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1. Introduction 

Music is an art-form consisting of expressions of sound and silence through time and consists of a 

sequence of measures containing chords, notes and rests  described by at least duration and in most 

cases a pitch. The combination of each of these elements determine the characteristics of any given 

musical score. 

Music information retrieval (MIR) aims at retrieving information from musical scores and this 

information can be used in order to perform a variety of tasks. The most important tasks, finding 

similarities, music recommendation based on a given query and music-classification, are  briefly 

described in this section, but there are many more uses for music information retrieval (like track 

separation, instrument recognition and even music generation) .  

In 1995 research was done (Ghias, Logan, Chamberlin, & Smith, 1995) which allowed an end-user 

to query a database with music just by humming a piece of a song. Nowadays popular smartphones 

like Android-based phones or Apple’s iPhone offer a range of free applications (most famously 

Soundhound and Shazam) that allow an end-user to query an online database by humming, singing 

or recording a partial track. The success rate may vary per user, but especially for the more popular 

songs the software achieves a high accuracy and with each request the service improves as the data 

sent by the user is also stored in the database for future reference.  Both applications use similar 

technology but each application incorporates their own database with audio information. The 

technology behind these applications comes from research conducted in 2004 by Wang who is 

actually an employee for Shazam Entertainment Ltd. (Wang, 2006). 

MIR research has been conducted in order to counter plagiarism in music.  In 2001 a researcher 

called Yang conducted an experiment which allowed a software application to visualize the 

resemblance of any given song to other existing musical scores previously stored in a database (Yang, 

2001). Newly introduced songs would be compared to this database and a clear identification could 

be given on whether or not the song was an original new piece or (loosely) based on another song. 

Another commonly used practice is using MIR to recommend new music to listeners of music of a 

specific band or genre (Tzanetakis, Ermolinskyi, & Cook, 2003). It is possible to offer a list of related 

artists to an end user. There are many more features on which new recommendations can based and 

returned to the visitor: emotion, mood, year of production and so on (Feng, Zhuang, & Pan, 2003; 

Kanters, 2009; Li & Ogihara, 2003); The website last.fm ("About Last.fm," 2011) offers users to 

download and install a plugin (or as they call it the Scrobbler) for their favorite media player, which in 

turn tracks whatever music the user is playing on his/her computer or mobile device and uploads this 

information to their website. The uploaded data is then compared to data other users have 

submitted and based on these data the website can return similar artists or genres. In their turn 
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users can like (or love in terms of last.fm) the suggestions made which over time specifies whether or 

not the system associates a certain band or genre with an individual song. Research has been 

conducted on how the system practically works and which accuracy it attains (Celma & Lamere, 

2008). 

The last and for this thesis most relevant use for MIR is classification based on genre, country of 

heritage, artist or composer. Different musicians or composers often either consciously or 

subconsciously leave a reoccurring pattern of notes, pitch changes, duration or tempo changes in 

their different scores. This pattern can be seen as the artist’s signature and based on this idea we are 

trying to implement  a machine-learning algorithm by using specific computer software in order to 

detect and extract these signatures from individual musical scores.  These extracted patterns (or 

signatures) can then be used to train a computer to detect these patterns in a different library of 

musical information allowing it to classify an unknown piece to a specific artist or author.  

Classification tasks are not strictly limited to an artist  or composers, but patterns can be found for 

different properties of a given song (e.g. demographic information, genre, musical period of 

composition).  

Earlier research (Dewi, 2011; Ogihara & Li, 2008; van Zaanen & Gaustad, 2010, 2011) showed 

computers trained using a software toolkit  can successfully categorize musical scores based on the 

pitch and duration of the individual notes in the performance. This research allowed to categorize 

the music based on composer, but also on demographic properties like the pieces original region or a 

musical period in which said piece was composed. This technique can be particularly useful when one 

tries to categorize a large library of music files. Instead of doing the categorization process by hand, 

the system can find patterns in the music that are typical for a specific genre allowing it to 

automatically assign this genre to the specific score.  

