
Tilburg School of Economics and Management

Finance Department

Analysis of Order Clustering Using High Frequency Data:

A Point Process Approach

F. Lorenzen - ANR. 188798

Supervisor: F.C.J.M. de Jong

August - 2012





Acknowledgements

The accomplishment of this work was made possible because of many people. First, I would

like to thank my supervisor Frank de Jong, whose experience as an academic in Finance,

helped me to turn a simple research idea into the present work. Without Frank’s support

this work would not exist.

I would also like to thank all second year research master students in Finance. With them

I had the opportunity to share my views and ideas about several different topics. A special

thanks to Andreas Rapp who helped me a lot while I was writing this work. I also thank
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Chapter 1

Introduction

The amount of transactions observed in financial markets has increased dramatically over the

last decade. Not only has the volume traded in exchanges around the world seen unprecedent

levels but also the frequency at which these transactions occur have increased (Lo and Wang,

2001 analyze several interesting time series properties related to the volume of trades in

financial markets). The technological improvement experienced by exchanges and traders

has brought trading activity to a new standard. This new standard is often referred to as

High Frequency Trading (HFT), a new kind of trading strategy whose trademarks are low

latency and high volume trading. HFT accounted for a relatively small amount of trading

activity in equity markets during the beginning of 2000 but has nowadays grown to be the

dominant force in these markets (Zhang, 2010; Hendershott, Jones and Menkveld, 2011).

The massive presence of HFT has a growing impact on microstructure aspects of finan-

cial markets. Recently, the SEC has proposed to conduct a review of the equity markets

microstructure to check whether “market structure rules have kept pace with, among other

things, changes in trading technology and practices”, SEC (2010, p.1). The SEC (2010)

release also reports how drastically the “speed” of financial markets has increased: in 2005

the average speed of execution for small orders in the NYSE was 10.1 seconds, this number

was reduced to 0.7 seconds in 2009. At the same time the consolidate number of trades in

the NYSE jumped from 2.9 millions trades in 2005 to 22.1 millions trades in 2009. These

impressive figures have put financial markets into a new paradigm and set new challenges
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Chapter 1. Introduction

to the academic literature in finance. Taking a very detailed look into the market one may

wonder how to analyze the huge amount of noisy, fine-grained data that is now available.

Trading activity is not evenly distributed during the trading day. It is well known that

trades occur more frequently during the beginning and the end of the trading day. Moreover,

trades tend to occur in clusters. If one observes the intensity of trades during the day it

is easy to see that there are short periods of very intense trading and periods of very low

trading intensity. This makes the duration between trades irregular and poses a challenge

to standard econometric techniques. One of the first attempts to model irregularly spaced

data was the Autoregressive Conditional Duration (ACD) model of Engle and Russel (1998).

The ACD assumes that arrival times (of trades, quotes or some other event) are stochastic

variables that follow a point process.

Point processes are a class of stochastic processes in which one realization of the process is

characterized by a point in time or in some other space. The simplest case of a point process

is the homogenous Poisson process that describes the rate of arrival of new events using a

constant rate µ. The Poisson process has found application in many different situations.

It can be used to model the rate of radiation arriving in a Geiger counter or the rate of

arrival of clients in a shop. A slightly more sophisticated point process is a non-homogenous

Poisson process, where the rate of arrival can vary as a deterministic function of time, i.e.

µ = µ(t). The non-homogenous Poisson process is also widely applied to model arrival rates

of aircrafts, containerships and telephone calls. Generally speaking, point processes are the

mathematical foundation of many different theories like Renewal Theory, Reliability Theory

and Queueing Theory to name a few. Nevertheless, the analysis of more complex random

signals like that descendant from earthquakes or from the stock market requires models that
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Chapter 1. Introduction

are more sophisticated than the simple (non-)homogenous Poisson process. Earthquakes

and stock market data present endogenous clustering effects that cannot be captured by the

simple Poisson process. The occurrence of an earthquake is usually followed by aftershocks

and the arrival rate of buy or sell orders to the stock market usually occurs in bursts where one

order is followed by many other orders. The ACD model is an early attempt to incorporate

such stylized facts into a parsimonious model.

Another popular model that is able to reproduce some of the stylized facts related to stock

market data, like the clustering of order arrivals, is the Hawkes’ model (Hawkes, 1971). The

Hawkes’ model is a self-exciting point process that has found application in many different

fields like seismology, neurophysiology, epidemiology and finance. The popularity of the

Hawkes’ model is explained by its ability to model clustering effects in a parsimonious way

maintaining a linear representation for its conditional intensity (Daley and Vere-Jones, 2003).

The term self-exciting stems from the fact that in the Hawkes’ model events that arrive at

a rate µ, which is possibly time-varying, can give rise to second order events, that in turn

can give rise to third order events and so on. In this work we estimate a Hawkes’ model

using high-frequency stock market data on the durations of trades and quotes. Our work

follows closely the estimation performed by Filimonov and Sornette (2012) (FS, hereafter)

who estimated a Hawkes’ process using data on the duration of mid-price changes of the

E-mini S&P 500 contract. The main difference from FS (2012) is that we use data on equity

markets and do not fully rely on the randomization of timestamps, as used by FS (2012).

The randozimation of timestamps is necessary because the data used by FS (2012) has a

timestamp that is rounded to the nearest second. Given the high-activity of markets is quite

common to have several events within one second. In order to distinguish between those
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Chapter 1. Introduction

events, FS (2012) make use of a random number in the interval [0, 1) that is added to the

original timestamp. Instead of imposing this strong assumption, we try to assess the impact

of the randomization of timestamps on the estimates and the fit of the Hawkes’ model.

In the next section we present a brief introduction to the mathematics of point processes.

We then review the simulation and the estimation of Hawkes’ process as well as some appli-

cations in finance. Our last step is to estimate the parameters and the fit of the process on

stock data using a sample for the U.S. market and a sample for the European market.
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Chapter 2

Point Processes

Let ti be some random variable that satisfies t1 < t2 < ... < tN . These variables may

be used to identify the time epochs in which a given event occurs. We focus here on the

unidimensional problem so that the variables ti can be arranged on a line. We call the

stochastic process defined by the variables ti a point process. The counting process associated

with the set of time epochs {ti} is an alternative description of the point process and is given

by

N (t) =
∑
i

1ti≤t. (2.1)

Note that the definition above excludes the possibility of more than one event occurring at

any time ti. Let the duration between two consecutive events be defined as

τ (ti) = ti − ti−1. (2.2)

The definitions so far are quite general and can be used to describe many different phenom-

ena. In order to construct a model that explains the intra-event durations we have to add

more structure to the point process. Consider then the counting function N(t). A point

process can be defined in terms of N(t) using the equation below

P [N (t+ h)−N (t) = 1] = λ(t)h+ o (h) ,

P [N (t+ h)−N (t) > 1] = o (h) .

(2.3)

Equation (2.3) reflects the fact that no more than one event occur at a single time t and that

events occur with a time-varying intensity λ(t). The researcher has the freedom to choose an
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intensity that describes the data well. Note that λ(t) can be taken either as a deterministic

or a stochastic function of time.

A very simple case of a point process is the homogeneous Poisson process. It is a process

such that the probability that one event occurs in the next (small) time interval h is pro-

portional to a constant µ (λ(t) = µ). The simple structure of the Poisson process makes it a

very popular model. Nevertheless, this simplicity makes it unable to reproduce some of the

stylized facts observed in the stock market, like the clustering of order arrivals. The main

issue with the homogeneous Poisson process is that it is a process that has no memory, i.e.

the intra-event duration does not depend on previous events and is thus i.i.d. If one wants

to reproduce some of the stylized facts of order flows, like clustering of order arrivals, then

some correlation structure must be incorporated into the Poisson process. The next sec-

tion presents the Hawkes’ model, which is a model that incorporates an additive correlation

structure to the Poisson process.

2.1 Hawkes’ process

The Hawkes’ process is a point process that has a response function (or kernel) h(t − ti)

which takes into account the influence of past events on the current conditional intensity.

It was introduced by Hawkes (1971) and is a more general model than the Poisson process

discussed before; it has the potential to explain some of the stylized facts related to quote and

trade dynamics. As explained by Daley and Vere-Jones (2003, p.183), the Hawkes’ process:

“comes closest to fulfilling, for point processes, the kind of role that the autoregressive model

plays for conventional time series”.

The Hawkes’ process is easily described in terms of its conditional intensity function, given
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by

λt (t) = µ (t) +
∑
ti<t

h(t− ti), (2.4)

where the functional form of the response function used in many applications (FS, 2012;

Shek, 2011; Hewlett, 2006; and Bowsher, 2007) is exponential, h(t− ti) = αe−β(t−ti), leading

to a conditional intensity

λt (t) = µ (t) +
∑
ti<t

αe−β(t−ti). (2.5)

The first term in the conditional intensity is the “base” intensity of the model that determines

the rate of arrival of first order1 events per unit of time. The response function controls then

how offsprings are generate by first order events and is the source of clustering in the model.

