data by reducing its dimensionality.

Let us apply this example in practice. Say i1 and i2 refer to Pulp Fiction
and Kill Bill respectively. Then in a sense, a value on the principal component
(Figure 3.1d) describes one’s attitude towards prototypical Quentin Tarantino
films. As such, we have uncovered a “more semantical” latent feature in our
data. It is important to note that we can not only project user attitudes on this
feature, but item associations as well. We denote these item correspondences
with qi. In our toy example, Pulp Fiction and Reservoir Dogs have both have
strong positive correspondence to our Tarantino factor, but negative relations
to factors are also possible. By applying matrix factorization, we have thus
uncovered a “latent semantical space” in which we can describe both users and
items by means of pu and q.

We can apply the techniques we described Example 3.3 to a recommender sys-
tem’s usage data in its full complexity. Here, we would uncover a f -dimensional
joint latent factor space Mf for users and items, by calculate the top f principal
components.

One can think of matrix factorization as an alternative way to discover latent
semantical features in a data set. Amatriain et al. (2011) describe that matrix
factorization is based on the the idea that it is always possible to decompose

31

the rating space R (i.e. U × I × S) into R = UΣV . Given the original u × i
matrix, we can obtain a u × σ matrix U , a σ × σ diagonal matrix Σ, and a
i× σ matrix V . In these matrices σ are the singular values that refer to the
latent semantical features (the singular values in matrix factorization can be
thought of as the principal components in PCA). As such U is interpreted as
the “user-feature” matrix and V is interpreted as the “item-feature” matrix. Σ
contains the feature strengths and sorts them in decreasing order (so the first
singular value σ1 can be thought of as the first principal component). If we would
reduce our original data to a f -dimensional latent feature space, we denote with
UfΣfVf the matrices obtained by selecting f highest singular values.

In our formal definition of the recommendation problem (Section 2.1), we
described that our goal is to extrapolate K to the entire user-item space R.
We also explained that recommending is not merely a classification task, but
a regression task: for each user we wish to return the item(s) for which the
predicted utility is highest. A property of a prediction model based on matrix
factorization is that it can express the predicted rating r̂u,i as an ordinal value,
even if our data model consists of merely unary classifications (S = 1).

We argue that a more detailed explanation of matrix factorization at this
point would merely interrupt and clutter the narrative. As our best interest is
to focus on the contributions this research makes, we therefore refer to Koren
and Bell (2011, pp.151–154), Koren et al. (2009), and Desrosiers and Karypis
(2011, pp.132–134) for a more detailed description of matrix factorization for
recommender systems. For a more in-depth definition of matrix factorization
and its roots in information retrieval we refer to Berry, Dumais, and O’Brien
(1995).

In 2009, Koren et al. (2009) won the Netflix Prize competition with a predic-
tion model based on matrix factorization. The Netflix Prize was an open com-
petition for collaborative filtering algorithms to predict user ratings for movies.
Koren, Bell and Volinsky’s team BellKor’s Pragmatic Chaos won the 1 million
dollar competition, besting Netflix’s own algorithm for predicting ratings by
10.06%.3 By winning the competition, they showed that the prediction quality
of latent factor models is superior to that of neighbourhood based approaches.

3For more information on the Netflix Prize competition, see http://www.netflixprize

.com.

32

http://www.netflixprize.com
http://www.netflixprize.com

Chapter 4

Association rule mining

There are only patterns.
What we call chaos is just patterns we haven’t recognized.
What we call random is just patterns we can’t decipher.

— Chuck Palahniuk, Survivor

Our goal is to build a recommender system that can improve its prediction model
by mining association rules in usage data. In Section 3.1 we have introduced
the subject of association rule mining when we discussed co-visitation counts
as a method to compute similarity weights between items. In this chapter we
describe two recommender systems that use association rule mining as the base
for their rating predictions. We begin this chapter with a detailed description of
association rule mining (Section 4.1). In this section we describe our item-based
collaborative filtering approach that is based on association rule mining. In
Section 4.2 we revisit matrix factorization and we describe a problem that data
sparsity might impose to a latent factor model. We aim to solve this problem by
applying association rule mining as a preprocessing step for matrix factorization.

4.1 Mining for rating predictions

Association rules capture the relationships between items based on their pat-
terns of co-occurrence across transactions (Mobasher et al., 2000). Here, a
transaction is a tuple of items that have been bought by a user over a given
amount of time. An example of a transaction is the list of films on Netflix by a
user in a given month. Association rule mining is the task of identifying patterns
in so called basket data. Basket data differs from traditional collaborative fil-
tering usage data in that the transactions possibly consist of multiple items,
instead of a single one. An example of an association rule based on basket data
is that 90% of the people who watch Star Wars and The Empire Strikes Back!

33

in a given week, also watch A New Hope later that week. Given the transactions
in our basket data our goal is to:

1. Find all the significant association rules.

2. Build a prediction model based on these association rules.

3. Recommend to users the top-n items that are associated with the items
that they have already rated.

There are different properties of association rules that we can use to predict
ratings. What follows is a formal definition of the relevant concepts, derived
from Agrawal, Imielinski, Swami, and Jose (1993, p.208) and Agrawal, Srikant,
and Jose (1994, p.487).

Let I = {i1, i2, i3, . . . , im} be the set of items, and D = {T1, T2, T3, . . . , Tn}
be the set of transactions, where each transaction T is a set of items such that
T ⊆ I. The set of transactions is pruned by removing transactions that contain
only one item, because these can not be used to form association rules. We
say that a transaction T contains an itemset X if X ⊆ T . An itemset is
defined as a collection of one or more items. Moreover, a k-itemset is an itemset
that contains k items. The frequency of a given itemset is known as its support
count and the proportion of transactions in D that contain the itemset is known
as its support (Equation 4.1).

s(X) =
count(X)

|D|
(4.1)

An association rule X ⇒ Y is a relation between two itemsets X and Y .
These itemsets are non-overlapping, i.e. X ∩ Y = ∅. In an association rule,
X is called the antecedent itemset and Y is called the consequent. Let us
define the metrics that describe the relations between the antecedent and the
consequent itemset: support, confidence and lift.

The support s for an association rule is defined as the probability that we
observe X and Y in any given transaction, i.e. the proportion of transactions in
D that contain X ∪ Y .1 We can calculate the support for an association rule in
the same way as we calculate the support for an itemset (Equation 4.2):

s(X ⇒ Y) = s(Y ⇒ X) = s(X ∪ Y) (4.2)

The confidence c of a rule is defined as the probability that we observe Y
given that we observe X, i.e. the proportion of times that the association rule
is correct (Equation 4.3).

c(X ⇒ Y) =
s(X ∪ Y)

s(X)
(4.3)

1The union of the itemsets (X ∪Y) should be interpreted as “transactions where X and Y
both appear” and not as “transactions where either X or Y appears”. This ambiguity arises
because set union is similar to logical disjunction (which is more commonly denoted with ∨).

34

The lift of an association rule measures the mutual dependence of X and Y . It
is the same as the interest factor or pointwise mutual information of X
and Y , which is described by Bouma (2009, p.33) as:

“. . . a measure of how much the actual probability of a particular
co-occurrence of events differs from what we would expect it to be
on the basis of the probabilities of the individual events and the
assumption of independence.”

The lift l(X ⇒ Y) can be seen as the ratio of the observed support for X ∪ Y
to that of the expected support if X and Y were unrelated, see Equation 4.4.

l(X ⇒ Y) = l(Y ⇒ X) =
s(X ∪ Y)

s(X) · s(Y)
(4.4)

If our observed support for the association rule is equal to the support that
we would expect for two independent itemsets, i.e. s(X ∪ Y) = s(X) · s(Y),
then X and Y are statistically independent. Based on this we can interpret the
measure as described in Equation 4.5 (derived from Tan, Steinbach, & Kumar,
2006).

l(X ⇒ Y)

 = 1, if X and Y are unrelated.
> 1, if X and Y are positively correlated.
< 1, if X and Y are negatively correlated.

(4.5)

In our system we use the confidence, support and lift of the association rules
in transaction data to predict recommendations.2 In our implementation the
consequent is always a 1-itemset and the antecedent is a k-itemset where k is
an variable larger or equal to 1. This means that we aim to find the association
rules between a single item, or an itemset of multiple items X ∈ I and a single
consequent ik ∈ I.

Let us explain how we predict ratings from the association rules. First, let us
focus on how we find the rules that are relevant for our prediction model. The
brute-force approach would be to list all possible association rules, compute
the confidence, support and lift for each of these rules and then prune the
rules that do not meet all conditions (Amatriain et al., 2011). However, this
is computationally expensive as all the possible item combinations have to be
considered. Instead, we decompose the problem of association rule mining in
two sub-problems:

Frequent itemset identification Our goal is to find all k-itemsets that sat-
isfy a minimum support threshold – which we call minsup – as efficiently
as possible. A frequent itemset Fk is a k-itemset with a support that
is greater or equal to minsup. Because we know the number of total
transactions beforehand (|D|), we convert minsup to a minimum support

2We use support, confidence and lift as a measure of relatedness and not as a measure of
causality.