Musical scores can be stored on a computer in various formats ranging from a digital 

representation of a given performance, to an actual representation of the score. Some of the more 

well-known file-formats are MP3 (Motion pictures expert group layer 3), WAV (Waveform Audio) and 

MIDI (Musical Interface Digital Interface). These file-formats differ drastically and each of these 

individual types have some distinguished features and but also have some limitations.  

This thesis will go into detail regarding the technical aspects of two file formats and will extend 

existing research in order to find out whether or not a different file format will yield the same results 

when used in an experimental setting. 

We will compare the well-known and established MIDI-format, to a lesser-known format, namely 

**kern humdrum, which is specifically designed for research purposes  and will try to establish 

whether or not a computer can extract similar information from a different file format using 

techniques that already provided excellent results with the ** kern humdrum format. 
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1.1 Problem statement  

Previous research has already established the possibility of using pattern-recognition and machine 

learning to perform classification tasks on a library of musical information in the **kern humdrum 

format. The **kern humdrum format was specifically designed for research purposes. 

This research is trying to conclude whether or not  the possibility exists that these very same 

techniques can successfully be used on a different file format, which is not originally intended for 

research purposes but for recording a performance of a musical piece and what modifications to the 

original setup, if necessary,  are required in order to attain these results. 

1.2 Hypotheses 

We will try and find the answer to the problem statement by testing the following hypotheses. 

H0:  Converting a library of **kern humdrum files into a library of MIDI-files and  running the same 

experiments on both the original and the converted data should result in a similar outcome. 

Even though the two file formats are completely different and serve different purposes, which will 

be illustrated in later chapters of this thesis, the expectation is that conversion from the **kern 

humdrum format to the MIDI format has no significant effect or influence on the results generated 

by the software toolkit used in the experiments and the outcome of the experiment will yield the 

same results.  

 

H1: While the previous hypothesis predicts that we can get similar information out of both 

experiments, we also predict that some of the parameters used in the original experimental setup 

might need adjustment order to gain these results.  

The expectation is that converting the source **kern humdrum files to the target MIDI files will 

not generate a one-to-one representation of the original file format. Therefore we predict that some 

of the parameters for the feature-extraction program may need some modification in order to 

circumvent erroneous or biased data generated from slightly different source files. 

 

H2: Quantization of the MIDI timings is necessary because MIDI is known to handle the exact timing 

of musical events differently compared to **kern humdrum which is a precise one to one 

representation of a musical score.   

Especially with files that are not generated from a **kern humdrum file, we expect that some of 

the MIDI timings cause errors . In order to prevent these errors to cause biased information we may 

need to apply some quantization which in essence evens out the value generated by the conversion 

to the nearest duration.  
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H3: Given a dataset that solely consists of unconverted MIDI-files the expectation is that the 

machine-learning algorithm will perform classification of a large categorized dataset significantly 

better than baseline classification algorithm.  

We expect that if a conversion from a **kern humdrum source to a MIDI equivalent causes no 

real complications in terms of classification accuracy, we can also apply the same techniques to a 

dataset which consists solely of MIDI files which have no **kern humdrum counterpart. This would 

indicate that  even though the file types are different, applying the same techniques still generates 

sufficient results. 
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2. Methodology 

In order to test the given hypotheses some background information has to be gathered about the 

internal workings of both the **kern humdrum and MIDI format and to establish the key differences 

between the file formats and to find the strengths and weaknesses of each of these formats.  This 

information will be gathered by  a literature study which is described in chapter 3.  

By utilizing custom-tailored software on two identical datasets of musical information (one set in 

the **kern humdrum format and the other in the MIDI format) we can verify whether or not training 

computers to classify music using the different file format is possible. It should be noted that the 

MIDI files are automatically generated from the ** kern humdrum file and therefore the copy should 

prove to be identical. As classification on the **kern humdrum files has shown to yield good results 

(van Zaanen & Gaustad, 2010) we chose to utilize the same **kern humdrum datasets that were 

used in that research. These datasets are available at the Kernscores 1 -database which conveniently 

offers the datasets in different file formats like MIDI.  The software used in this thesis differs from 

the software used in the original research as support for multiple file-formats was added by using the 

Music21 library.  