As it will become clear later, the simple conditional intensity representation of the Hawkes’

model given by Equation (2.5) and the fact that the model is described in event time (in

contrast to wall-clock time) are two important advantages of the Hawkes’ model over models

that describe directly durations, such as the ACD model of Engle and Russel (1998). To

see how the Hawkes’ process resembles an autoregressive model we rewrite the conditional

intensity as

λ (t)− µ (t) =
∑
ti<t

αe−β(t−ti). (2.6)

Consider now the intensity of the process at some given epoch ti that is in the past with

respect to t. This intensity can be written as

λ (ti)− µ (ti) =
∑
tk<ti

αe−β(ti−tk). (2.7)

1In earthquake terminology, the events of first order are named main events while the second order events

are named aftershocks. Immigrants for the first order events and descendants or offspring for the second

order events are also a common terminology.
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If we multiply both sides of the previous equation by exp [−β (t− ti)] we get

[λ (ti)− µ (ti)] e
−β(t−ti) =

∑
tk<ti

αe−β(t−tk), (2.8)

where tk represents all events that occurred before the event ti that is itself in the past with

respect to t. Now note that the response function
∑
ti<t

αe−β(t−ti) can be decomposed as

∑
ti<t

αe−β(t−ti) =
∑
tk<ti

αe−β(t−tk) +
∑

tk>ti<t

αe−β(t−tk). (2.9)

If we now combine the last two equations we can write λ (t)− µ (t) as

λ (t)− µ (t) = [λ (ti)− µ (ti)] e
−β(t−ti) +

∑
tk>ti

αe−β(t−tk). (2.10)

Equation (2.10) resembles the continuous time form of an autoregressive model, given by,

Xt − µ = e−β(t−s) (Xs − µ) + sum of innovations, (2.11)

where the term [λ (ti)− µ (ti)] e
−β(t−ti) is the autoregressive term and the term∑

tk>ti<t

αe−β(t−tk) represents the sum of the innovations in the AR process.

The unconditional expectation of the intensity of the Hawkes’ process is a measure of the

trading intensity in a given day and it is given by

E (λ) = E (µ) + E

 t∫
−∞

αe−β(t−s)dN (s)

 . (2.12)

Assuming stationarity we get the expected intensity as

E (λ) =
µ

1− α
β

. (2.13)

From the expression above we check that the stationarity condition for the process is that

α/β < 1. Two other important quantities in the context of a Hawkes’ process are the

clustering size c of the process

c =
1

1− α
β

, (2.14)

8
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and the branching ratio n

n =

∞∫
0

αe−βtdt =
α

β
, (2.15)

where both expressions are valid for an exponential kernel. The branching ratio will be of

special interest in this work. Whenever the intensity µ is a constant and the process is in

the sub-critical (n < 1) or in the critical (n = 1) regime the branching ratio can be used as a

measure of the proportion of events that are generated inside the model (by the presence of

the exponential kernel, i.e. endogenously generated events) to all events (FS, 2012). To gain

some more insight into the Hawkes’ model we describe in the next section how the Hawkes’

model relates to discrete time point processes.

2.2 Relation to Discrete Time Models

Modelling of irregularly spaced data is an econometric challenge that was first tackled using

discrete time models. The Autoregressive Conditional Duration (ACD) model, proposed by

Engle and Russel (1998), is a discrete time stochastic process that models the duration of

events conditional on past durations. The ACD model can be thought as a GARCH model

for the expectation of the conditional duration. Let the duration be defined as xi = ti− ti−1

and let ψi = E(xi|xi−1, ..., x1) be the conditional expected duration. Then the ACD(p,q)

model can be written as

ψi = ω +

p∑
j=1

αjxi−j +

q∑
j=1

βjψi−j, (2.16)

and the conditional intensity of the model is given by

λ
(
t|xN(t), ..., x1

)
= λ0

(
t− tN(t)

ψN(t)+1

)
1

ψN(t)+1

, (2.17)

9
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which is further simplified in the case that the durations are conditionally exponential,

leading to a unitary baseline hazard

λ
(
t|xN(t), ..., x1

)
=

1

ψN(t)+1

. (2.18)

For an ACD(p,q) model in Equation (2.16) the unconditional expected duration is given by

E(xi) =
ω

1−
∑

(αj + βj)
, (2.19)

which is very similar to the unconditional expectation of the intensity of a Hawkes’ process.

The first disadvantage of the ACD model when compared to the Hawkes’ model is that while

the latter is described in wall-clock time the former is described in event time (see Easley and

O’Hara, 1992; Hasbrouck, 1999 and Dufour and Engle, 2000 for the relevance of wall-clock

time models). The second disadvantage is that while the Hawkes’ model provides a simple

description of the conditional intensity of the model this is not true for the ACD model

(Russel, 1999 proposes to model directly the intensity of the process, the model is known

as Autoregressive Conditional Intensity). This advantage of the Hawkes’ model makes it

easier to treat multivariate point processes (see Russel, 1999 and Bowsher 2007, for a more

detailed discussion of the disadvantages of the ACD model).

2.3 Estimation of Hawkes’ Process via Maximum Like-

lihood

Having established the main properties of the Hawkes’ process and compared it to competing

models, we now turn to the estimation of the Hawkes’ process using the Maximum Likelihood

Estimation. The estimation procedure of the Hawkes’ self-exciting process presented here
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builds on the work by Ozaki (1979). Ogata (1978) established the asymptotic properties of

the ML estimator of the Hawkes’ process. The general form of the log-likelihood function of

a Hawkes’ process with an arbitrary response fuction is given by

logL(t1, ..., tN) = −
tN∫
−∞

λ (t|θ) dt+

tN∫
0

log λ (t|θ) dN (t) , (2.20)

where λ(t|θ) is the conditional intensity of the process. The likelihood function analyzed by

Ozaki (1979) is valid for a Hawkes’ process with intensity given by Equation (2.5), where

the response function is exponential

h (t) = αe−βt, (2.21)

which represents also the particular choice made by FS (2012) who apply the process given

by Equation (2.5) to study endogenous price formation during market crashes. The point

process with intensity given by (2.5) is a sample of events characterized by the times when

each event occurs. The events can represent times when a transaction takes place, an order

arrives or there is a change in the mid-price of a given stock, to name a few examples. We

label each event by an index i which runs from 1 to N . The times when an event takes

place must satisfy t1 < t2 < ... < tN as already discussed. Ozaki (1979) shows that the

log-likelihood function for the Hawkes’ process described by Equation (2.5) is given by

logL (t1, ..., tN |θ) = −µtN +
N∑
i=1

α

β

(
e−β(tN−ti) − 1

)
+

N∑
i=1

log {µ+ αA (i)} , (2.22)

where A (i) is given by

A (i) =


∑
tj<ti

e−β(ti−tj), for i ≥ 2,

0, otherwise,

(2.23)
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and can be rewritten using a recursive formula as A(i) = e−β(ti−ti−1)A(i− 1). The derivation

of the log-likelihood function given by 2.22 is presented in Appendix 1. Note that the log-

likelihood function is non-linear in the parameters of the model. Also note that it is quite

easy to rewrite (2.22) in terms of the the branching ratio n = α/β. This re-parametrization

is presented below.

logL (t1, ..., tN |θ) = −µtN +
N∑
i=1

n
(
e−β(tN−ti) − 1

)
+

N∑
i=1

log {µ+ nβA (i)} . (2.24)

Before we turn to more specific details of the estimation of the Hawkes’ process using equa-

tions (2.22) or (2.24) we discuss in the next section an important property of point processes.

Namely, we discuss the time change theorem and how one can use it to construct a goodness-

of-fit measure of point processes. A more formal treatment of the time change theorem can

be found in Daley and Vere-Jones (2003, Section 7.4).

2.4 Compensator of Hawkes’ Process and Random

Time Change Theorem

Generally speaking the compensator of a stochastic process is a deterministic function that

is subtracted from the process to make it a local martingale. Mathematically, it can be

defined as the integral of the intensity over the whole history of the process

Λ (t) =

t∫
0

λ(s)ds. (2.25)

For the simple case of a Poisson process with intensity λ the compensator can be written

as Λ (t) = λt, because for the (homogenous) Poisson process the intensity λ is a constant.

For a general point process the compensator defined by the Equation (2.25) takes the point
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process with intensity λ(s) to a unit-rate Poisson process. Therefore the durations as defined

bellow are exponentially distributed

Λ (ti, ti+1) =

ti+1∫
ti

λ(s)ds, (2.26)

and can be used to test the simulated process via a quantile-quantile plot. Equation (2.26)

performs a random change in the time-scale of the process. The resulting process from this

random time change is called the residual process. Inserting the intensity for a Hawkes’

process in (2.26) we get

Λ (ti, ti+1) =

ti+1∫
ti

µ(s)ds+

ti+1∫
ti

∑
tk<s

α exp(−β (s− tk))ds, (2.27)

and noting that the summation is over the (discrete) event times that are smaller or equal

to ti we get (assuming that µ(s) = µ)

Λ (ti+1, ti) = µ(ti − ti+1) +
i∑

k=1

ti+1∫
ti

α exp(−β (s− tk))ds, (2.28)

which leads to

Λ (ti, ti+1) = µ(ti+1 − ti)−
i∑

k=1

α

β
[exp(−β (ti+1 − tk))− exp(−β (ti − tk))] , (2.29)

A common way to measure the goodness-of-fit of the Hawkes’ model is making use of the

residual process derived from the model. The time change property of point processes assures

that the integrated Hawkes’ process is a Poisson process with unit rate. Therefore, the

durations of the integrated process are exponentially distributed with unit rate. Following

Ogata (1988), it is possible to make one-to-one transformation of the point process described

by the events {ti} to the random time changed set {ξi} by making use of Equation (2.26)

and letting ξi = Λ(ti−1, ti). The set of times {ξi} is the residual process and, using the time
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change property, follows a unit rate Poisson process. If we now take Uk = 1− exp Λ(ti−1, ti),

then Uk is distributed as a uniform random variable in the range [0, 1).