35

frequency mincount that makes it easier to process the itemsets (Equa-
tion 4.6).

mincount = minsup · |D| (4.6)

We use the Apriori algorithm (Agrawal et al., 1994) to identify all Fk

itemsets in our data as efficiently as possible. First, we simply count item
occurrences to determine the frequent 1-itemsets in our data. The algo-
rithm to determine the frequent k-itemsets (starting with k=2) consists
of two steps. First, we construct all the candidate k-itemsets Ck by join-
ing Fk−1 and Fk−1. Next, we delete all itemsets c ∈ Ck for which some
(k − 1)-subset is not in Fk−1. What we are left with are the candidate
k-itemsets for which we calculate the support in order to determine if they
are frequent or not. The itemsets with a support that is greater or equal to
minsup are stored. This process is repeated until there are no candidates
left to consider. Let us illustrate the frequent itemset generation step with
a simple example (Example 4.1).3

Example 4.1. Let F3 be {{i1 i2 i3}, {i1 i2 i4}, {i1 i3 i5}, {i2 i3 i4}}.
After the join step, C4 is {{i1 i2 i3 i4}, {i1 i3 i4 i5}}. Next, we delete
{i1 i3 i4 i5} because {i1 i4 i5} is not in F3. We are then left with the
itemset {i1 i2 i3 i4} in C4, for which we check if belongs to F4 (i.e. whether
it is frequent or not).

The process rules out all k-itemsets that can never be a frequent, based
on the a priori knowledge that for a frequent itemset, all its subsets are
also frequent and thus for an infrequent itemset, all its supersets must also
be infrequent. This property of support is known as downward closure
(Tan et al., 2006).

Recommendation generation The top-n recommendations are generated by
finding the n strongest association rules of a user’s frequent itemsets Fk(u)
and previously unknown items. For each frequent item i in the set of items
that have not been rated by user u (I/Iu), we construct association rules
for f ⇒ i, where f ∈ F (u) are the frequent itemsets of u for which holds
that f∪i is frequent (i.e. has minimum support). For each item in i ∈ I/Iu
the rating is predicted according to Equation 4.7 and Equation 4.8.

x = log

(∑
k

∑
f∈Fk(u)

l(f ⇒ i)∑
k |Fk(u)|

)
(4.7)

r̂u,i =
1

1 + ex
(4.8)

We can interpret this rating estimation for an unknown item as its average
mutual dependence with a user’s frequent itemsets. The values for the

3Example 4.1 is derived from Agrawal et al. (1994).

36

-6 -4 -2 0 2 4 6

0.
0

0.
5

1.
0

r̂

x

Figure 4.1: Logistic curve for converting rating predictions.

predicted ratings are related to the interpretations in Equation 4.5, as for
x we take we take the logarithm of these values (Equation 4.7), and for
r̂ we map x to the logistic curve (Equation 4.8). The logistic curve is a
sigmoid with two horizontal asymptotes. As such, the predicted ratings
will always lie in the range 0 < r̂ < 1. Here, r̂ = 0.5 (x = 0) indicates
no relation, 0 < r̂ < 0.5 (x < 0) indicates a negative correlation and
0.5 < r̂ < 1 (x > 0) indicates positive correlation between the user’s
transactions and the item at hand. In practice, this means that values for
x > 6 get a maximum rating, and values for x < −6 get a minimum rating
(Figure 4.1). This range proved to be most suitable for our purposes.

Because we have already calculated the support for all frequent itemsets
(in our frequent itemset generation step), we can easily calculate the lift
for the association rules by looking up the support for f , i and f ∪ i.
To do this as efficiently as possible we use an algorithm which we call
Apriori-Rec. Like the Apriori algorithm, Apriori-Rec is based on
the downward closure of itemsets, which states that for an infrequent
itemset, all its supersets must also be infrequent. Apriori-Rec works as
follows:

1. Given f ∈ F1(u), First we identify the itemsets f ∪ i that are stored
in our frequent 2-itemsets. The lifts are summed for association rules
f ⇒ i and the antecedents (f) are stored in a database.

2. For each consecutive value for k (starting with k = 2), the (k +
1)-itemsets are identified that contain i and a superset of the (k −
1)-itemset that we stored in our database. The lifts of the association
rules are added to the sum and the k-size antecedents are added to
our database.

37

3. If no frequent (k+1)-itemset is found that can be constructed from i
and a superset of (k−1)-itemsets in our database, we divide the sum
of the lifts by the length of the database and return the logarithm of
the result as our predicted rating.

We favor the lift of an association rule over its confidence, because the
lift normalizes the association rules by taking the support for both the
antecedent and the consequent in account. This allows us to average the
associations across itemsets. Our rating estimations automatically put
more emphasis on association rules that are based on k-itemsets that have
a high k. These itemsets are more likely to exhibit strong positive or
negative correlations, because the expected difference in support between
f and f ∪ i becomes smaller as k increases. This observation is based
on the downward closure property of support, which we have described
before when we discussed the Apriori algorithm.

Note that the predicted ratings should be normalized when the actual
values of the predictions are of importance. We can normalize a value r̂
to a value r′ that lies within an expected rating range S by performing a
simple linear conversion (Equation 4.9).

r′u,i = r̂u,i · (maxS −minS) + minS (4.9)

Our rating prediction method is based on the approach by Davidson et al.
(2010). Instead of taking the sum of all association rules they base their pre-
dictions on the association rules of a single seed itemset.

4.2 Preprocessing latent factor models

In this section we describe how association rule mining can be used in model-
based recommendation approaches. We first revisit matrix factorization and we
describe a problem that data sparsity might impose on a latent factor model.
Then we explain how association rule mining can be used to solve this problem.

In Chapter 3 we have illustrated how matrix factorization works in a space
where the ratings for all user-item pairs are known (i.e. K = R). In real-life
systems this is never the case for recommender systems. The density4of the
user-item matrix depends on the application, but can exceed 10−10 in certain
commercial systems (Bambini, Cremonesi, & Turrin, 2011). In Section 3.1 we
have touched upon the subject of data sparsity when we compared item-based
and user-based approaches. Let us recapitulate the two problems that data
sparsity imposes to traditional collaborative filtering approaches:

Limited coverage refers to the notion that user or item similarity weights are
calculated based on the intersection of their vectors. Therefore users (or

4Density is the ratio between the number of ratings and the product of the number users
and the number of items.

38

items) can not be neighbors if they have no common items (or users),
despite the fact that they might have similar interests.

Sensitivity to sparse data that arises from the limited coverage. In Sec-
tion 3.1 we argued that we are forced to choose between a small number
of high-confidence neighbors or a large number of small-confidence neigh-
bors. In such a case, a small number of high-confidence neighbors is gen-
erally preferred. However, there is also the possibility that both neighbors
and their intersections are rare, despite the fact that similar users or items
exist. In such a case, both item-based and user-based approaches would
lead to biased recommendations.

Matrix factorization was introduced to offer a solution to both of these problems.
By minimizing the regularized squared error on the set of known ratings we
derive factors that reduce the dimensionality of our original space. This makes
our derived matrix relatively more dense and therefore increase the coverage
of our data. The factors supposedly uncover the latent “semantics” in our
input space. However, how do we really know that our principal components or
singular values are an accurate representation of these latent semantics? Let us
illustrate the problem we envision in Example 4.2. Here, we revisit the example
that we used in Section 3.2.

Example 4.2. The rating matrix in Section 3.3 contained two ratings (one for
each item) for each of the n users. As such, the rating matrix was full, i.e.
K = R. By analyzing the rating pattern, we were able to extract the principal
component, which allowed us to reduce the dimensionality of our data. To
illustrate an additional utility for the principal component, imagine that a single
rating for one of the users of our system is missing. We know that the best rating
for both items combined pu (the rating in the latent feature space) is simply the
projection of the user’s rating we do have ru on the direction of the principal
component q (see Section 3.2). As such the principal component provides us
with a method to estimate unknown ratings.

Let us apply the same process of calculating the principal component in
a more realistic setting where we use only a subset, or sample of the users
(i.e K ⊂ R).5 Figure 4.2a depicts the same item space as before, except that
each user has a sample probability of 0.1 (thus each user has 90% chance to
be sampled out). Needless to say, sampling the data should have no effect on
the ideal latent semantical relation between i1 and i2. After all, we know what
this relation is, because we have observed the full rating matrix K = R and its
first principal component before (Example 3.3). “Hiding” a part of the data (by
looking at a sample K instead of the full matrix R) does not change the fact
that R is our ground truth.

5The term sample is common in the field of statistics, where the superset of a sample
(i.e. our full matrix R) is coined with the term population. As this term intuitively does not
translate well to describe usage data for recommender systems, we continue using the term
full matrix. Similarly, in the context of recommender systems we would rather refer to K with
the notion observed data, but in this example the term sample is more adequate.

39

dislike like

d
is
li
k
e

li
k
e

i 2

i1

(a) Sparse data example

dislike like

d
is
li
k
e

li
k
e

i 2

i1

(b) First principal component of 4.2a

dislike like

d
is
li
k
e

li
k
e

i 2

i1

(c) Another sparse data example

dislike like

d
is
li
k
e

li
k
e

i 2

i1

(d) First principal component of 4.2c

Figure 4.2: First principal component of sparse data compared to the original
first principal component.

40

dislike like

d
is
li
k
e

li
k
e

i 2

i1

(a) 0.1 sample probability

dislike like

d
is
li
k
e

li
k
e

i 2

i1

(b) 0.25 sample probability

dislike like

d
is
li
k
e

li
k
e

i 2

i1

(c) 0.5 sample probability

dislike like

d
is
li
k
e

li
k
e

i 2

i1

(d) 0.75 sample probability

Figure 4.3: Principal component variation for different sample probabilities.

41

Yet, Figure 4.2b shows that sampling down the data can greatly affect the
direction of the first principal component. Figure 4.2c and Figure 4.2d even
show that yet another sample of the same data has a entirely different first
principal component altogether. In Figures 4.3a through 4.3d we have iterated
the sampling process and we have plotted the observed first principal compo-
nents for different sample probabilities. For a 0.1 sample probability, we find
that the direction of the first principal component is so dependent on the sam-
ple that at times we are unable even to observe the positive correlation between
our items. The probability that our sample’s first principal component closely
reflects the original principal component remains high, but Figure 4.3a shows
that we even find a negative correlation every so often – the exact opposite of
the actual relation in our original data. Figures 4.3b, 4.3c and 4.3d show, an in-
crease in sample probability leads to a decrease in the variation of our principal
components.