This research consists of a set of three individual experiments. The first  experiment compares the 

results to the original research in order to validate whether or not the new data-extraction module is 

working properly. The second experiment is used  to determine and verify whether or not **kern 

humdrum and MIDI-files attain similar results and the third and final experiment utilizes a 

comprehensive dataset which only contains MIDI files and which was previously used in a 

classification competition.  

  

                                                           
1
 http://kern.ccarh.org/ 
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3. Literature study 

MIDI is an industrial standard established by multiple organizations, the standard and its rules are 

defined in official standardization documents which are available on the Internet ("The Complete 

MIDI 1.0 Detailed Specification," 2001). Most of the documents are available free of charge, but 

some extended documents are available to paying customers only. However these documents tend 

to be very detailed as the standard is used by manufacturers to implement the MIDI technology in 

their hard- or software and for the purposes of this thesis these standardization documents are far 

too detailed. The information found in this chapter is a very brief summary of the relevant 

information found in the standard-documentation. 

As **kern humdrum is a lesser-known format and as it is mainly used for research, not nearly as 

much information about the format itself and its inner workings is available. The official Humdrum-

toolkit provides an online book which explains the purposes, syntax and possibilities of the ** kern 

humdrum format. As **kern humdrum is solely aimed at researchers, the information available is 

scarce when compared to the availability of information with regard to the MIDI-standard. The next 

two sections take an in depth look at the two file formats. 

3.1  MIDI 

In the early 1980s, Sequential Circuits Inc. (SCI) made a proposal for a Universal Synthesizer Interface. 

The idea behind this interface was that hardware from different manufacturers could utilize this 

interface in order  to create a standard protocol for synthesizers. The idea was quickly supported and 

adapted by other manufacturers like Oberheim, Yamaha, E-mu, Roland and Korg.  

The first adaptation of this standard primarily supported note triggering, which basically means 

that it merely specified that a particular note should be played at a given moment during the song. In 

1982 several Japanese companies created a counter-proposal to extend the features of the protocol. 

These features were similar to the Roland parallel DCB (Digital Control Bus/Digital Connection Bus) 

interface. DCB was a proprietary, meaning owned by a single company in this case Roland and closed 

source, data interchange interface which allowed sequencers to communicate with programs. At this 

point the Status and data structure was introduced, which allowed more control than the standard 

note-triggering protocol. Eventually both proposals, the Universal Synthesizer Interface and the DCB-

standard, were combined into the MIDI specification we know today by SCI. In 1987 SCI was acquired 

by Yamaha. 

The standard was released to the public-domain, meaning nobody has ownership over the MIDI 

standard. This is generally seen as a huge part of the success of the MIDI-interface as nobody licenses 

or policies the MIDI-standard making it an open and co-operative standard.  This ensured that other 

developers adapted MIDI in their hardware and to this day MIDI is used by sequencers.  
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MIDI has also been used in many other cases as for example in videogames. One of these 

videogames is Rock band 3 which allows the player to play along with some of the bigger rock bands 

in the history of rock and roll (e.g. Deep Purple,  The doors and David Bowie). The game has the 

option to play with a “professional” controller which in essence is a real Fender guitar which uses a 

MIDI interface to communicate with the game console. On the harder difficulties, the videogame 

requires the player to play the chords as they are played in the real  song which teaches  the player 

to play a real guitar whilst also playing a videogame. (Harmonix, 2010) 

Cellular phones used the MIDI standard for their ringtones before the production companies 

adapted more modern file types like MP3 into a new iteration of their product design.  

The MIDI-file format does not store a digital representation of a given musical score, but consists 

of various commands that are specified in the MIDI-standard. The combination of these commands 

determine how any given device, from a sequencer to a computer’s soundcard, should interpret the 

file and which “instruments” to use. Using this command set has some advantages and some 

disadvantages; a typical MIDI-file has a very small file size compared to digitized representations but 

playback on different devices or soundcards can have noticeably different results as the music 

instruments need to be emulated by the hardware and the quality of this hardware has direct 

influence on the quality of the sound output. 