Therefore, a very simple way of assessing the goodness of fit of Hawkes’ model is to

calculate the estimated Λ̂(ti) making use of the vector of parameters θ̂ = (µ̂, α̂, β̂) that we

have previously estimated, to obtain the estimated residual process
{
ξ̂i

}
. Then one can

calculate the U ′ks and compare it with random uniform variables in the range [0, 1). The

general idea is that if the Hawkes’ model is a good description of our data then we might

expect that the estimated residual process follows a unit rate Poisson process, or equivalently,

that the durations of the estimated residual process have a unit rate exponential distribution.

To test the hypothesis that the estimated residual process comes from a unit rate Poisson

process we can make use of the Kolmogorov-Smirnov (KS) statistic to draw confidence

bounds for the process. Daley and Vere-Jones (2003, p.262) describe an algorithm that can

be used to assess the goodness-of-fit of a point process using the KS statistic.
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Literature Review

Point processes are a class of stochastic processes applied to model many different phenomena

(see Thompson, 1988 for applications in safety and reliability; Sornette et al., 2004 applies a

Hawkes’ process to model book sales using Amazon data; Crane and Sornette, 2008 use the

Hawkes’ process to study the dynamics of views of YouTube videos; Ogata, 1988 uses point

processes to analyze earthquake data).

In finance, point processes are applied mainly to explain some of the stylized facts related

to the microstructure of financial markets. More specifically, point processes offer a parsimo-

nious way to model the duration between events and have been extensively used to model the

arrival rate of quotes and prices in different markets. The applications can be distinguished

between those that make use of discrete point processes, like the ACD and the ACI models,

and those that make use of continuous time point processes, like the Hawkes’ model. Here

we review the most relevant works that applied the Hawkes’ process to transaction data.

Even though the Hawkes’ model was proposed in the 1970’s its applications in finance

are relatively recent. Bowsher (2007) was one of the first to consistently apply the Hawkes’

process to describe events related to financial markets. In his work, Bowsher develops a

generalized Hawkes’ model, described in terms of its vector conditional intensity, and applies

the bivariate version of it to explain the durations of trades an mid-quote changes using

data on one stock (General Motors Corporation) and 40 trading days in the year 2000.

Bowsher (2007) shows that there is a two-way interaction between trades and changes in
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mid-prices where the occurrence of a trade increases the intensity of mid-price changes and

mid-price changes increases trade intensity. Bowsher (2007) uses data from the Trades an

Quotes (TAQ) database with timestamps of one second precision. The issue of multiple

events within a single timestamp, common to high frequency data that is timestamped to

the nearest second, is solved by adding a uniform random component that distinguishes

between equal timestamps. This strong assumption related to the ordering of events may

not be a big issue in Bowser’s (2007) paper that uses data from 2000 with a small number

of simultaneous events per time stamp (Bowsher, 2007 explains that the number of events

that occurred within same timestamps represents only 0.26% of all events for trades and

only 0.14% for mid-price changes). Nevertheless, if one uses more recent data, the presence

of High Frequency Traders increases drastically the number of events within a given second.

For instance, using TAQ data on trades for the Yahoo stock in one trading in February of

2010 roughly 30% of all events (i.e. price changes) occurred within the same second.

Another early application of the Hawkes’ process in finance was made by Hewlett (2006).

In his work, Hewlett (2006) used a bivariate Hawkes’ process to model order flow in the FX

market. Hewlett proposed a model that predicts future trading intensity conditional on the

pattern of past trades that is modelled via a Hawkes’ process. In the market, liquidity takers

that need to fill a large order are faced with the dilemma whether they should try to fill the

order at once or split the large order in small tranches. While filling the large order at once

will influence the market price, splitting the order into tranches is subject to front running

of market-makers if they are capable to identify the pattern of buy and sell order arrivals.

Hewlett’s (2006) model tries to tell how the liquidity taker should behave, given the reaction

of the market-maker, assuming that the process of order arrival follows a bivariate Hawkes’

16



Chapter 3. Literature Review

process.

In a recent paper Filimonov and Sornette (2012) proposed a measure of market endogene-

ity (termed reflexivity, as proposed by George Soros) that measures whether price changes

are driven by exogenous events like fundamental news related to a firm or the economy, or

endogenously by market movements that emerge through positive feedback mechanisms that

induce correlation among price changes. In their work, Filimonov and Sornette (2012) use

the branching ratio of a self-excited conditional Hawkes’ model as a proxy for market endo-

geneity. Using quote data on the E-mini S&P 500 futures that spans the years from 1998

to 2010 they analyze the dynamic behavior of the branching ratio, estimated via Maximum

Likelihood, and find that while before 2000 the market endogeneity was relatively low (with

branching ratio of ' 0.3), after 2004 it has reached levels close to 0.9, being consistently

above 0.6. Filimonov and Sornette (2012) then show that the branching ratio is fairly stable

even during periods of market stress as long as they are justified by some exogenous news.

In their sample, they use the downgrading of Greece and Portugal on April 27, 2010 as evi-

dence that supports this fact. Nevertheless, there is a large increase in the branching ratio

during the crash of May 6, 2010 - popularly known as Flash-Crash - when stock markets fell

without any relevant exogenous news. Filimonov and Sornette (2012) also noticed that the

increase in the branching ratio coincides with the rise in activity by High Frequency Traders.

The flash-crash itself, even if there is no evidence that it was triggered by High Frequency

Traders, was to some extent associated with the presence of high-speed automated trading

systems that might have exacerbated the extreme market movements observed on that day

(see the SEC report on the subject as well as Kirilenko et al., 2011).

Some other works that used the Hawkes’ process to model financial market phenomena
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are Large (2007) that uses a Hawkes’ process to measure the resiliency of a limit order book,

defined as the speed to which prices recover from large trades that disturb the bid-ask spread,

and the paper of Bacry et al. (2011) that uses the process to model the Epps effect1.

1The Epps effect relates to the decrease in the correlation among price changes of stocks as the interval

on which the price changes are measured decreases (the sampling frequency increases). Epps (1979) related

this effect with the non-stationarity of price changes.
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Chapter 4

Simulation of a Hawkes’ Process

Before turning to more specific issues related to the estimation and the fit of the model it

is worth to note that Ozaki (1979) presents an algorithm which can be used to generate

Hawkes’ process data. The generation of simulated data is interesting because knowledge of

the true values of the vector of parameters θ enables us to calibrate the estimation procedure

and check how the log-likelihood function behaves. The algorithm for generation of Hawkes’

process data follows the steps outlined below (as described by Ozaki, 1979):

1. Generate a uniform random number U on [0, 1];

2. Let t1 = − log(U)/µ;

3. Generate a uniform random number U on [0, 1];

4. Solve log(U) + µ (u− tk) +
α

β
A (k)

(
1− e−β(u−tk)

)
= 0;

5. Let tk+1 = u and A (k + 1) = e−β(tk+1−tk)S (k) + 1;

6. Go back to step 3 and increase k by one.

Note that

A (k) =


e−β(tk−tk−1)A (k − 1) + 1, for i ≥ 2,

1, otherwise.

(4.1)

The above described algorithm was implemented using Matlab. After the data was generated

it is possible to calculate the intensity of the process using Equation (2.5). Note that the
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Chapter 4. Simulation of a Hawkes’ Process

(a) θ = (0.1, 0.0175, 0.035) (b) θ = (0.1, 2.5, 5)

Figure 4.1: Intensity: n = 0.5

parameter µ determines the intensity of exogenous events (roughly, how many events occur

per unit of time) and that α and β determine the clustering of the process and the intra-

event dynamics. A higher branching ratio increases clustering and, keeping µ and n constant,

smaller values for α and β decreases clustering. To visualize the individual effect of α and β

we make two different plots keeping µ and n constant, but varying α and β. The first plot

has θ = (µ = 0.1, α = 0.0175, β = 0.035), while the second has θ = (0.1, 2.5, 5). Both have a

branching ratio n = 0.5 and a sample size of 50 events. It is possible to observe that there

is some clustering in the intensity of Figure 4.1 as displayed by the occurrence of spikes in

the graph. The most striking difference of Figure 4.1b from Figure 4.1a is that for smaller

values of β the intra-event intensity decays much more slowly than for higher values of β.