From this we conclude that the principal components (and accordingly, the
singular values) in our observed (sampled) data do not necessarily reflect the
true latent semantical relations in our full item space. Therefore, we argue that
preprocessing the input data of a matrix factorization model might improve the
precision of its dimensionality reduction.

Let us describe how association rule mining can be used to make the rating
matrix more dense prior to to training the prediction model. In this application
of association rule mining we only consider single items (1-itemsets) for the
antecedent and consequent of the association rules. From these items we select
the frequent items that have a support greater or equal to the minsup threshold.
We establish association rules for all the frequent items. For simplicity we denote
the items with i and j instead of F . Given two items i and j and their association
rule i → j, we use the confidence the rule to determine whether or not we can
assume that a user who has rated i, but not j, would rate j the same as i. If we
are confident enough that a user would rate j the same as item i, we transpose
its rating for i to j.

In order to determine if the confidence of an association rule is significant
enough, we compare it to a predetermined threshold minconf , which is a value
between 0 and 1. We transpose all ratings between i and j for which Equa-
tion 4.10 holds. This means that for each user u that has rated either i or j,
ru,i = ru,j .

c(i ⇒ j) ≥ minconf (4.10)

While the confidence of an association rule might be might an inaccurate indi-
cator at times, we expect the information gain in the dense matrix to outweigh
the error rate. We hypothesise that matrix factorization prediction models are
more accurate if we extend our data model with transposed ratings of items
that have high confidence association rules.

42

Chapter 5

Experimental setup

Information overload is a symptom of our desire
to not focus on what’s important. It is a choice.

— Brian Solis

In our experiments we compare the three systems that we have described in
Chapter 4. The prediction models of these systems are based on:

1. Item-based association rule mining.

2. Matrix factorization of original data.

3. Matrix factorization of preprocessed data.

In Section 5.1 we describe the dataset that we use to evaluate our systems. Then,
in Section 5.2 we explain the procedure of our experiments and the different
parameterizations of our systems. We conclude this chapter with a description
of our evaluation methods in Section 5.3.

5.1 Dataset

We perform our experiments on the MovieLens dataset.1 This dataset has
regularly been used in literature to evaluate other other recommendation ap-
proaches (Herlocker & Konstan, 2004; Berkovsky et al., 2008; Shani & Gunawar-
dana, 2011; Park & Tuzhilin, 2008). The data was collected for the MovieLens
project by the GroupLens Research Project at the University of Minnesota be-
tween 1998 and 2000. It consists of 100,000 ratings from 943 users on 1,682
items, where each user has rated at least 20 items. The rating matrix has a
density of 6.305× 10−2. Data tuples are in the form 〈 user ID, item ID, rating
timestamp 〉, where ratings are expressed as an integer between 1 and 5. We do

1Available at http://www.grouplens.org/node/73.

43

http://www.grouplens.org/node/73

not consider these ratings in all of our experiments, as our systems are designed
to recommend items based on implicit (unary) feedback as well. As such, we
conduct two groups of experiments in which we compare the performance of our
recommender systems. In the first group of experiments we train the prediction
models on the original explicit ratings in the dataset, and in the second group
of experiments we process the data tuples as unary classifications.

5.2 Parameter selection

All three prediction models that we evaluate are parameterized. In this section
we describe the rationale behind the values that we choose. Table 5.1 lists the
values and provides an overview of the parameter combinations for each of our
systems.

For our item-based association rule mining method we have to specify a
minsup parameter for the minimum support of an association rule. We only use
the prediction rules for which the antecedent has minimum support to calculate
ratings. This means that for most minsup values our model can not predict
ratings for all items i ∈ I, because some items might depend on infrequent
rules.2 Support is expressed a value between 0 and 1 that is dependent on the
size of the dataset. We base our values for minsup on the frequencies mincount
that yield minsup. The values for mincount are in turn multiples of the average
item frequency in our dataset (which is 60). Due to the lack of prior research
in our domain we find it hard to hypothesize what the effect of mincount is on
the performance of our system. Therefore, we consider a wide range of values
for this parameter.

The prediction model of our first method depends on a logarithm to express
the ratings in a sensible scale (see Equation 4.5). Because our prediction model
is novel in the context of recommender systems, we are unsure what the most
appropriate base for the logarithm is. For an application in a related domain the
natural (i.e. base e) logarithm has been proposed, but here the metric was used
on a dataset that was a couple orders of magnitude smaller than ours (Bouma,
2009). We expect that the size of the dataset is of importance for choosing the
most appropriate logarithm base. For this reason, we experiment with different
base values.

The systems that are based on matrix factorization have a parameter f that
denotes the dimensionality of the latent factor space Mf . In our choice on
selecting values for f we consider the advice by Koren et al. (2009). In their
experiments they use values up to 1,500 and report that performance improves
as the factor model’s dimensionality increases. However, as their latent factor
model was trained on a dataset that is a couple orders of magnitude larger than
ours, we hypothesize that our prediction model is better off using smaller values
for f . Therefore, we experiment with a range of low values for f as well as with
the values that were suggested by Koren et al. (2009).

2In most practical use cases rating sparsity is not an issue, because we are only interested
in the top-n recommendations.

44

Table 5.1: Parameters for the experiments.

parameter values models

Minimum frequency (mincount) 0–30, interval 5 1
Logarithm base (logb) 2, e, 10 1
Dimensionality (f) 10–100, 200, 500, 1000 2, 3
Minimum confidence (minconf) 0.05 – 0.30 3

For preprocessing input data for matrix factorization we consider a range of
minconf values that has been proposed in a similar application domain (Tan
et al., 2006). The minconf values that do not lead to any transposed ratings
are not included in our results. We hypothesize that sufficiently high values
for minconf will lead to the best results, because these lead to item pairs with
high confidence association rules. We expect that for low values of minconf too
many ratings get transposed.

5.3 Evaluation

In this section we describe the metrics and experiments that we use to evaluate
our systems. We will not blur our narrative with excess details on the metrics
that we discuss. For a comprehensive study of prediction-based and rank-based
metrics for recommender systems, we refer to Shani and Gunawardana (2011)
and Herlocker and Konstan (2004).

5.3.1 Measuring rating predictions

Prediction-based metrics compare the predicted ratings to the actual ratings in
the test set. In our evaluation we use the MAE and RMSE metrics.

Mean absolute error (MAE) measures how close predicted ratings are to
the actual values. As the name suggests, it is the average of the absolute errors,
see Equation 5.1.

MAE =
1

n

n∑
k=1

|r̂k − rk| (5.1)

Here, r̂k is the predicted value and rk is the corresponding actual rating. We
denote with n the size of our test set. As the individual users and items are not
of importance for this evaluation metric, k can refer to any (u, i) pair.

Mean square error (MSE) is similar method to measure the deviation
between the predicted ratings and the actual values. The difference between
MAE and MSE is that the latter puts more emphasis on large errors (by means

45

of the “square”), see Equation 5.2.

MSE =
1

N

n∑
k=1

(r̂k − rk)
2 (5.2)

The root mean square error (RMSE) is more commonly used to evaluate a
system in this sense. This metric has also been used to judge the Netflix Prize
competition, for example. As the name implies, it is the square root of the MSE
value (Equation 5.3).

RMSE =
√
MSE (5.3)

MAE and RMSE are closely correlated in practice, but the two metrics might
discover subtle differences between approaches or configurations.

5.3.2 Measuring ranking performance

Rank-based metrics compare a ranked list of rated items to a list of predictions
of these items. We try to determine the correct order of a set of previously
rated items for each user (their reference ratings) and measure how similar our
systems’ predicted rankings are to the correct order. In our experiments, we
use Spearman’s ρ and Kendall’s τ metrics for this purpose. Unlike prediction
metrics, ranking metrics are more appropriate to evaluate systems that will be
used to present ranked recommendation lists to the user (Herlocker & Konstan,
2004). In our implementation we measure the ability of a system to rank-order
a set of items for which we know the true ranking.

Pearson correlation p (Equation 5.4) measures the extent to which there
is a linear correlation between two lists of values. It is widely used as a measure
of the covariance of their z-scores (i.e. the number of standard deviations above
the mean). Here ·̄ denotes the mean value for some variable ·.

px,y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2 ·
√∑n

i=1(yi − ȳ)2
(5.4)

Spearman’s ρ measures the extent to which two different rankings agree, in-
dependent of the actual values. It is computed in the same manner as Pearson’s
correlation, except that the values for r and r̂ are transformed into their ranks r′

and r̂′ (thus, given the highest ru,i, r
′
u,i = 1 and for the lowest ru,j , r

′
u,j = |ru|).

The correlations are computed on these ranks (Equation 5.5).

ρu =

∑n
i=1(r

′
u,i − r̄′u)(r̂

′
u,i − ¯̂′

ur)√∑n
i=1(r

′
u,i − r̄′u)

2 ·
√∑n

i=1(r̂
′
u,i −

¯̂′
ur)

2
(5.5)

Kendall’s τ is similar to Spearman’s ρ in that it measures the similarity be-
tween two rankings, but instead uses the number of concordant rating-prediction

46

pairs and the number of discordant rating-prediction pairs to calculate the co-
variance between ratings and predictions. (Equation 5.6). Here, C is the num-
ber of rating-prediction pairs that the system has recommended in the proper
ranked order, and D is the number of pairs that the system has recommended
in the wrong order. Moreover, TR is the number ratings that have tied rank,
and TP is the number of predictions that have shared ranks.