MIDI was originally intended to be a protocol between various hardware and thus instructions are 

formatted in packets that are sent over a serial-interface which allows data to be transferred to 

hardware that has such a serial interface. These serial bytes are sent every 320 microseconds and 

have a distinct structure consisting of one start bit, eight data-bits and finally a single stop bit. These 

commands or MIDI messages can be divided in two categories: the Channel and System messages. 

Channel messages contain a four bit channel number which addresses the message specifically to 

one of the sixteen available channels, whereas system messages can be divided into three 

subcategories namely System Common, System Real Time and System Exclusive.  The rate at which 

commands can be sent is also a limitation, because some notes often need to be triggered 

simultaneously and the amount of notes that can be triggered at once is limited by the serial package 

size. 
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3.2  **kern humdrum 

The **kern humdrum format was specifically designed to aid music researchers. It is part of the 

Humdrum toolkit2 which is  freely available on the internet. The official documentation (Sapp, 2009) 

states that the **kern humdrum format is intended to provide researchers with a file format that 

supports a broad variety of tools with regards to data exploration in musical information.  The Kern-

format was specifically constructed for the toolset and is not meant to transfer the information to 

other hardware or the computer’s soundcard as is the intention of MIDI, rather it describes music in 

a way that researchers can perform various tests on the data (Huron, 2002). However the toolset 

comes with some programs that can convert the **kern humdrum format into other formats like 

MIDI or musicXML.  

The **kern humdrum toolkit consists of a set of over 70 different tools that can be used to 

perform tests on musical information written in the Kern format. The tools available in the toolset 

can all be started from a command line and no programming skills are required in order to use the 

tools.  Here is a brief overview of some of the available commands in the  **kern humdrum toolkit: 

 Proof: verifies the syntax of the source **kern humdrum file and it can be used to fix 

syntactic mistakes in a source score. 

 Census: provides extensive information about a given score, it describes the source 

**kern humdrum file listing some of its features like the number of lines, the number of 

unique interpretations, the number of comments etc.  Basically it provides the end-user 

with a detailed report of the file in question. 

 Assemble: The assemble command allows two or more structurally similar **kern 

humdrum files to be aligned together, making it possible to merge two or more **kern 

humdrum files into a new file containing multiple voices. 

 Pitch: translates **kern humdrum pitch-related representations into the American 

standard pitch notation. 

The **kern humdrum-format is an ASCII-representation of a musical score with some added 

meta-information and control-codes. ASCII stands for the American Standard Code for Information 

Interchange and is a character-encoding scheme which defines 95 visible characters and 33 invisible 

control characters that can be used to represent textual information.  

The documentation states that the **kern humdrum format can be used for exploratory research, 

but strongly advises to use a clear problem statement. Some of the problem statements the official 

documentation gives as an example; 

                                                           
2
 http://www.musiccog.ohio-state.edu/Humdrum/ 
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 What are the most common fret-board patterns in guitar riffs by Jimi Hendrix? 

 How do chord voicings in barbershop quartets differ from chord voicings in other 

repertoires? 

 Which of the Brandenburg Concertos contain the B-A-C-H motif? 

 In what harmonic contexts does Händel double the leading-tone? 

All of these problems can be analyzed by the various tools that are available in the toolset but the 

toolset is limited to the **kern humdrum syntax and if there is a need to extract information from a 

musical score which is not available in this format it needs to be converted manually or by using 

special software on for example a MIDI equivalent of  the score.  The **kern humdrum format is an 

ASCII-representation of a musical score, meaning that it is a human-readable format and it can be 

opened and modified in any text editor as opposed to MIDI.  The inner workings of a **kern 

humdrum file can best be explained by using an example. We are going to describe the conversion 

from a measure of notes into a **kern humdrum equivalent. We are converting the short excerpt 

from Bach’s “die Kunst der fuge” displayed in figure 1 into a small **kern humdrum file.  

 

Figure 1: Musical representation of Bach’s composition “Die Kunst der Fuge” 

 

The **kern humdrum representation for this staff looks like the listing in figure 2. Note that the 

line numbers are not part of the actual **kern humdrum file but are added in order to describe the 

inner working of the format in the next paragraph; 
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 Figure 2: Musical representation of Bach’s “Die Kunst der Fuge” in **kern humdrum. 