Note that in both graphs the “base” intensity is 0.1 but the spikes are much less intense in

Figure 4.1a than in Figure 4.1b. Obviously, since both graphs were constructed with the

same branching ratio the mean intensity is also the same.
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(a) θ = (0.1, 0.08, 0.1) (b) θ = (0.1, 8, 10)

Figure 4.2: Intensity: n = 0.8

If we now increase the branching to n = 0.8 we get more clustering. We first make α and

β low θ = (0.1, 0.08, 0.1) and then make both large θ = (0.1, 8, 10). The results are presented

in Figure 4.2.

4.1 Consistency of Estimates and Comparison with

Ozaki (1979)

Here we conduct two different exercises using simulated data. First, in a simple consistency

exercise we create 30 different samples, where each sample has a different size. We begin with

a small sample of 100 events and increase the sample size by 100 observations every time a

new sample is simulated, the last sample we draw has 3000 observations. For this exercise we

use parameters values θ = (µ = 0.1, α = 1.0, β = 2.0). In Figure 4.3f we plot the value of the

estimated parameters on the vertical axis and the size of the sample used in the estimation

on the horizontal axis, the horizontal lines around the parameters estimates represent the
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true value of the parameters. We also plot the standard errors of each coefficient next to

the parameter estimates. Standard errors were constructed by calculating the inverse of the

Hessian and multiplying it by minus 1.

The second exercise we perform is a resampling exercise. Using a sample size of 1000 events

we generate 50 different samples and calculate the estimates for each sample. Descriptive

statistics for the results obtained are shown in the Table 4.1. Variances and standard errors

are calculated in two different ways: first we calculate the sample variance using the 100

different estimates for each sample we generated (denoted by Sample Variance in the table),

second we calculate the variance for each estimate by calculating the inverse of the Hessian

and multiplying it by minus 1 (denoted by Estimated Variance in the table below). The

obtained values (which are estimates of the variance-covariance matrix of the parameter es-

timates) were then averaged over the 100 different variance-covariance matrices we obtained.

The small difference in the values of the variance calculated using these different approaches

is due to the small size properties of the sample. The estimations are carried out with true

parameters θ = (0.1, 1, 2).

µ α β

Average 0.0997 1.0038 2.0084

Minimum 0.0871 0.8357 1.7353

Maximum 0.1098 1.2523 2.3889

Sample Standard Errors 0.0054 0.0961 0.1661

Estimated Standard Errors 0.0050 0.0800 0.1478

Table 4.1: Statistics of Estimated Parameters
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Figure 4.3: Consistency of Estimates

(a) Estimates of µ (b) Standard Deviation of µ

(c) Estimates of α (d) Standard Deviation of α

(e) Estimates of β (f) Standard Deviation of β
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Table 4.2 presents the estimation results using a single sample of 500 events, the true

parameters are chosen as θ = (µ = 0.5, α = 0.8, β = 1.0), both the sample size an the pa-

rameters are the same as used in the estimation of Ozaki (1979). Table 4.2 shows the

results obtained for this sample and also present the results obtained by Ozaki (1979) as a

comparison.

µ α β

True Values 0.50000 0.80000 1.00000

Estimates 0.66200 1.04418 1.32240

Estimates of Ozaki (1979) 0.67200 0.68400 1.01800

Estimated Standard Errors 0.15205 0.16198 0.22149

Standard Errors of Ozaki (1979) 0.12369 0.11832 0.19313

Table 4.2: Comparison with Ozaki (1979) Estimates - θ = (0.5, 0.8, 1.0)

4.2 Goodness-of-Fit

In order to validate the simulated process we calculate the compensator using simulated

data that follows a Hawkes’ process with exponential response function. The durations

given by (2.29) are then exponentially distributed. Figure 4.4 shows the behavior of the

integrated simulated process with respect to a unit-rate exponentially distributed process.

The fact that both, the simulated process and the theoretical process lies on the same 45◦

line indicates that both processes have the same distribution. In the plot, the empirical

and theoretical axis represent the values for the durations of the simulated and theoretical

processes respectively. The simulated process is just the integral in (2.29) of the generated
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Hawkes’ process and the theoretical process is a unit rate exponentially distributed process.

From Figure 4.4 it is possible to see that most of the observations are clustered at very

small values of the duration while only a small proportion of the sample have durations

above 5 units (approximately 0.7% of all durations are above 5 units). Note that each of the

crosses in the plot represent one observation of the simulated process and that the simulated

process has 5000 observations. A more formal way of assessing the goodness-of-fit of the

Figure 4.4: Quantile-Quantile Plot for the Simulated Process

model is by making use of the Kolmogorov-Smirnov statistic to draw confidence bounds for

the process. To test this approach we generate a process with 5000 observations and true

parameter θ = (µ = 0.1500, α = 1.0000, β = 2.0000). This choice of parameters results in

a branching ratio of 0.5. The estimated parameter was θ̂ = (µ̂ = 0.1519, α̂ = 0.9996, β̂ =

1.9576). Figure 4.5a illustrates the fit of the Hawkes’ model for the simulated data. The

horizontal axis is composed of the CDF of an exponential distribution with unit rate, i.e.

Uk = 1 − exp(ξk − ξk−1) and the vertical axis is the CDF of a U(0, 1) distribution. The

vertical line y = x is the line of best fit, the line around the line of best fit is the fit of the
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(a) Goodness of Fit - Simulated Data (b) Durations Independence - Simulated Data

Figure 4.5: Goodness of Fit

model and the dashed lines represent 95% confidence bounds. We can see that the model and

theoretical lines are almost indistinguishable. We therefore validate both our algorithm that

generates data and the procedure to assess the goodness-of-fit. A complementary test of the

validity of the model is to check whether there is serial correlation in neighbouring intervals.

Berman (1983) proposes to plot Uk against Uk+1 to check for the presence of autocorrelation.

Figure 4.5b shows this plot.
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Data and Estimation

We now turn to the description of the procedure we use to estimated the Hawkes’ process

using real transaction data. Our results are obtained making use of two different databases.

The Trades and Quotes (TAQ) database is composed of stocks traded in exchanges in the

U.S. and the Thomson Reuters database is composed of stocks traded in exchanges in Europe.

For both databases we have high-frequency data on all trades and quotes on each trading

day. For quote data, every time there is a bid without a corresponding ask (or vice-versa)

we take the missing value as equal to the last observed value. For trades, whenever there are

trades with a missing price we delete that observation from our dataset. The main technical

difference between the two databases is that the timestamps provided by the TAQ database

have a precision of one second while the timestamps provided by Thomson Reuters have a

precision of one millisecond. Since it is very common to have more than one trade/quote

being filled at the same second, the Thomson Reuters database gives a much more precise

view of the process we want to estimate (roughly 30% of all trades in the TAQ database, 22%

of all trades and up to 45% of all mid-price changes in the Thomson Reuters database occur

at the same second). To deal with the issue of multiple events per timestamp a common

procedure is to disentangle equal timestamps by adding a uniform random variable as an

artificial precision component to the one second precision timestamp (as in Bowsher, 2007

and FS, 2012). We estimate the model on TAQ data using this procedure. Later, we check

how this procedure affects the estimates using rounded timestamps of the Thomson Reuters
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database.

For data on U.S. stocks we estimate the model using data on trades for one trading day

and one stock (Yahoo Inc. - ticker YHOO)1. For data on European stocks we estimate the

model using data on trades and quotes for one trading day and one stock (Vodafone - ticker

VOD). An important aspect of the estimation is the definition of the event. In our work,

we define one event as the change in the price of a trade relative to the previous price for

data on trades and as a change in the mid-price relative to the previous mid-price for data

on quotes. We begin our estimation 5 minutes after the beginning of the regular trading

day (09:30 AM for the U.S. market and 08:00 AM for the European market - both times

are local times) and end it 5 minutes before the closing of the trading day (04:00 PM for

the U.S. market and 04:30 PM for the European market). In order to assess the intra-day

dynamics of the parameters, we estimate the model using overlapping rolling windows of 20,

30 and 40 minutes, with a time step of 5 minutes. We also estimate the model using data

on one full trading day at once. Both estimation procedures proved to give similar results.

1We also used three additional trading days in the estimation and obtained similar results. We do not

present these results here.
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Results

We first present the results when the estimation is conducted using TAQ data. Next, we

turn to the results using Thomson Reuters data.

6.1 Results - TAQ Database

6.1.1 Timestamps with One Second Precision

We begin by estimating the Hawkes’ process using TAQ data on trades with timestamps of

one second precision. We solve the issue of multiple events per second by keeping only one

event per second (note that since we have an unmarked Hawkes’ process it does not matter

whether we keep the first or the last event). We present our results using data for one trading

day (February, 1st, 2010) on the stock of Yahoo Inc. (ticker - YHOO). The estimation was

carried out using all observations for a whole trading day at once. Table 6.1 shows the results

obtained, standard errors are presented below the estimates. The first four columns present

estimates for the parameters of the Hawkes’ process, where n = α/β is the branching ratio.

The fifth column presents the unconditional expected intensity calculated as the average of

the estimated intensity, as given by Equation (2.5). The sixth column presents the mean

duration between events. The standard error of n = α/β was calculated using the delta

method 1.