τru,r̂u =
C −D√

(C +D + TR) · (C +D + TP)
(5.6)

Despite their simplicity, Spearman’s ρ and Kendall’s τ have not been used exten-
sively in the evaluation of recommender systems (Herlocker & Konstan, 2004).
We use these metrics because they are an effective alternative for prediction-
based metrics and because they are well understood across different research
fields. Similar to MAE and RMSE, Spearman’s ρ and Kendall’s τ are often
closely correlated in practice (Shani & Gunawardana, 2011), but might uncover
subtle differences in performance between systems or configurations, as their
focus differs slightly.

5.3.3 Evaluating performance

To evaluate our systems using the metrics that we have described in this section,
we perform experiments that estimate how a prediction model will perform
in practice. Preferably, this is done in a manner that simulates the target
application as closely as possible. As such, we evaluate our system on a per-user
basis, which means that address the significance of a metric based on the average
and the variance of that metric’s score for each user.

Offline evaluation is based on the idea of hiding some subset of the inter-
actions in order to simulate the knowledge of how a user would rate unseen
items. A possible procedure is to simply leave out the last n ratings for each
user, and train on the prediction model on the remaining interactions. However,
this would make the assumption that temporal aspects are of importance in our
application domain. While this assumption is tempting given some studies (e.g.
Shani et al., 2005; Zimdars et al., 2001; Su et al., 2000), we rather not make
this assumption, as it is beyond the scope of this thesis to address it. Instead,
we assume that temporal aspects do not influence user preferences. This coin-
cides with our methodology, as association rules are not considered to address
causal relations. Moreover, we design our experiments in a way that reflects
this assumption.

To evaluate the performance of each parameter combination, we perform a
repeated “all but n” experiment. Following Herlocker and Konstan (2004), we
split the data in two unequal disjoint sets, where the test set has exactly 10
ratings per user. The remaining data is used to train the prediction model.
This procedure is repeated in two “splits” to account for biases in the dataset.

For our prediction-based metrics we use the prediction model to estimate the
10 unknown ratings for each user in the test set, and for our rank-based metrics

47

we compare the ranking of the ratings to the ranking of the predictions. Because
the number of unknown ratings for each user is equal (n = 10) we can average our
metrics across users and splits. As such, our results for each configuration of a
system contain two sets of evaluation metrics for each user – one for each split.
Because our dataset consists of 943 users, this means that 1886 user-centric
evaluation experiments are ran for each parameter combination. The results
for each parameter combination, as well as the tests that we use address the
significance of their results are presented in Chapter 6.

48

Chapter 6

Results

On two occasions I have been asked,
“Pray, Mr. Babbage, if you put into the machine wrong
figures, will the right answers come out?”
I am not able rightly to apprehend the kind of confusion
of ideas that could provoke such a question.

— Charles Babbage, Life of a Philosopher

This chapter is divided in three sections in which we discuss our experimental
results. We begin this chapter with a description of the statistical tests that we
use to account for the significance of our results (Section 6.1). Then, we compare
the prediction and rating performance between systems and configurations in
Section 6.2. This section is laid out as follows. First we compare the best
performances that were obtained by our three systems. Then we examine each of
our systems in detail, by reviewing the extent to which the individual parameters
account for performance.

6.1 Significance

In this thesis we have conducted experiments to identify the most promising
recommender system in a range of different approaches. Because we considered
a wide range of different values for the parameters (or independent vari-
ables) of our systems, the resulting scores (or dependent variable) might
only marginally differ between configurations. For these results there is a prob-
ability that the configuration that performed best did so because the experiment
was more suitable for that specific configuration. It is important that we can
be confident that the approach or configuration that we label as most promis-
ing (for real-world applications) will also be a good choice for yet unseen data
the system will be faced with in the future (Ricci et al., 2011). Therefore, we
perform statistical tests to identify configurations that performed significantly
better than others.

49

Significance can be interpreted as follows. If the difference between two
configurations is significant, the probability that these results were obtained
by chance is below a given confidence level. In other words, two systems differ
significantly from one another if the probability p that one system’s score is
obtained by the other is below a certain threshold. By convention of our research
field (and many others), these thresholds are defined to be p = .05 and p =
.01. In the following sections we denote these confidence levels with * and **
respectively.

Let us recall the hypotheses that we have drawn in Chapter 1. Even though
we will not address our hypotheses until Chapter 8, we believe that it is im-
portant to relate our hypotheses to our notion of statistical significance at this
point in our narrative.

H1 Association rule mining can be used as a suitable alternative for current
state-of-the-art collaborative filtering approaches.

H2 Association rule mining can be used to improve state-of-the-art collabora-
tive filtering approaches.

For our intents and purposes, we consider matrix factorization to be a state-
of-the-art collaborative filtering approach. Let us denote with Arm, Mf and
ArmMf our three systems (item-based association rule mining, matrix factor-
ization, and matrix factorization enhanced with association rule mining respec-
tively). Recall that our offline evaluation method aims to identify the best
candidates for user studies and online testing. For this reason, we compare the
best performing configurations of our three systems. Let us denote the average
scores obtained by these configurations with µArm, µMf and µArmMf. We infer
the following rules to either accept or reject our hypotheses:

H1 accept if µArm ≥ µMf, reject if µArm < µMf

H2 accept if µMf < µArmMf, reject if µMf ≥ µArmMf

We use an analysis of variance (ANOVA) in conjunction with Tukey’s test
to determine if the scores of two systems are (significantly) different. ANOVA is
a statistical test to determine whether or not the means (µ) of all of the three (or
more) groups are equal. As such, it is a generalization of the common pairwise
Student’s t-test to more than two systems. A t-test determines if the means of
two groups are equal – which is what our hypotheses require. However, doing
multiple t-tests results in an increased chance of committing a type I error, which
occurs when a null-hypothesis (i.e. an hypothesis that predicts no difference)
is rejected, despite being true. Instead, we use Tukey’s test to identify the
means that are significantly different in the ANOVA. Tukey’s test compares the
difference of every pair of means to any other pair of means, and identifies the
differences that are greater than the expected difference of the means, based on
their standard deviation.

50

Table 6.1: Best performance for all three systems.

MAE RMSE ρ τ

Arm 0.986 (0.295)** 1.170 (0.336)** .081 (0.346)** .066 (0.284)**
Mf 0.768 (0.250) 0.945 (0.288) .383 (0.332) .317 (0.280)
ArmMf 0.768 (0.251) 0.945 (0.288) .382 (0.331) .316 (0.278)

6.2 Performance

In Table 6.1 we list the MAE, RMSE, Spearman’s ρ and Kendall’s τ scores of
the best-performing configurations for each of our three approaches. Our sys-
tem that performs matrix factorization on the original data (Mf) performs best,
but not significantly better than the enhanced matrix factorization (ArmMf)
approach (MAE p = .999, RMSE p = .996, ρp = .992, τp = .986). Both ma-
trix factorization systems have significantly lower (i.e. better) MAE and RMSE
scores than our item-based association rule mining (Arm) system (p < .01 for
both systems and metrics), and significantly higher (i.e. better) Spearman’s ρ
and Kendall’s τ scores (also for both systems and metrics p < .01).

Table A.1, Table A.2 and Table A.3 (Appendix A) list the performance
for each configuration of our Arm, Mf and ArmMf systems respectively. In
these tables, the best scores for each evaluation metric are in boldface, and
the asterisks indicate the scores that are significantly worse for each metric (*
for p < .05 and ** for p < .01). In the following subsections we elucidate
the results for each system, by exploring the extent to which the individual
parameters influence the performance of that system. Moreover, we examine the
“predictiveness” of each system by exploring correlations between our evaluation
metrics.

We present a multitude of figures in the following subsections that plot the
results of our systems. It is important to note that the ranges for the y-axes
of these plots are chosen to represent the maximum variance for the evaluation
metric at hand. As such, these figures should not be used to compare perfor-
mance between systems (for this purpose we refer the reader to Appendix A).
Instead, these figures are presented to display the effects of the independent
variables (i.e. our parameters) on the dependent variables (i.e. a system’s per-
formance). Because we have only examined a subset of the possible values for
our parameters, we present each figure as a scatterplot rather than a contin-
uous model. The properties of the relations that we describe (such as optima
or asymptotes) are based on these “scattered” observations, but might not be
definitive (“continuous”).

51

0 50 100 200 300

1.
00

1.
10

1.
20

1.
30 MAE

RMSE

mincount

(a) Prediction (lower is better)

0 50 100 200 300

-0
.1
0

0.
00

0.
05

Spearman’s ρ
Kendall’s τ

mincount

(b) Ranking (higher is better)

Figure 6.1: Performance of the association rule mining system (Arm) normal-
ized with log10.

6.2.1 Association rule mining

The best prediction performance (MAE, RMSE) for theArm system was achieved
when the association rule lifts were normalized with their base-10 logarithm
(log10). Figure 6.1 shows the system’s prediction performance for this loga-
rithm base. The best configuration had mincount set to 60. This configuration
scored significantly better than all configurations that used the binary loga-
rithm (log2) or base-e logarithm (loge) to normalize the association rule lifts
(p < .01). The difference with most other configurations of mincount (mc) was
not significant, except for mc = 240 and mc = 300 (both p < .05).

Figure 6.1a shows that there seem to be local optima for prediction per-
formance when the association rule lifts are normalized with their base-10 log-
arithm. For log2 and loge these optima do not seem to lie in the range of
mincount values that we have tested.

Contrary to the prediction performance, the best ρ and τ were obtained
with the highest value for the mincount parameter (mc = 300). All other
mincount values resulted in significantly lower ranking performance (p < .01
except for mc = 240: p < .05). Ranking performance does not depend on the
chosen logarithm for normalization, because the choice of logarithm is merely a
question of scale. Figure 6.1b shows the relation between mincount and rating
performance (ρ and τ).