 

1. **kern  

2. *clefG2  

3. *k[b-]  

4. *M2/2 

5. =-  

6. 2d/  

7. 2a/ 

8. =  

9. !! This is a comment right between measures 

10. 2f/  

11. 2d/  

12. =  

13. 2c#/  

14. 4d/  

15. 4e/ 

16. =  

17. 2f/  

18. 2r  

19. *- 

 

A **kern humdrum file has a distinct beginning and end-tag as depicted on line 1 and line 19 

respectively, everything between these lines should be interpreted as musical-information (except 

for comments, indicated by !!, as depicted on line 9). Lines 2, 3 and 4 set the clef, the key-signature, 

which in this case is b-flat and the meter (2/2) respectively. The measures start at line 5 and are 

indicated by the equal sign (=). The minus sign indicates the first measure is invisible depicting there 

are no notes prior to this specific measure. Lines 6 and 7 represent the first two notes on the 

measure and line 8 indicates the next measure. The notes (depicted on lines 6, 7, 10, 11, 13,  14, 15 

and 17) are described using a relative duration with regards to the measure. The note 2d/ on line 6 

indicates that the note d is half a measure long (1: whole note, 2: half note, 4: quarter note, 8: eighth 

note etc.) and its stem is pointed upwards which is indicated by the forward slash in the notes 

definition. The pitch of the note is described by one or more characters which describe the 

properties of the note please bear in mind that the syntax is case-sensitive meaning that C is not 

equal to c. The note C can be described in many ways; 
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c Middle C (i.e. C4) 

cc C an octave higher than middle C (C5) 

C C an octave lower than middle C (C3) 

CC C two octaves lower than middle C (C2) 

c#  C middle  sharp (C#4) 

cn C natural, middle c (C4) 

 

Line 18 does not describe a note, but rather  a rest. Rests are similar to notes but do not have 

pitch information as rests are not played. In this case the rest is used to fill up the remainder of the 

measure. Because the rest is the very last element in the musical score it is hidden in the graphical 

output. Multiple voices can co-exist divided by a tab and sheet music can be described in its entirety.  

Given a syntactically-correct **kern humdrum file each of the different tools included in the 

toolset can be used to extract information from the file which in turn can be used for research 

purposes. 

3.3  Other file formats 

As the previous two sections have already stated, the **kern humdrum and the midi file format were 

invented for different purposes. The comparison of MIDI with **kern humdrum checks whether or 

not the techniques used in the original research can be used on a significantly different file format, 

which happens to have some similarities to the original format. MIDI does not represent sheet music 

in the same way as **kern humdrum does.  Instead of describing notes, the way **kern humdrum 

does, it triggers specific notes (and even different instruments). Both file formats describe notes 

which are available in the sheet music in the form of instructions to the machine or hardware it 

corresponds with. Even though the inner working of MIDI is significantly different, it still allows us to 

convert the triggered notes into sheet music.  

More modern file-formats like MP3 and Flac (Free Lossless Audio Codec) are far more complex 

than both MIDI and Humdrum, as they store the musical information as compressed digitized sound. 

Digitized sound is an actual recording of a musical piece and does not describe the meaning of each 

individual note in the file itself, therefore it is more difficult to extract information from digitized 

sound and different techniques are required in order to extract information from this type of file.  

 As sheet music is not represented in digitized file types ( there is no command structure as is the 

case with both MIDI and **kern humdrum)  we cannot use the system we plan on using during the 

course of this thesis on these newer file types, but perhaps techniques similar to the ones used by 

Wang (Wang, 2006) which measure a score’s density can be used to classify songs. 



15 
 

4. Procedure 

In order to test the hypotheses defined in chapter 3, there is a need for three individual experiments 

that are conducted by using custom-written software which is an extension of the software-package 

used and described in earlier research by van Zaanen (2010). The software was used in multiple 

theses and experiments which in turn served completely different purposes (Beks, 2010; Dewi, 2011; 

van Zaanen & Gaustad, 2010).  This chapter describes how the software works, but we will first take 

a look at the three experiments that we will run in order to answer the hypotheses we previously 

described in chapter three. 