1The formula for the variance of n is given by Var(n) =
α̂2

β̂4
Var(β̂) +

1

β̂2
Var(α̂)− 2

α̂

β̂3
Cov(α̂, β̂).
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µ n α β E(λ) τm Observations

All obs. 0.0407 0.8244 0.0094 0.0114 0.2246 4.4012 5180

Standard Error 0.0102 0.0474 0.0018 0.0013 0.0613 4.9878 -

Table 6.1: Estimates Using TAQ Data on Trades

The branching ratio is very high. Its value means that roughly 82% of all price changes

are driven by endogenous feedback mechanisms in the market and less than 20% of price

movements are driven by exogenous events. This high value for the branching ratio is in

concordance with the values calculated by FS (2012) for the E-mini S&P 500 future. The

value of µ is smaller than the one obtained by FS (2012). The estimated intensity tells us

that, on average, 0.2 events occur per second. The estimated value for the intensity has a

close relationship with the average duration. If we calculate the average duration between

events we get τm = 4.4012 seconds and a standard deviation of στ = 4.9878 seconds. The

inverse of the average duration gives approximately the average intensity. Note that we can

check the half-life of a shock using the formula t1/2 = ln(2)/β, which in this case leads to a

relatively high value t1/2 ∼ 61 seconds.

To give a first hint whether the estimates of the model are reasonable we perform a very

simple check. Using the algorithm that generates data that follows a Hawkes’ process, we

generate a sample with 5180 observations and parameters as given in Table 6.1. The results

are very far from what one would expect if the model was a good description of the data.

The average duration of the simulated data is 0.3976 second with a standard deviation of

1.2327 second. It is not so unexpected that we obtain such different results. The fact that
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the durations have a lower bound of 1 second introduces some sort of bias in the model.

In order to give a more formal assessment of the performance of the model we have

calculated the fit of the Hawkes’ process, presented in Figure 6.1. We can see from the figure

that the model fits relatively well when (x, y) & (0.3, 0.3). Obviously, the durations of trades

here are bounded below by one. The data cannot produce any durations that are smaller

than one, since the precision of the timestamps is limited to one second. Since the x-axis of

the graph is constructed by taking (1 − exp[−(ξi − ξi−1)]), where ξi is the residual process,

the lack of very small durations is introducing the large deviation from the 45◦ line in the

lower region of the graph.

Figure 6.1: Fit of the Model Using TAQ Data

6.1.2 Timestamps with Randomized Precision

In order to disentangle events that occurred at the same second we test a randomization

of timestamps within the same second. This randomization is carried out by introducing,
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for each event, a random number distributed as U(0, 1) after the number that measures the

second of each timestamp. A similar procedure was used by Bowsher (2007) and FS (2012).

We re-estimate the Hawkes’ model with data containing this randomized precision. Now,

the number of observations is much higher because we are able to distinguish between same

second events through the randomized precision. The increase in the number of observations

allows us to estimate the model using small intra-day rolling windows of 20, 30 and 40

minutes. We verify that even though there is variation of the estimates calculated using

the overlapping rolling windows, taking the average of the rolling window estimates gives

roughly the same values as estimating the model using all observations at once. Comparing

Table 6.2 with Table 6.1 we see that there is a great difference in the estimates obtained

using the randomized timestamps. Now µ is much larger, n is approximately half of its

value and α and β are more closer to unity than before. In fact, α and β are now roughly

80 times larger than in Table 6.1, this fact reduces the half-life of a shock to less than one

second t1/2 ∼ 0.34 seconds. The intra-day dynamics of the parameter n is relatively smooth

with n varying around its mean value which is close to 0.4. The dynamics of µ, and of

the the intensity µ/(1 − n), display the well know U shaped intra-day pattern with higher

intensity of trading at the opening and during the closing of the trading day. Comparing

the estimates with those obtained by FS (2012) in the same period we now get values for

µ that are slightly higher and values for n that are much lower than FS’s (2012) estimates.

Nevertheless, our results were estimated in a slightly different way than FS (2012) and our

dataset is based on equity trades data and not on futures quotes data. The intensity of

events is now 0.35 seconds−1 and is somewhat higher than in the previous case. The average

duration of the data is τm = 2.7584 seconds (στ = 4.4324 seconds). The value obtained from
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µ n α β E(λ) τm Observations

All obs. 0.2142 0.4015 0.8151 2.0301 0.3534 2.7584 8265

Standard Error 0.0038 0.0362 0.0302 0.0831 0.3558 4.4323 -

20 min. 0.2141 0.3788 0.8335 2.1671 0.3469 2.7584 8265

Standard Error 0.0166 0.0513 0.1372 0.3940 0.3473 4.4324 -

30 min. 0.2125 0.3816 0.8370 2.1626 0.3461 2.7584 8265

Standard Error 0.0135 0.0433 0.1126 0.3195 0.3493 4.4324 -

40 min. 0.2114 0.3825 0.8403 2.1705 0.3450 2.7584 8265

Standard Error 0.0116 0.0325 0.0982 0.2784 0.3498 4.4324 -

Table 6.2: Estimates Using Randomized TAQ Data on Trades

simulating data with parameters taken from the first line of Table 6.2 give 2.8439 seconds

for the average duration and 4.1418 seconds for the standard deviation, values that are very

close to those in the real data.

We have also calculated the fit of the model for the different parameters we estimated.

We observe that now the model fits very well the lower region of the graph. Overall, only in

the region that is approximately between 0.6 and 0.9 the line of fit touches the Kolmogorov-

Smirnov bound. We associate the good performance of the model with random timestamps,

when compared to the model estimated on data with one second precision, to the larger

dispersion of durations. If we check some simple statistics of the residual process for the

original data we get that the minimum value of the duration of the residual process is

0.0409 and the maximum is 10.2348. On the other hand, for data with random timestamps

the minimum value of the duration of the residual process is of the order of 10−6 and the
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(a) α and β (b) n

(c) µ (d) Intensity

Figure 6.2: Estimation Using 40 minutes Rolling Window - TAQ Data on Trades
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maximum value is 15.1764. The fit of the model presented here is based on the estimates of

the first line of Table 6.2. Using the other parameters from Table 6.2 to assess the fit of the

model gives very similar results (not presented here).

Figure 6.3: Fit of the Model Using Randomized TAQ Data

6.2 Results - Thomson Reuters Database

We now estimate the Hawkes’ process using the Thomson Reuters database. Here we base

our results on the exchange with highest liquidity, which is the London Stock Exchange (LSE)

and analyze data on trades and quotes. To check how the model performs when the duration

between events is larger we estimate the model using data from a venue with smaller trade

intensity, in this case the NYSE Euronext Brussels. Due to the limited number of events in

this exchange we conduct our analysis using data on quotes only. The estimations for both

venues were based on data for one trading day (January, 2nd, 2009) on the Vodafone (ticker

- VOD) stock.
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6.2.1 London Stock Exchange

Quotes Data. We begin estimating the model using data on quotes and considering four

different estimation strategies. The results are presented in Table 6.3. Again there is little

difference when one estimates the model using all available observations at once or when one

considers a rolling window estimation. Note that the estimates for µ are small, similar to the

values obtained with “raw” TAQ data. The values for n are much smaller than in that case

but higher than in the random TAQ data case. Both α and β are relatively high. In fact,

the half-life of a shock now is very low (t1/2 ∼ 0.15 seconds). The average duration between

trades is also much higher than in the TAQ data. Its value is now τm = 5.1724 seconds

(στ = 13.6046 seconds). Using simulated data obtained with parameters from the first line

of Table 6.3 we get an average duration of 5.2947 seconds and a standard deviation of 9.2812

seconds. The intra-day dynamics of the parameters displays qualitatively the same behavior

as in our previous estimation. The values for µ are subject to the intra-day seasonality, while

n varies around its mean value. Figure 6.4 presents the results.

Using the estimates from the first row of Table 6.3 we calculate the fit of the model.

Compared with the result using randomized timestamps the model fits the data relatively

poorly. Two regions that comprise most of the goodness-of-fit plot cross the Kolmogorov-

Smirnov bounds. Contrary to the case presented in Figure 6.1, where the line of fit crosses

the KS bound below the 45◦ line, the line of fit here crosses the KS bound above the 45◦

line, indicating that some durations occur more frequently than the model can capture.
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(a) α and β (b) n

(c) µ (d) Intensity

Figure 6.4: Estimation Using 40 Minutes Rolling Window - LSE Data on Trades
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µ n α β E(λ) τm Observations

All obs. 0.0931 0.5137 2.4308 4.7317 0.1848 5.1724 5798

Standard Error 0.0020 0.0107 0.0952 0.1978 0.4506 13.6046 -

20 min. 0.0917 0.5115 2.6111 5.2434 0.1793 5.1724 5798

Standard Error 0.0091 0.0567 0.4615 0.8981 0.4474 13.6046 -

30 min. 0.0901 0.5144 2.5759 5.1145 0.1792 5.1724 5798

Standard Error 0.0075 0.0466 0.1506 0.7346 0.4504 13.6046 -

40 min. 0.0883 0.5143 2.5676 5.0888 0.1776 5.1724 5798

Standard Error 0.0065 0.0408 0.3352 0.6584 0.4507 13.6046 -

Table 6.3: Estimates Using Thomson Reuters Data on Quotes - LSE

Figure 6.5: Fit of the Model Using Thomson Reuters Data on Quotes - LSE

We are now able to assess how the randomization of timestamps, performed before to
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get parameters estimates using the TAQ database, impacts the parameters estimates of the

Hawkes’ process2. We do this by first rounding the timestamps of the Thomson Reuters

database to its nearest integer (rounding the timestamps to the smallest and greatest inte-

gers leads to similar results) and then adding a random U(0, 1) component to the rounded

timestamp (adding a −0.5 + U(0, 1) random component as in Bowsher (2007) also leads to

similar results). We do not present the results using the rolling window procedure since the

estimates are again very close to the estimates in Table 6.4 and the intra-day dynamics of

the parameters are qualitatively the same as already discussed before.