52

0 100 200 300 400 500

0.
75

0.
85

0.
95

1.
05

MAE
RMSE

Dimensionality f

(a) Prediction (lower is better)

0 100 200 300 400 500
0.
30

0.
34

0.
38

0.
42 Spearman’s ρ

Kendall’s τ

Dimensionality f

(b) Ranking (higher is better)

Figure 6.2: Performance of the matrix factorization system (Mf).

6.2.2 Matrix factorization of original data

The results for the matrix factorization system are shown in Figure 6.2. The
latent factor space for the best performing matrix factorization system on the
original data had 30 dimensions (f = 30), but the difference in performance
compared to other configurations is not significant (MAE p = .509, RMSE
p = .865, Spearman’s ρ p = .112, Kendall’s τ p = .101). Moreover, both pre-
diction and ranking metrics display a similar response to the prediction model’s
dimensionality, as all metrics seem to approach a horizontal asymptote as the
dimensionality of the prediction model increases (see Figure 6.2a for the predic-
tion based metrics, where a lower score is better, and Figure 6.2b for Spearman’s
ρ and Kendall’s τ respectively, where higher scores are better).

6.2.3 Matrix factorization of preprocessed data

The ArmMf system was designed to provide us with a more accurate latent
factor representation compared to the Mf system, by making the input matrix
more dense prior to applying matrix factorization. The original input matrix
(for the Mf system) had an average matrix density of 5.725 × 10−2. In our
ArmMf we have transposed ratings between item pairs based on how confident
we were that there existed a positive correlation between the items. A minconf
of .05 led to an average of 25796.5 transposed ratings (in the two “all but
n” experiments), whereas an average of 3881.5 ratings were transposed with a
minconf of .10 and an average of 384.5 ratings were transposed with a minconf
of .15. These ratings led to average matrix densities of 6.666×10−2, 5.920×10−2

and 5.749×10−2 respectively. Anyminconf ≤ .05 led to a higher matrix density,

53

0 100 200 300 400 500

1.
00

1.
10

1.
20

minconf = .05
minconf = .10

Dimensionality f

(a) RMSE (lower is better)

0 100 200 300 400 500

0.
24

0.
28

0.
32

minconf = .05
minconf = .10

Dimensionality f

(b) Kendall’s τ (higher is better)

Figure 6.3: Performance of the preprocessed matrix factorization system
(ArmMf) for minconf = .05 and minconf = .1 (minconf = .15 is similar
to Figure 6.2).

but to lower performance. Moreover, any minconf ≥ .20 led to no transposed
ratings. In such cases Mf and ArmMf perform identically. For this reason,
Table A.3 reports on .05 ≤ minconf ≤ .15.

Any increase in matrix densitiy did not lead to better performance. Unre-
markably, a minimum confidence of .15 did not lead to significantly different
performance compared to the original matrix factorization system, as their ma-
trix densities are very similar. All configurations for minconf = .05 led to
significantly worse performance (p < .01), while most configurations for .10 led
to similar performance, except for f = 200 and f = 500 (p < .05).

Contrary to the original latent factor model, the best predicting matrix
factorization system on preprocessed data had 20 dimensions (f = 20). The
best rating performance was obtained with f = 30, similar to the original model.
As the performance for the Mf system and ArmMf system with minconf = .15
are nearly identical, we refer to Figure 6.2 for a visualization of its results.
Figure 6.3a shows that the dimensionality parameter f has a similar effect on
prediction performance (RMSE) for mincount = .05 and mincount = .10 (except
that the scores are worse). As Figure 6.3b shows, the same holds for the effect
on rating performance (Kendall’s τ).

54

Chapter 7

Discussion

He knew that all the hazards and perils were now drawing
together to a point: the next day would be a day of doom,
the day of final effort or disaster, the last gasp.

— J.R.R. Tolkien, The Return of the King

Regarding our evaluation methodology, two important questions remain unan-
swered in light of our experimental results:

1. To what extent are our results indicative for the “real-world” performance
of our system?

2. Which of the advantages and disadvantages of our individual evaluation
metrics a have significant effect on their outcomes?

It is beyond the scope of this thesis to address the former question. The metrics
that we have used to evaluate our experiments are subject to the disadvantages
of offline evaluation. In particular, we must assume that a user’s past behavior is
the only predictor for future behavior (Shani & Gunawardana, 2011). Moreover,
we acknowledge that our choice for a repeated “all but n” experiment gives rise
to the assumption that user behavior is not subject to temporal dynamics. In
the conclusion of this thesis (Chapter 8) we suggest some directions for future
research regarding these assumptions.

While it is beyond the scope of this thesis (as well) to answer the second ques-
tion in detail we tentatively address them in this section. We address the this
question by partly replicating a comparison experiment proposed by Herlocker
and Konstan (2004). In their survey of offline evaluation metrics, the authors
“examined the extent to which the different evaluation metrics agreed or dis-
agreed” (p.33). Despite the fact that their research was not comprehensive (as
their evaluation was based solely on the results a neighborhood-based collabora-
tive filtering approach), the authors observe relationships between metrics that

55

MAE

R
M
S
E

(a) Prediction metrics

Spearman’s ρ

K
en
d
al
l’
s
τ

(b) Rating metrics

Figure 7.1: Positive correlation between evaluation metrics.

should be investigated further. As such, they “encourage researchers using other
families of collaborative filtering algorithms to replicate [their] work” (p.34).1

In line with Herlocker and Konstan (2004), we compare the user-based results
of different evaluation metrics for a random subset of user evaluations for all
systems (n = 1000). In analyzing the data we notice that there is a strong
correlation between the individual metrics for the two evaluation approaches.
Plots of these positive correlations between metrics can be found in Figure 7.1.
For MAE and RMSE (Figure 7.1a) the correlation coefficient was .966 (p <
.001, 95% confidence interval .965 to .968). For Spearman’s ρ and Kendall’s
τ (Figure 7.1b) the correlation coefficient was .996 (p < .001, 95% confidence
interval .996 to .996).

The weaker correlations in Figure 7.2 suggest that Spearman’s ρ and Kendall’s
τ provide substantially different outcomes from MAE and RMSE. For MAE and
Spearman’s ρ (Figure 7.2a) the correlation coefficient was −.437 (p < .001, 95%
confidence interval −.458 to −.416). For RMSE and Kendall’s τ the correlation
coefficient was −.429 (p < .001, 95% confidence interval −.450 to −.407). It
should be noted that the principal direction of the data does indicate a corre-
lation between the prediction-based and ranking-based metrics.2 However, the
“agreement” between the two groups of evaluation metrics is much lower than
the agreement within the groups (i.e. between MAE and RMSE, and Spearman’s
ρ and Kendall’s τ respectively).

1This encouragement from Herlocker and Konstan (2004) and the argument for compara-
bility served as two of our motivations to use the MovieLens dataset for evaluation.

2If prediction-based and ranking-based metrics were related the figures would display a
strong negative correlation. This is due to the fact that for MAE and RMSE a lower score is
considered better, while for Spearman’s ρ and Kendall’s τ a higher score is better.

56

S
p
ea
rm

an
’s

ρ

MAE

(a) MAE and Spearman’s ρ

K
en
d
al
l’
s
τ

RMSE

(b) RMSE and Kendall’s τ

Figure 7.2: Absense of correlation between groups of evaluation metrics.

Our observations are in line with Herlocker and Konstan (2004), who ob-
served a similar relation between prediction metrics (MAE and Pearson correla-
tion) and ranking metrics (Spearman’s ρ and Kendall’s τ). As such, we answer
our first question as follows. Prediction-based and ranking-based metrics do
not fully agree on the (user-based) evaluation of a system. However, the indi-
vidual metrics for each of these groups do agree. Therefore, we conclude that
the advantages and disadvantages of individual prediction-based or rank-based
metrics have no effect on their outcomes.

57

Chapter 8

Conclusion

A conclusion is simply the place where you got tired of
thinking.

— Dan Chaon, Stay Awake

In this thesis we have explored some applications of association rule mining for
recommender systems. In Chapter 2, the relevant concepts for recommender
systems were introduced and the importance of such systems was discussed.
Chapter 3 explained how collaborative filtering recommender systems work. In
this chapter, we introduced latent factor models as the state-of-the-art collabo-
rative filtering approach today.

The goal of this thesis is to explore the extent to which recommender sys-
tems based on association rule mining perform compared to state-of-the-art
collaborative filtering approaches. We have presented two novel approaches
for predicting ratings in Chapter 4. These approaches differ from traditional
item-based collaborative filtering approaches in that they rely on basket data
(individual transactions) to learn the relations between items. These relations
are expressed as so called association rules. The first approach predicted a user’s
utility for an item by exploiting the association rules that were evident in pre-
vious interactions with the system. Our second approach used association rules
for preprocessing a latent factor model.

In Chapter 5 we have described our dataset and experimental setup. Here,
we have also presented the offline evaluation method that we used. Our exper-
imental results were presented in Chapter 6 and discussed in Chapter 7.

This chapter draws a conclusion on the extent to which association rule
mining can be used for recommender systems. First, we answer our research
questions. Then, we comment on our problem statement. We conclude this
thesis with some suggestions for future research.

In this thesis we posed the following research question:

RQ1 To what extent can association rule mining be used as an alternative to
state-of-the-art collaborative filtering?

59

Based on some promising examples (i.e. Mobasher et al., 2000; Davidson et al.,
2010), we hypothesised that association rule mining is suitable alternative for
current state-of-the-art collaborative filtering approaches (H1). However, based
on our experimental results we reject this hypothesis. Our system based on a
latent factor model – which we consider to be a state-of-the-art collaborative
filtering approach – performed significantly better than our association rule
mining approach.

Our second research question was as follows:

RQ2 To what extent can association rule mining be used to improve state-of-
the-art collaborative filtering recommender systems?

In Chapter 4 we have discussed the effect of data sparsity on latent fac-
tor models. Based on our observations in that chapter we hypothesized that
association rule mining can be used to improve state-of-the-art collaborative
filtering recommender systems (H2). However, our results indicate that prepro-
cessing latent factor models, by transposing ratings between strongly correlated
items, does not have a positive effect on performance. None of the latent factor
models that used association rule mining (to make the input data more dense)
performed better than our best performing “baseline” latent factor model. How-
ever, configurations that used only the most confident association rules did not
perform significantly worse than the baseline. Therefore, we reject our second
hypothesis as well, because no improvements in performance were found.

Based on our research we conclude that further research is required on as-
sociation rule mining for recommender systems. Our offline research indicates
that association rule mining can not be used to improve upon state-of-the-art
collaborative filtering recommendations approaches for items of low complexity.
For this reason, we discourage service providers (such as Bibliotheek Midden
Brabant) to implement our systems for recommending books, movies and mu-
sic tracks at this point. Instead, we encourage researchers to further develop
the systems that were proposed, and to explore the extent to which association
rule mining is applicable for recommending items of high complexity (such as
insurance policies, jobs, and travel plans). Based on our results we discourage
to perform user studies at this point. However, we note that our results are sub-
ject to the disadvantages of offline evaluation. As such, they are by no means a
definitive indicator for “real world” performance.

We advise researchers that are interested in the applications of association
rule mining for recommender systems to take our results in consideration when
they design their algorithms. We encourage them to use similar (offline) evalua-
tion methods, prior to performing user studies or online evaluation. However, we
do note that some of the metrics were highly correlated. In this sense, our obser-
vations are in line with previous research (Herlocker & Konstan, 2004; Shani &
Gunawardana, 2011). As such, it might suffice to use a single prediction-based
metric and a single rank-based metric to evaluate the systems.

During our research we came across some noteworthy observations that are
not specifically related to our research questions. Neither our literature study,

60

nor our experimental results provided us with satisfying explanations for these
observations. As such, we suggest the following directions for future research:

• In our experiments we have tested a variety of different system configu-
rations. In our choices for the configurations of our latent factor model
we followed Koren et al. (2009), who won the Netflix Prize competition
with a similar model. Despite the fact that they used a similar evaluation
method, our results do not match with their findings. We expect this to
be due to the size of the dataset. As such, we encourage researchers to
investigate the effect of dataset size on the performance of collaborative
filtering recommender systems.

• It is suggested that offline evaluation methods are subject to the assump-
tion that a user’s past behavior is the only predictor for future behavior
(Shani & Gunawardana, 2011). We argue that cross-validation experi-
ments (such as x-fold or our implementation of “all but n”) give rise to a
conflicting assumption. In taking random subsets of our dataset for evalu-
ation (i.e. as test set), we assume that user preferences are not subject to
temporal dynamics. Past research has presented strong evidence against
this assumption (Shani et al., 2005; Su et al., 2000; Zimdars et al., 2001).
In response some offline evaluation experiments have been proposed that
do take (the possibility of) temporal dynamics into account (Herlocker &
Konstan, 2004; Shani & Gunawardana, 2011). However, none of these
experiments are as solid as cross-validation in guarding against Type I,
Type II and Type III errors (“rejecting an hypothesis when it is true”,
“accepting an hypothesis when it is false”, and “accepting or rejecting
an hypothesis for the wrong reasons” respectively). As such, we encour-
age researchers to design more solid offline experiments that regard the
recommendation problem as being time-dependent.

61

References

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recom-
mender systems: a survey of the state-of-the-art and possible extensions.
IEEE Transactions on Knowledge and Data Engineering , 17 (6), 734–749.
Retrieved from http://ieeexplore.ieee.org/lpdocs/epic03/wrapper

.htm?arnumber=1423975 doi: 10.1109/TKDE.2005.99
Adomavicius, G., & Tuzhilin, A. (2011). Context-aware Recommender Systems.

In F. Ricci, L. Rokach, B. Shapira, & P. Kantor (Eds.), Recommender
systems handbook (1st ed., pp. 217–253). Springer. doi: 10.1007/978-0
-387-85820-3

Agrawal, R., Imielinski, T., Swami, A., & Jose, S. (1993). Mining Association
Rules between Sets of Items in Large Databases. In Sigmod ’93 proceedings
of the 1993 acm sigmod international conference on management of data
(pp. 207–216). ACM. Retrieved from http://dl.acm.org/citation.cfm

?id=170072 doi: 10.1145/170035.170072
Agrawal, R., Srikant, R., & Jose, S. (1994). Fast Algorithms for Mining Asso-

ciation Rules. In Proceedings of the 20th vldb conference (pp. 487–499).
Amatriain, X., Jaimes, A., Oliver, N., & Pujol, J. M. (2011). Data Mining

Methods for Recommender Systems. In F. Ricci, B. Shapira, L. Rokach, &
P. B. Kantor (Eds.), Recommender systems handbook (1st ed., pp. 39–71).
Springer. doi: 10.1007/978-0-387-85820-3

Anderson, C. (2008). The Long Tail. Hyperion.
Balabanović, M., & Shoham, Y. (1997). Fab: Content-Based, Collaborative

Recommendation. Communications of the ACM , 40 (3), 66 – 72.
Bambini, R., Cremonesi, P., & Turrin, R. (2011). A Recommender System for

an IPTV Service Provider: a Real Large-Scale Production Environment.
In F. Ricci, L. Rokach, B. Shapira, & P. B. Kantor (Eds.), Recommender
systems handbook (1st ed., pp. 299–332). Springer. doi: 10.1007/978-0
-387-85820-3

Berkovsky, S., Kuflik, T., & Ricci, F. (2008, November). Mediation of user
models for enhanced personalization in recommender systems. User
Modeling and User-Adapted Interaction, 18 (3), 245–286. Retrieved
from http://link.springer.com/10.1007/s11257-007-9042-9 doi:
10.1007/s11257-007-9042-9

Berry, M. W., Dumais, S. T., & O’Brien, G. W. (1995). Using Linear Algebra
for Intelligent Information Retrieval. SIAM Review , 37 (4), 573–595.

63

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1423975
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1423975
http://dl.acm.org/citation.cfm?id=170072
http://dl.acm.org/citation.cfm?id=170072
http://link.springer.com/10.1007/s11257-007-9042-9

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Alloca-
tion. Journal of Machine Learning Research, 3 , 993–1022. Retrieved
from http://dl.acm.org/citation.cfm?id=944937

Bogers, T. (2009). Recommender Systems for Social Bookmarking. Phd thesis,
Tilburg University.

Bogers, T., Rasmussen, R. R., Sebastian, L., & Jensen, B. (2013). Measuring
Serendipity in the Lab: The Effects of Priming and Monitoring. In Pro-
ceedings of iconference 2013 (pp. 703–706). iSchools. doi: 10.9776/13325

Bouma, G. (2009). Normalized (Pointwise) Mutual Information in Collocation
Extraction. In Proceedings of the biennial gscl conference (pp. 31–40).

Burke, R. (2007). Hybrid Web Recommender Systems. In P. Brusilovsky,
A. Kobsa, & W. Nejdl (Eds.), The adaptive web (pp. 377–408). Berlin,
Germany: Springer Berlin Heidelberg. Retrieved from http://dx.doi

.org/10.1007/978-3-540-72079-9 12 doi: 10.1007/978-3-540-72079-9\
12

Celma, O. (2008). Music recommendation and discovery in the long tail. Phd
thesis, Universitat Pompeu Fabra.

Celma, O., & Cano, P. (2008). From hits to niches? or how popular artists
can bias music recommendation and discovery. In Proceedings of the 2nd
kdd workshop on large-scale recommender systems and the netflix prize
competition. (pp. 5:1–5:8). ACM. Retrieved from http://dl.acm.org/

citation.cfm?id=1722154 doi: 10.1145/1722149.1722154
Chen, Z., Meng, X., Zhu, B., & Fowler, R. H. (2000). Websail:

From on-line learning to web search. In Proceedings of the first in-
ternational conference on web information systems engineering (pp.
206–213). Retrieved from http://ieeexplore.ieee.org/xpls/abs all

.jsp?arnumber=882394 doi: 10.1109/WISE.2000.882394
Cunningham, P., Bergmann, R., & Schmitt, S. (2001). Websell: Intelligent

sales assistants for the world wide web. KI , 15 (1), 28–32. Retrieved from
http://www.wi2.uni-trier.de/publications/2001 KIWebsell.pdf

Davidson, J., Livingston, B., Sampath, D., Liebald, B., Liu, J., Nandy, P., . . .
Lambert, M. (2010). The YouTube video recommendation system. In
Proceedings of the fourth acm conference on recommender systems - rec-
sys ’10 (p. 293). New York, New York, USA: ACM Press. Retrieved from
http://portal.acm.org/citation.cfm?doid=1864708.1864770 doi:
10.1145/1864708.1864770

Deerwester, S., Dumais, S. T., Furnas, G. W., & Landauer, T. K. (1990).
Indexing by Latent Semantic Analysis. 1Journal of the American
Society for Information Science, 41 (6), 291–407. Retrieved from
http://www.cob.unt.edu/itds/faculty/evangelopoulos/dsci5910/