µ n α β E(λ) τm Observations

All obs. 0.0743 0.6118 0.9147 1.4949 0.1895 5.1725 5798

Standard Error 0.0019 0.0117 0.0309 0.0513 0.3452 13.5479 -

Table 6.4: Estimates Using Random Timestamps on Quotes - LSE

The parameters µ and n have values that are, respectively, a little bit higher and smaller

than its values obtained in the estimation using the “true” data. But the parameters α and

β have now values that are roughly 2.5 times smaller than its estimated values using the

original timestamps. If one is interested in the parameters µ and n, introducing the random

precision to the timestamps produces a relatively small bias in the estimates. Nevertheless,

the values of α and β change a lot. It is also remarkable how the fit of the model changes

when one considers a random component in the timestamps. The figure below shows that

the model now provides a much better fit.

2I thank Andreas Rapp for giving me the idea to perform this check.
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Figure 6.6: Fit of the Model Using Random Timestamps on Quotes - LSE

There are two remarkable facts when one compares estimates using the unchanged Thom-

son Reuters data with the randomized data: i) the parameters estimates for α and β are

much smaller for the randomized data, and ii) the model provides a much better fit. The

introduction of the random component into the timestamps smooths the data, providing a

better fit. The question is: how to get reasonable estimates (and a good fit) without impos-

ing such strong assumptions on the ordering of equal timestamps? A natural answer to that

question is to round down the millisecond component of the timestamps of our data. We

first round the millisecond component to get a timestamp with a centisecond (1/100 second)

precision. This produces slightly (less than 5%) smaller estimates for α and β. We then

round the centisecond component to get a timestamp with a decisecond component (1/10

second). Now we get values for α and β that are much smaller than the ones obtained before

without changing µ and n that much. Actually, we get values for µ, α and β that are very
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close to the values we obtained using randomized timestamps, but we get an estimate for

n that is very close to the one obtained using the unmodified Thomson Reuters data. We

present the results in Table 6.5.

µ n α β E(λ) τm Observations

Decisecond 0.0761 0.5214 0.8136 1.5605 0.1565 6.2258 4817

Standard Error 0.0020 0.0127 0.0352 0.0738 0.2420 14.7039 -

Table 6.5: Estimates Using Rounded Timestamps on Quotes - LSE

Nevertheless, the rounding of timestamps comes at a cost. As depicted by Figure 6.7,

now the fit of the model is poor in the lower region of the goodness-of-fit plot.

Figure 6.7: Fit of the Model Using Rounded Timestamps on Quotes - LSE

Another way to smooth the data without rounding the timestamps is by removing outliers.

We do this by performing a Winsorisation of the data at the 95th percentile. If we perform the
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Winsorisation using millisecond data we still get high estimates for α and β. Nevertheless,

using millisecond data we get a very good fit of the model. We show here the estimates

obtained when Winsorising the millisecond timestamps. The results for centi- and decisecond

Winsorised timestamps are similar with the exception of α and β that become lower, like

presented in Table 6.5. The goodness-of-fit is also presented in the case of millisecond

timestamps. For centi- and decisecond timestamps the lower region of the goodness-of-fit

plot crosses the KS bounds (not presented here).

µ n α β E(λ) τm Observations

Winsorised 0.1351 0.4759 2.7991 5.8814 0.2449 5.1724 5798

Standard Error 0.0027 0.0102 0.1046 0.2245 0.4989 13.6046 -

Table 6.6: Estimates using Winsorised Timestamps on Quotes - LSE

Figure 6.8: Fit of the Model Using Winsorised Timestamps on Quotes - LSE
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We also estimate the model using data somewhat older than the data used in the main

estimation presented before. Here we choose two trading days in January, 2006. Table 6.7

presents results for quotes. The incredibly small number of quotes for 2006 stems from the

fact that, for this period, the quotes did not change as much as in 2009. So even if the initial

dataset has a large number of quotes (which happens to be the case here), after considering

only mid-price changes as events in the estimation, we end up with a very small number of

quotes. Taking all mid-prices into the estimation does not change the estimates a lot (n is

slightly smaller).

µ n α β τm Observations

2006-03-01 0.0021 0.6886 0.1608 0.2335 152.1555 196

Standard Error 0.0003 0.0622 0.0274 0.0383 546.5348 -

2006-06-01 0.0042 0.6011 0.2084 0.3467 94.7212 314

Standard Error 0.0004 0.0481 0.0341 0.0597 332.8917 -

Table 6.7: Estimates Using Thomson Reuters Data on Quotes - 2006

Trades Data. Switching to trades data seems to have a large impact on n and a relatively

small impact on the other parameters. Here we have only 2070 observations (with mean

duration of 14 seconds). The small number of observations makes it harder to estimate the

model using the rolling window procedure. Even considering a window of 40 minutes, we

have in some cases estimates that are based on less than 100 observations. Since the rolling

windows estimation does not seem to bring new information, we choose not to perform such

estimation here. Regarding the branching ratio, we observe in Table 6.8 that its value is

now much lower than its value for quotes data. Since n is a measure of endogenous price
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changes relative to all price changes, the conclusion is that the process for quotes has a

higher endogeneity than the process for trades. The average duration is now much higher,

as expected, with a value of τm = 14.4591 seconds and a standard deviation στ = 23.4307

seconds. Simulated data produces an average duration of 14.4058 seconds and standard

deviation of 18.3548 seconds.

µ n α β E(λ) τm Observations

All obs. 0.0521 0.2395 1.2609 5.2643 0.0655 14.4591 2070

Standard Error 0.0014 0.0121 0.1076 0.4575 0.0970 23.4307 -

Table 6.8: Estimates Using Thomson Reuters Data on Trades - LSE

The interpretation of the branching ratio as the fraction of endogenously generate price

changes among all price changes, as advocated by FS (2012), and the high values for n

(specially for quotes and for the TAQ data) presented here, together with the increase in

n in the last years as observed by FS (2012), makes it tempting to associate the higher

proportion of endogenous price movements with the presence of High Frequency Traders.

As documented in several works, High Frequency Traders started to trade a relatively small

volume in the equity market around the 2000’s to become the dominant force in equity

trading nowadays. Much debate whether HFT is good or bad to market quality has been

observed in both, the media and in the academia. How can we use the branching ratio as a

measure of market quality? Is it good or bad to document a high (or increasing) branching

ratio? While at a first sight a high proportion of endogenous market movements seems to be

a bad thing (recall that in the efficient market hypothesis prices change only as a reaction

to information), a high branching ratio could also be the reflection of a more thorough
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price discovery process. The fact that n is much higher for quotes than for trades seems to

corroborate this fact. Consider that an exogenous event happens and, as a result, increased

activity in quotes of a given stock is registered. The more quotes are placed, as a result of the

exogenous event, the higher the branching ratio will be. But this increased number of quotes

might reflect simply a more thorough price discovery process among market participants that

needs to place more quotes in order to agree into a “fair” price. Therefore, a high value for

the branching ratio registered in quotes data is not necessarily an indication of poor market

condition, as long as the branching ratio calculated from trades data remains relatively low,

as it seems to be the case.

We have also calculated the fit of the model for trades. We see that the model fits the

data relatively well.

Figure 6.9: Fit of the Model Using Thomson Reuters Data on Trades - LSE

If we now perform the rounding of timestamps to the nearest second and then add a
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random precision component to the rounded timestamps we get, qualitatively, the same

results as obtained before for quotes. Both α and β are much smaller, but in a way that n

stays relatively constant and is somewhat greater than using the original data. The value

for µ hardly changes. The table below presents the results.

µ n α β E(λ) τm Observations

All obs. 0.0479 0.3007 0.3995 1.3285 0.0674 14.4593 2070

Standard Error 0.0014 0.0152 0.0321 0.1158 0.0750 23.3936 -

Table 6.9: Estimates Using Random Timestamps on Trades - LSE

The next table presents the results when the rounding of timestamps to a timestamp

with a decisecond precision is performed, as well as results regarding the Winsorisation of

millisecond timestamps. The situation is qualitatively the same as before. Rounding the

data provides smaller estimates for α and β, while Winsorising the data produces a better

fit (presented in Figure 6.10).

µ n α β E(λ) τm Observations

Decisecond 0.0497 0.2250 0.5093 2.2634 0.0627 15.4439 1938

Standard Error 0.0014 0.0133 0.0463 0.2198 0.0620 23.8990 -

Winsorised 0.0740 0.2222 1.3960 6.2819 0.0905 14.4591 2070

Standard Error 0.0019 0.0114 0.1119 0.4666 0.1090 23.4307 -

Table 6.10: Estimates Using Rounded and Winsorized Timestamps on Trades - LSE
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Figure 6.10: Fit of the Model Using Winsorised Thomson Reuters Data on Trades - LSE

As we did for quotes we also estimated the model using two trading days in the year of

2006. Table 6.11 presents results for trades. Again, the situation is similar to what was

observed for quotes. The parameters α and β are extremely small and produce a branching

ratio which is quite high. Recall that Figures 4.1 and 4.2 show that smaller values of α and

β indicate less clustering, while a higher branching ratio indicates more clustering. The fact

that α and β are much smaller than for 2009 data is indicating that the clustering of orders

was less pronounced in 2006 even though the branching was higher (as can be inferred by

Figures 4.1 and 4.2).
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µ n α β τm Observations

2006-03-01 0.0224 0.6769 0.0056 0.0038 14.3932 2084

Standard Error 0.0051 0.0760 0.0009 0.0015 16.4448 -

2006-06-01 0.0119 0.8310 0.0048 0.0058 14.7324 2034

Standard Error 0.0030 0.0497 0.0008 0.0011 18.5308 -

Table 6.11: Estimates Using Thomson Reuters Data on Trades - 2006

6.2.2 BE - NYSE Euronext Brussels

We now estimate the model using quotes registered on the NYSE Euronext Brussles Ex-

change. The number of observations here is drastically decreased when compared to the

LSE and therefore we estimate the model using only quotes data. Looking at the estimated

parameters, the most striking difference is related to the parameters α and β. Both µ and n

are close to the estimates for quotes using data from the LSE. Due to the low trade intensity

(0.0235 events/second) the data presents a high average duration with τm = 42.4711 seconds

with a standard deviation of στ = 63.164 seconds. Simulated data produces average dura-

tion of 43.3455 seconds and standard deviation of 68.4741 seconds. Note that the results

here are somehow related to the results using data from 2006, presented in Table 6.11. The

branching ratio is high, but α and β are very low. As it was the case with the one-second

timestamped TAQ data, the half-life of a shock is quite high with t1/2 ∼ 20 seconds. Now,

the model seems to fit the data very well. But given the small number of observations this

could be induced by the lack of power of the Kolmogorov-Smirnov statistic. We do not

present results of the estimation using timestamps rounded to centi- or decisecond because
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µ n α β E(λ) τm Observations

Quotes 0.0113 0.5191 0.0176 0.0340 0.0233 42.4711 707

Standard Error 0.0011 0.0460 0.0029 0.0065 0.0152 63.164 -

Table 6.12: Estimates Using Thomson Reuters Data on Quotes - NYSE Euronext Brussels

it does not influence the estimates in Table 6.12. Because the data displays less clustering

(as confirmed by smaller values of α and β) than in the previous cases this is expected to be

so. Winsorising the data also does not have a big impact in the estimates or the fit of the

model.

Figure 6.11: Fit of the Model Using Thomson Reuters Data on Quotes - NYSE Euronext

Brussels
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6.3 Hawkes’ Process with a Weibull Response Func-

tion

As a robustness check we also fit the data using a Hawkes’ process with a Weibull response

function. The Weibull is a natural extension of the exponential kernel we used so far. Recall

that the log-likelihood function of a Hawkes’ process with an intensity λ(t) = µ+
∑
u<t

g(t−u),

is given by

logL = −Λ(0, tN) +
N∑
i=1

ln

µ+
∑
tj<ti

g(ti − tj)

 , (6.1)

where Λ(0, tN) is the compensator of the process and can be written as

Λ(0, tN) =
N∑
j=1

Λ(tj−1, tj). (6.2)

Now consider the p.d.f. of a Weibull (the case κ = 1 is equivalent to the exponential kernel)

g(t) =
(κ
ω

)( t
ω

)κ−1
exp[−(t/ω)κ]. (6.3)

We have to calculate the compensator

Λ(ti, ti+1) =

ti+1∫
ti

µds+

ti+1∫
ti

∑
tj<s

(κ
ω

)(s− tj
ω

)κ−1
exp[−((s− tj)/ω)κ]ds. (6.4)

Before we tackle the integral above let’s make a comparison with the standard case of a

Hawkes’ process with an exponential kernel. In this case the integrals we have to solve are

Λ(ti, ti+1) =

ti+1∫
ti

µds+

ti+1∫
ti

∑
tj<s

α exp[−β(s− tj)]ds, (6.5)

which are very similar (in fact, the first integral is identical) to the case of a Weibull kernel.

To make this similarity even more clear note that we can make a change of variables in the
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second integral of Equation (6.4). Let ζ = −((s−tj)/ω)κ, then dζ = −ds(κ/ω)((s−tj)/ω)κ−1

and Equation (6.4) can be rewritten as

Λ(ti, ti+1) =

ti+1∫
ti

µds+

b∫
a

∑
tj<s

eζdζ, (6.6)

with a = −((ti+1 − tj)/ω)κ, b = −((ti − tj)/ω)κ and ζ = ζj. Then, after some algebra, the

log-likelihood function for a Weibull kernel can be written as

logL = −µtN + ξ
N∑
i=1

{exp [(tN − ti)/ω]κ − 1}+
N∑
i=1

log [µ+ ξU(i)] , (6.7)

where

U(i) =
∑
tj<ti

κ

ω

(
ti − tj
ω

)κ−1
exp

[
−ti − tj

ω

]κ
(6.8)

and the parameter ξ was inserted to control for the “strength” of coupling of the kernel

function. If we take κ = 1 we get

logL = −µtN + ξ
N∑
i=1

{exp [(tN − ti)/ω]− 1}+
N∑
i=1

log [µ+ ξU1(i)] , (6.9)

with

U1(i) =
∑
tj<ti

1

ω
exp

[
−ti − tj

ω

]
. (6.10)

If we now compare the last two equations with the log-likelihood of a Hawkes’ process with an

exponential kernel, given by Equation (2.22), we construct the following mapping: ξ = α/β

and ω = 1/β. It follows that ξ/ω = α and that the branching ratio is given by the parameter

ξ. This last fact can also be seen from the definition of the branching ratio

n =

∞∫
0

ξ
(κ
ω

)( t
ω

)κ−1
exp(−t/ω)κdt. (6.11)

Solving this integral we get that n = ξ.
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Estimates Using a Weibull Response Function

Using the log-likelihood function derived in the last section we estimate a Hawkes’ pro-

cess with a Weibull kernel using Thomson Reuters data for the LSE (trades only) and

for the NYSE Euronext Brussels (quotes only). The results obtained are similar to the

results obtained when the estimation was performed using an exponential kernel. For

the LSE we get η̂ =
(
µ̂ = 0.0525, ξ̂ = 0.2333, ω̂ = 0.1747, κ̂ = 1.0632

)
the standard er-

rors are σ̂η̂ = (0.0013, 0.0112, 0.0126, 0.0633). Recall that ξ̂ = n̂ = 0.2333, β̂ = 1/ω̂ =

5.7241 and α̂ = ξ̂/ω̂ = 1.3354. Comparing these values with the values presented

in Table 6.10 we see that both models provide similar estimates (as it should be al-

ready clear by the fact that κ̂ ∼ 1). Using data from NYSE Euronext Brussels we

get η̂ =
(
µ̂ = 0.0107, ξ̂ = 0.5426, ω̂ = 34.1487, κ̂ = 0.9141

)
the standard errors are σ̂η̂ =

(0.0008, 0.0339, 5.5349, 0.0862). Again, the value of κ is very close to one. Comparing with

Table 6.12 we get very similar estimates (now α̂ = 0.0159 and β̂ = 0.0293).

6.4 Relation with High Frequency Trading

FS (2012) presented evidence of an increase in the branching ratio over time. In their work,

it was documented a branching ratio of approximately 0.2 at the beginning of their sample

period in 1998, and a branching ratio of almost 0.8 at the end of their sample period in

2010. FS (2012) notes that the increase observed in the branching ratio coincides with the

increase in HFT activity. Here we try to provide some more insight into this issue. Recall

that we have previously calculated the parameters of the Hawkes’ process using small intra-

day rolling windows of 20, 30 and 40 minutes. The results are presented in Table 6.3. If we
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have a measure of intra-day HFT activity, we may compare the intra-day dynamics of the

branching ratio as presented on panel (b) of Figure 6.4 with HFT activity to check if there

is correlation between the two3.

It is not easy to find a proxy for HFT activity when one has available only data on

size, price and timing of trades/quotes. Thus, we decide to use a very “crude” measure of

electronic trading activity, namely, we calculate the ratio of quotes per trades in a given time

interval. Since many of the HFT strategies rely on placing quotes and quickly cancelling or

modifying these quotes, the higher the number of quotes per trade the higher will be the

activity of HFT 4.

Using intra-day intervals of the same length of those used in Table 6.3 and Figure 6.4 we

calculate the quotes per trade ratio and compare these values against the branching ratio.