LSA Deerwester1990.pdf

Desrosiers, C., & Karypis, G. (2011). A Comprehensive Survey of
Neighborhood-based Recommendation Methods. In F. Ricci, L. Rokach,
B. Shapira, & P. B. Kantor (Eds.), Recommender systems handbook (1st
ed., pp. 107–144). Springer. doi: 10.1007/978-0-387-85820-3

Felfemig, A., Friedrich, G., Jannach, D., & Zanker, M. (2011). Developing

64

http://dl.acm.org/citation.cfm?id=944937
http://dx.doi.org/10.1007/978-3-540-72079-9_12
http://dx.doi.org/10.1007/978-3-540-72079-9_12
http://dl.acm.org/citation.cfm?id=1722154
http://dl.acm.org/citation.cfm?id=1722154
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=882394
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=882394
http://www.wi2.uni-trier.de/publications/2001_KIWebsell.pdf
http://portal.acm.org/citation.cfm?doid=1864708.1864770
http://www.cob.unt.edu/itds/faculty/evangelopoulos/dsci5910/LSA_Deerwester1990.pdf
http://www.cob.unt.edu/itds/faculty/evangelopoulos/dsci5910/LSA_Deerwester1990.pdf

Constraint-based Recommenders. In F. Ricci, L. Rokach, B. Shapira,
& P. B. Kantor (Eds.), Recommender systems handbook (1st ed., pp.
187–251). Springer. doi: 10.1007/978-0-387-85820-3

Fischer, G. (2001). User modeling in humancomputer interaction. User Modeling
and User-Adapted Interaction, 11 (1-2), 65–86. Retrieved from http://

link.springer.com/article/10.1023/A%3A1011145532042

Goldberg, D., Nichols, D., Oki, B., & Terry, D. (1992). Using collaborative
filtering to weave an information tapestry. Communications of the ACM ,
35 (12), 61–70. Retrieved from http://dl.acm.org/citation.cfm?id=

138867

Good, N., Schafer, J. B., Konstan, J. A., Borchers, A., Sarwar, B., Herlocker,
J., & Riedl, J. (1999). Combining Collaborative Filtering with Per-
sonal Agents for Better Recommendations. In Proceedings of aaai’99 (pp.
439–446). AAAI Press.

Hayes, C., & Cunningham, P. (2001). Smart radio – community based music
radio. Knolwedge-Based Systems, 14 (3-4), 197–201.

Herlocker, J., & Konstan, J. (2004, January). Evaluating collaborative filtering
recommender systems. ACM Transactions on Information Systems,
22 (1), 5–53. Retrieved from http://portal.acm.org/citation.cfm

?doid=963770.963772http://dl.acm.org/citation.cfm?id=963772

doi: 10.1145/963770.963772

Hill, W., Stead, L., Rosenstein, M., & Furnas, G. (1995). Recommending and
evaluating choices in a virtual community of use. In Proceedings of the
sigchi conference on human factors in computing systems (pp. 194–201).
Retrieved from http://dl.acm.org/citation.cfm?id=223929

Hofmann, T. (2004, January). Latent semantic models for collabora-
tive filtering. ACM Transactions on Information Systems, 22 (1),
89–115. Retrieved from http://portal.acm.org/citation.cfm?doid=

963770.963774 doi: 10.1145/963770.963774

Koren, Y., & Bell, R. (2011). Advances in Collaborative Filtering. In F. Ricci,
L. Rokach, & B. Shapira (Eds.), Recommender systems handbook (1st ed.,
pp. 145–186). Springer. doi: 10.1007/978-0-387-85820-3

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques
for recommender systems. Computer , 42–49. Retrieved from http://

ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5197422

Linden, G., Smith, B., & York, J. (2003). Amazon.com Recommendations:
Item-to-Item Collaborative Filtering. Internet Computing: IEEE , 7 (1),
76–80. doi: 10.1109/MIC.2003.1167344

Maes, P. (1994, July). Agents that reduce work and information overload.
Communications of the ACM , 37 (7), 30–40. Retrieved from http://

portal.acm.org/citation.cfm?doid=176789.176792 doi: 10.1145/
176789.176792

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Infor-
mation Retrieval (1st ed.). Cambridge University Press. Retrieved from
http://books.google.nl/books?id=t1PoSh4uwVcC

65

http://link.springer.com/article/10.1023/A%3A1011145532042
http://link.springer.com/article/10.1023/A%3A1011145532042
http://dl.acm.org/citation.cfm?id=138867
http://dl.acm.org/citation.cfm?id=138867
http://portal.acm.org/citation.cfm?doid=963770.963772http://dl.acm.org/citation.cfm?id=963772
http://portal.acm.org/citation.cfm?doid=963770.963772http://dl.acm.org/citation.cfm?id=963772
http://dl.acm.org/citation.cfm?id=223929
http://portal.acm.org/citation.cfm?doid=963770.963774
http://portal.acm.org/citation.cfm?doid=963770.963774
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5197422
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5197422
http://portal.acm.org/citation.cfm?doid=176789.176792
http://portal.acm.org/citation.cfm?doid=176789.176792
http://books.google.nl/books?id=t1PoSh4uwVcC

Mobasher, B., Cooley, R., & Srivastava, J. (2000). Automatic personaliza-
tion based on Web usage mining. Communications of the ACM , 43 (8),
142–151. Retrieved from http://dl.acm.org/citation.cfm?id=345169

doi: 10.1145/345124.345169
Montaner, M., López, B., & De La Rosa, J. L. (2003). A Taxonomy of

Recommender Agents on the Internet. Artificial Intelligence Review ,
19 (4), 285–330. Retrieved from http://link.springer.com/article/

10.1023/A%3A1022850703159# doi: 10.1023/A:1022850703159
Newman, M. E. J. (2005). Power laws, Pareto distributions and Zipfs

law. Contemporary Physics, 46 (5), 323–351. Retrieved from http://

www.tandfonline.com/doi/abs/10.1080/00107510500052444 doi: 10
.1080/00107510500052444

Park, Y.-J., & Tuzhilin, A. (2008). The long tail of recommender sys-
tems and how to leverage it. Proceedings of the 2008 ACM conference
on Recommender systems - RecSys ’08 , 11. Retrieved from http://

portal.acm.org/citation.cfm?doid=1454008.1454012 doi: 10.1145/
1454008.1454012

Parsons, J., Ralph, P., & Gallagher, K. (2004). Using Viewing Time to Infer
User Preference in Recommender Systems. In Aaai workshop in semantic
web personalization.

Resnick, P., Iacovou, N., & Suchak, M. (1994). GroupLens: an open archi-
tecture for collaborative filtering of netnews. In Proceedings of the 1994
acm conference on computer supported cooperative work (pp. 175–186).
Retrieved from http://dl.acm.org/citation.cfm?id=192905

Ricci, F., Cavada, D., Mirzadeh, N., & Venturini, A. (2006). Case-based
travel recommendations. In D. R. Fesenmaier, K. W. Vöber, & H. Werth-
ner (Eds.), Destination recommendation systems: Behavioural foundations
and applications (pp. 67–93). CABI.

Ricci, F., Rokach, L., Shapira, B., & Kantor, P. (2011). Recommender Systems
Handbook (1st ed.). New York, NY: Springer. doi: 10.1007/978-0-387
-85820-3

Sakagami, H., & Kamba, T. (1997, September). Learning personal preferences
on online newspaper articles from user behaviors. Computer Networks and
ISDN Systems, 29 (8-13), 1447–1455. Retrieved from http://linkinghub

.elsevier.com/retrieve/pii/S0169755297000160 doi: 10.1016/S0169
-7552(97)00016-0

Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative
Filtering Recommender Systems. In The adaptive web (pp. 291–324).
Springer. doi: 10.1007/978-3-540-72079-9\ 9

Shani, G., & Gunawardana, A. (2011). Evaluating Recommendation Systems.
In F. Ricci, L. Rokach, B. Shapira, & P. Kantor (Eds.), Recommender
systems handbook (1st ed., pp. 257–297). Springer. doi: 10.1007/978-0
-387-85820-3

Shani, G., Heckerman, D., & Brafman, R. I. (2005). An MDP-Based Recom-
mender System. Journal of Machine Learning Research, 6 , 1265–1295.

Shardanand, U., & Maes, P. (1995). Social Information Filtering: Algorithms

66

http://dl.acm.org/citation.cfm?id=345169
http://link.springer.com/article/10.1023/A%3A1022850703159#
http://link.springer.com/article/10.1023/A%3A1022850703159#
http://www.tandfonline.com/doi/abs/10.1080/00107510500052444
http://www.tandfonline.com/doi/abs/10.1080/00107510500052444
http://portal.acm.org/citation.cfm?doid=1454008.1454012
http://portal.acm.org/citation.cfm?doid=1454008.1454012
http://dl.acm.org/citation.cfm?id=192905
http://linkinghub.elsevier.com/retrieve/pii/S0169755297000160
http://linkinghub.elsevier.com/retrieve/pii/S0169755297000160

for Automating ”Word of Mouth”. In Proceedings of the sigchi conference
on human factors in computing systems (pp. 210–217).

Su, Z., Lu, Y., Yang, Q., Zhang, H.-j., Road, Z., & District, H. (2000). What-
Next: A Prediction System for Web Requests using N-gram Sequence
Models. In Proceedings of the first international conference on web in-
formation systems engineering (pp. 214–221). doi: 10.1109/WISE.2000
.882395

Tan, P. N., Steinbach, M., & Kumar, V. (2006). Association analysis: Basic
concepts and algorithms. In Introduction to data mining (pp. 327–414).
Addison-Wesley. Retrieved from http://scholar.google.com/

scholar?hl=en&btnG=Search&q=intitle:Association+Analysis:

+Basic+Concepts+and+Algorithms#1

Voorhees, E. M. (2002). The Philosophy of Information Retrieval Evalua-
tion. In C. Peters, M. Braschler, J. Gonzalo, & M. Kluck (Eds.), Eval-
uation of cross-language information retrieval systems (pp. 355–370).
Springer. Retrieved from http://link.springer.com/chapter/10

.1007/3-540-45691-0 34 doi: 10.1007/3-540-45691-0
Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical ma-

chine learning tools and techniques (3rd ed.). Burlington, MA: Morgan
Kaufmann.

Zimdars, A., Chickering, D., & Meek, C. (2001). Using temporal data for
making recommendations. In Proceedings of the seventeenth conference
on uncertainty in artificial intelligence (pp. 580–588). Retrieved from
http://dl.acm.org/citation.cfm?id=2074093

67

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Association+Analysis:+Basic+Concepts+and+Algorithms#1
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Association+Analysis:+Basic+Concepts+and+Algorithms#1
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Association+Analysis:+Basic+Concepts+and+Algorithms#1
http://link.springer.com/chapter/10.1007/3-540-45691-0_34
http://link.springer.com/chapter/10.1007/3-540-45691-0_34
http://dl.acm.org/citation.cfm?id=2074093

Appendices

Appendix A

System performance

71

Table A.1: Association rule mining performance (Arm).

mc MAE RMSE ρ τ

log2
1 1.219 (0.463)** 1.483 (0.508)** −.126 (0.370)** −.103 (0.302)**

10 1.218 (0.462)** 1.482 (0.508)** −.125 (0.369)** −.102 (0.301)**
20 1.216 (0.460)** 1.479 (0.506)** −.126 (0.369)** −.103 (0.301)**
30 1.212 (0.458)** 1.474 (0.505)** −.121 (0.369)** −.099 (0.301)**
40 1.206 (0.458)** 1.468 (0.502)** −.118 (0.369)** −.096 (0.301)**
50 1.201 (0.451)** 1.462 (0.500)** −.112 (0.370)** −.092 (0.303)**
60 1.198 (0.448)** 1.458 (0.497)** −.112 (0.370)** −.092 (0.303)**
120 1.168 (0.432)** 1.427 (0.484)** −.077 (0.364)** −.064 (0.297)**
180 1.142 (0.427)** 1.400 (0.480)** −.024 (0.353)** −.020 (0.287)**
240 1.128 (0.434)** 1.385 (0.484)** .054 (0.352)* .044 (0.288)*
300 1.181 (0.471)** 1.441 (0.514)** .081 (0.346) .066 (0.284)

loge
1 1.110 (0.422)** 1.361 (0.473)** −.126 (0.370)** −.103 (0.302)**

10 1.109 (0.420)** 1.359 (0.471)** −.125 (0.369)** −.102 (0.301)**
20 1.106 (0.418)** 1.356 (0.469)** −.126 (0.369)** −.103 (0.301)**
30 1.102 (0.414)** 1.350 (0.466)** −.121 (0.369)** −.099 (0.301)**
40 1.096 (0.411)** 1.343 (0.463)** −.118 (0.369)** −.096 (0.301)**
50 1.091 (0.406)** 1.337 (0.458)** −.112 (0.370)** −.092 (0.303)**
60 1.088 (0.403)** 1.333 (0.455)** −.112 (0.370)** −.092 (0.303)**
120 1.063 (0.385)** 1.306 (0.439)** −.077 (0.364)** −.064 (0.297)**
180 1.051 (0.384)** 1.291 (0.438)** −.024 (0.353)** −.020 (0.287)**
240 1.057 (0.399)** 1.294 (0.451)** .054 (0.352)* .044 (0.288)*
300 1.124 (0.451)** 1.369 (0.496)** .081 (0.346) .066 (0.284)*

log10
1 0.992 (0.307) 1.181 (0.350) −.126 (0.370)** −.103 (0.302)**

10 0.991 (0.306) 1.180 (0.349) −.125 (0.369)** −.102 (0.301)**
20 0.990 (0.305) 1.178 (0.347) −.126 (0.369)** −.103 (0.301)**
30 0.990 (0.302) 1.175 (0.344) −.121 (0.369)** −.099 (0.301)**
40 0.987 (0.300) 1.172 (0.340) −.118 (0.369)** −.096 (0.301)**
50 0.986 (0.293) 1.170 (0.337) −.113 (0.370)** −.093 (0.302)**
60 0.986 (0.295) 1.170 (0.336) −.112 (0.370)** −.092 (0.303)**
120 0.990 (0.293) 1.171 (0.334) −.077 (0.364)** −.064 (0.297)**
180 1.007 (0.312) 1.190 (0.356) −.024 (0.353)** −.020 (0.287)**
240 1.037 (0.353)* 1.227 (0.396)* .054 (0.352)* .044 (0.288)*
300 1.115 (0.426)** 1.322 (0.464)** .081 (0.346) .066 (0.284)*

72

Table A.2: Matrix factorization of original data performance (Mf).

f MAE RMSE ρ τ

10 0.769 (0.252) 0.945 (0.289) .380 (0.334) .314 (0.281)
20 0.768 (0.250) 0.945 (0.288) .380 (0.331) .315 (0.278)
30 0.768 (0.250) 0.945 (0.288) .383 (0.332) .317 (0.280)
40 0.769 (0.250) 0.946 (0.288) .380 (0.333) .314 (0.280)
50 0.769 (0.251) 0.946 (0.289) .378 (0.333) .313 (0.280)

100 0.772 (0.251) 0.950 (0.289) .371 (0.330) .307 (0.278)
200 0.778 (0.251) 0.954 (0.289) .362 (0.335) .300 (0.282)
300 0.780 (0.251) 0.955 (0.288) .357 (0.338) .295 (0.283)
400 0.782 (0.251) 0.956 (0.288) .359 (0.338) .297 (0.283)
500 0.782 (0.252) 0.956 (0.289) .355 (0.341) .294 (0.285)

73

Table A.3: Matrix factorization of preprocessed data performance (ArmMf).

f MAE RMSE ρ τ

minconf = .05
10 0.902 (0.338)** 1.122 (0.388)** .296 (0.335)** .245 (0.281)**
20 0.905 (0.336)** 1.128 (0.386)** .296 (0.336)** .246 (0.283)**
30 0.906 (0.337)** 1.129 (0.388)** .295 (0.337)** .246 (0.283)**
40 0.905 (0.339)** 1.129 (0.390)** .298 (0.334)** .249 (0.282)**
50 0.905 (0.338)** 1.131 (0.388)** .299 (0.336)** .249 (0.284)**
100 0.908 (0.336)** 1.136 (0.386)** .297 (0.333)** .248 (0.281)**
200 0.912 (0.334)** 1.141 (0.385)** .286 (0.335)** .238 (0.283)**
300 0.913 (0.335)** 1.142 (0.386)** .285 (0.340)** .238 (0.286)**
400 0.913 (0.336)** 1.142 (0.387)** .287 (0.337)** .240 (0.284)**
500 0.914 (0.337)** 1.143 (0.387)** .288 (0.335)** .240 (0.281)**

minconf = .10
10 0.789 (0.266) 0.974 (0.309) .365 (0.335) .302 (0.281)
20 0.787 (0.266) 0.974 (0.310) .368 (0.337) .305 (0.293)
30 0.787 (0.265) 0.975 (0.309) .366 (0.333) .303 (0.283)
40 0.787 (0.265) 0.976 (0.309) .365 (0.334) .302 (0.281)
50 0.788 (0.266) 0.977 (0.310) .368 (0.333) .304 (0.280)
100 0.793 (0.266) 0.982 (0.310) .355 (0.332) .294 (0.278)
200 0.798 (0.267) 0.987 (0.311)* .347 (0.339) .288 (0.284)
300 0.801 (0.267)* 0.988 (0.310)* .348 (0.336) .287 (0.281)
400 0.802 (0.267)* 0.989 (0.310)* .347 (0.337) .287 (0.282)
500 0.802 (0.267)* 0.989 (0.310)* .344 (0.341) .284 (0.284)

minconf = .15
10 0.769 (0.252) 0.945 (0.289) .381 (0.334) .315 (0.281)
20 0.768 (0.251) 0.946 (0.289) .382 (0.331) .316 (0.278)
30 0.768 (0.251) 0.945 (0.288) .381 (0.331) .316 (0.280)
40 0.770 (0.251) 0.947 (0.288) .379 (0.334) .314 (0.280)
50 0.769 (0.251) 0.947 (0.289) .378 (0.333) .313 (0.280)
100 0.773 (0.251) 0.951 (0.289) .370 (0.328) .307 (0.275)
200 0.779 (0.252) 0.956 (0.289) .361 (0.336) .299 (0.282)
300 0.782 (0.252) 0.957 (0.289) .358 (0.338) .296 (0.283)
400 0.783 (0.252) 0.958 (0.289) .359 (0.338) .297 (0.283)
500 0.783 (0.253) 0.958 (0.290) .354 (0.341) .293 (0.285)

74

	Preface
	Introduction
	Use case: a public library
	Beer and diapers
	Research questions and hypotheses
	Outline

	Recommender systems
	Recommendations defined
	Recommender system tasks
	Recommender system functions
	Evaluating recommender systems

	Collaborative filtering
	Neighbourhood-based approaches
	Latent factor models

	Association rule mining
	Mining for rating predictions
	Preprocessing latent factor models

	Experimental setup
	Dataset
	Parameter selection
	Evaluation
	Measuring rating predictions
	Measuring ranking performance
	Evaluating performance

	Results
	Significance
	Performance
	Association rule mining
	Matrix factorization of original data
	Matrix factorization of preprocessed data

	Discussion
	Conclusion
	References
	System performance