Figure 6.12 shows the results, where the quotes per trade ratio is the solid line and its value

was divided by 5 to give it a scale comparable to the scale of n.

Table 6.13 presents the estimates of a simple regression where n is taken as the independent

variable and the quotes per trade (QPT) ratio, together with a constant, are use as dependent

variables. The fact that, in the first specification, the QPT ratio has a positive coefficient

indicates the positive relationship between HFT and market endogeneity. We also test

a similar specification where the trades per quote ratio is used as independent variable.

Obviously, we get a negative estimate for the coefficient of the TPQ ratio. Note that in this

specification both the value of the TPQ ratio and the value of n are limited between zero

3Note that we do not intend to check whether there is a causal relationship between HFT activity and

the branching ratio in this work.
4See, among others, http://www.nanex.net/research/MsgRates/EquityMessageRates.html
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(a) 40 minutes (b) 30 minutes

(c) 20 minutes

Figure 6.12: Branching Ratio (dotted line) and Quotes per Trade Ratio (solid line)
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and one. Our last specification consists in taking logs of both variables. In all cases standard

errors were calculated using the Newey-West estimator that is consistent to autocorrelation

in the error terms5. Naturally, the evidence of a link between HFT and market endogeneity

presented here is a relatively weak evidence, given all the data limitations and the simple

specification of the regressions in which the results are based.

5We used 8, 6 and 4 lags for the time invervals of 40, 30 and 20 minutes, respectively.
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Chapter 7

Conclusion and Future Research

In this work we fitted a special type of point process, known as Hawkes’ process (Hawkes,

1971), to model duration of trades and quotes arrival in the equity market. The Hawkes’

process is a very popular point process that has been widely applied in several different

fields ranging from seismology to finance. The model is also relatively simple to interpret

and estimate. The ability of generating endogenous clustering, controlled by the parameters

α and β when the model has an exponential kernel, makes the Hawkes’ process a good choice

to model durations of price and mid-price changes in financial markets.

We have estimated a Hawkes’ process on high-frequency data using two different

databases. First, we modelled the duration of mid-price changes using the TAQ database.

The fact that timestamps in the TAQ database are rounded to the nearest second poses a

challenge in the estimation of the model since there is a large proportion of events that occur

at the same second (roughly 30% of all mid-price changes occurred with equal timestamps

in our TAQ dataset). Also, the estimation of the model using durations bounded by one

second gives a poor model fit. A common solution to this problem is to add a uniform ran-

dom number as an artificial precision component that disentangles events within the same

second (Bowsher, 2007; FS, 2012). We implemented this procedure and observed that the

model fits very well the randomized TAQ data. Nevertheless, we are not satisfied with the

randomization of timestamps since this is equivalent to make very strong assumptions about

the ordering of events.
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The best robustness check one can perform to assess the impact of the randomization of

timestamps in the estimates and in the fit of the Hawkes’ process is use data that distinguishes

between events at the same second. This check is conducted by constructing a randomized

dataset from a “real” dataset that has a precision higher than one second. This randomized

dataset is obtained by simply rounding to the nearest second, timestamps with high precision

and adding a randomized precision component to the rounded data. We perform this check

using data on European equities provided by Thomson Reuters. The Thomson Reuters data

has timestamps with a millisecond component precision that distinguishes between same-

second events and thus allows us to check directly how the randomization of timestamps

affects the overall performance of the model.

Using data on the London Stock Exchange (LSE) for trades and quotes we showed that

the randomization of timestamps introduces a relatively small bias in the estimates of µ

(the underlying trading intensity) and n (the branching ratio, that represents the proportion

of endogenously generated events to all events) and a large bias in the estimates of α and

β, the parameters that control the decaying of the intensity function of the model. The

randomization procedure also introduces some sort of smoothing in the data that leads to

a better fit of the model when compared with the “crude” millisecond precision data. This

fact shows that one should be cautious when deriving conclusions from the model estimated

using randomized timestamps.

Inspired by FS (2012), who used the branching ratio derived from the Hawkes’ process

as a tool to predict flash-crashes, we would like to propose a tighter connection between the

value of n and High Frequency Traders. As documented by FS (2012) the branching ratio

has increased a lot in recent years. FS (2012) documents a branching around 0.3 till the
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early 2000’s, a value close to 0.5 in 2002 with a branching ratio above 0.6 after 2004. Even

though the results obtained by FS (2012) used data on the E-mini S&P 500 contract and

their estimation made use of the aforementioned randomization procedure, the leap observed

in the branching ratio from 2000 to 2002 is a remarkable fact. Note that the rise in the value

of the branching ratio coincides with the rise in HFT activity.

The finance literature has started to pay some attention to the effects of HFT in equity

markets. Several papers like Brogaard (2010), Hasbrouck and Saar (2010), Zhang (2010),

Hendershott, Jones and Menkveld (2011) and Hendershott and Riordan (2011) analyze how

HFT is impacting several measures of market quality like liquidity, volatility and price dis-

covery. The conclusions of many of these studies seem to associate HFT with increased

liquidity, decreased volatility and more efficient price discovery. Nevertheless, some other

studies like Zhang (2010) conclude the opposite. Also in the media there is a very fierce de-

bate whether HFT are making markets more efficient, in the sense that prices are becoming

more informative.

We tried to provide a first connection between HFT and market endogeneity, comparing

the intra-day dynamics of the branching ratio with a “crude” measure of HFT activity defined

as the ratio of quotes per trades. Even though it seems that there is some positive correlation

between the branching ratio and HFT activity, a more formal treatment of the subject,

pointing towards a causal link between the two, would necessarily involve the expansion of

our dataset and a more robust approach to analyze the relationship between HFT activity

and price endogeneity.

If we interpret the branching ratio, as derived from the Hawkes’ process, as a measure

of market quality, in the sense that a low branching ratio reflects a healthier market where
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price changes are driven by exogenous events and a high branching ratio reflects a less

healthier market where price changes are driven by “positive feedback mechanisms” and

herding behavior, as proposed in FS (2012), then a more robust version of the regression we

used here to exploit the relation between HFT activity and the branching ratio n could give

a more satisfying answer to this question. This regression would necessarily incorporate,

as additional variables, factors other than the HFT activity that are likely to impact the

branching ratio.
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Appendix A

Derivation of the Log-Likelihood

Function of a Hawkes’ Process

The log-likelihood function of a Hawkes’ process with an intensity λ(t) = µ+
∑
u<t

g(t− u) is

given by

logL = −Λ(0, tN) +
N∑
i=1

ln

µ+
∑
tj<ti

g(ti − tj)

 , (A.1)

where Λ(0, tN) is the compensator of the process and can be written as

Λ(0, tN) =
N∑
j=1

Λ(tj−1, tj). (A.2)

Now consider the exponential response function

g(t) = αe−β(t). (A.3)

We have to calculate the compensator

Λ(ti−1, ti) =

ti∫
ti−1

µds+

ti∫
ti−1

∑
tj<s

αe−β(s−tj)ds. (A.4)

This integral was already solved and leads to (see equations (2.27) - (2.29))

Λ (ti−1, ti) = µ(ti − ti−1)−
i−1∑
k=1

α

β

[
e−β(ti−tk) − e−β(ti−1−tk)

]
. (A.5)

Using Equation (A.2) we have

Λ(0, tN) =
N∑
i=1

µ(ti − ti−1)−
N∑
i=1

i−1∑
k=1

α

β

[
e−β(ti−tk) − e−β(ti−1−tk)

]
. (A.6)
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It is easy to see that
N∑
i=1

µ(ti − ti−1) = µtN , since µ is a constant and the summation over

t′is leaves only the last term (assuming t0 = 0): (t1 − t0) + (t2 − t1) + ... + (tN−1 − tN−2) +

(tN − tN−1) = tN . The situation is similar to the summation over the exponentials

N∑
i=1

i−1∑
k=1

[
e−β(ti−tk) − e−β(ti−1−tk)

]
. (A.7)

Consider the i = 2 term

e−β(t2−t1) − e−β(t1−t1), (A.8)

for i = 3 we have

[
e−β(t3−t1) − e−β(t2−t1)

]
+
[
e−β(t3−t2) − e−β(t2−t2)

]
. (A.9)

Note that adjacent terms will cancel out leaving the terms that are equal to one (i.e. e−β(tj−tj)

terms). For i = N we finally have

[
e−β(tN−t1) − e−β(tN−1−t1)

]
+
[
e−β(tN−t2) − e−β(tN−1−t2)

]
+ ...+

[
e−β(tN−tN−1) − e−β(tN−1−tN−1)

]
,

(A.10)

and terms of the form e−β(tN−ti) will remain. Therefore we can write Λ(0, tN) =
N∑
j=1

Λ(tj−1, tj)

as

µtN −
N∑
i=1

α

β

[
e−β(tN−ti) − 1

]
. (A.11)

Using Equation (A.1) we get the log-likelihood function for a Hawkes’ process with expo-

nential kernel

logL = −µtN +
N∑
i=1

α

β

[
e−β(tN−ti) − 1

]
+

N∑
i=1

ln

µ+
∑
tj<ti

αe−β(ti−tj)

 . (A.12)
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