The first experiment conducted is nearly identical to van Zaanen’s research using the same corpus 

but using the newly implemented software. This experiment could be seen as the final rehearsal for 

the new software as the results of this experiment should prove that the new library is doing its job 

properly and we should basically find the same results as van Zaanen did in his original research.  

The second experiment is actually identical to the first experiment, the only difference is the file-

format of the corpus. The aim of this experiment is finding out whether or not the same machine-

learning techniques can be used on an identical set of data in a different file-format while still 

receiving correct output. Basically this experiments tests whether or not the parser is able to read 

and extract information from the MIDI-files directly. 

The first two experiments directly complement each other as they are used to check whether or 

not the software is capable of handling both MIDI and **kern humdrum files correctly and these 

results can be used to verify the integrity of both the software and the file-types. These experiments 

basically serve as a final preparation for the third and last experiment which is going to be performed 

on a third dataset which is only available in the MIDI-format. The initial two experiments are required 

because the third experiment’s corpus is not available in the **kern humdrum format so we cannot 

test the corresponding **kern humdrum dataset. 

For our third and final experiment, we have chosen a comprehensive dataset that purely consists 

of MIDI files. This dataset was a part of a competition which was held in 2005 at the annual Music 

Information Retrieval Evaluation eXchange (West, 2011) and consists of a large amount of classes 

(36) as opposed to the experiments that were used in the original research which only implemented 

a maximum of four classes. The expectation is that even though there is a difference in the amount 

of classes, the software will still provide a significant increase of classificationaccuracy when 

compared to the majority baseline calculation. 

The third experiment differs from the second MIDI experiment, because the MIDI files used have 

not been converted from  **kern humdrum to MIDI. However the same dataset was used in the 

2005 MIREX competition where other classification systems competed to gain the highest 
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classification accuracy and it is possible to compare the results of the classification systems that 

competed in the competition to the accuracy attained in the course of our experiments. 

4.1 Data preparation 

Preparing the data-files for  processing proved to be a challenge even though the Kernscores-

database 3 offered multiple versions of each individual score it had no option to download the 

collection in its entirety. The database is of a considerable size and contains many individual files. 

Crawling the website manually by using an automated software tool (Wget) proved to be both 

inefficient and timely mainly because the website’s administrator had set up a load balancer which 

prevented the crawler from downloading too many files in a short time span. This balancer was set 

up to redirect an overflow of requests to a simple text-file which briefly explained that if power user 

access was required one could contact the system’s administrator. 

After personal contact with the system’s administrator, Craig Sapp, access to a recursive 

download was provided which allowed a download for the Essen folksong dataset and the 

Composers dataset which will be described in the next paragraph.  This download only contained the 

**kern humdrum versions of the files and in order to obtain the MIDI versions manual conversion 

from the source **kern humdrum files to their MIDI equivalent was required. Sapp advised using the 

**kern humdrum toolkit’s hum2mid (Sapp, 2005) program which is available in the extras package of 

the toolkit and also provided a shell script that automatically could convert the library into MIDI 

using the hum2mid application. 

The two obtained datasets are the same sets that were used in the research by van Zaanen et al. 

(2010). This was done intentionally because it gives the option to compare the results generated by 

each version of the software toolkit to each other.  These datasets are the Essen dataset which 

contains folk songs from both Western and Asian countries. This dataset is a monophonic dataset, 

meaning there is only a single voice in the song. In the experiments this dataset is indicated as the 

Countries dataset. The second dataset contains songs composed by famous composers Bach, Corelli, 

Haydn and Mozart. These songs consist of multiple voices and thus are polyphonic. This dataset is 

indicated as the Composers dataset. 

The dataset used for our third and final experiment was used in a contest which tested different 

classification systems at MIREX 2005. The Bodhidharma software written in 2004  by McKay achieved 

the highest classification accuracy in the contest (McKay & Fujinaga, 2005). More information about 

the internal workings of his software can be found in McKay’s thesis (McKay, 2004).  The dataset 

used in the competitions solely contained MIDI files so there was no need to convert the data. This 

dataset is known in this thesis as the Bodhidharma dataset. 

                                                           
3
 http://kern.ccarh.org/ 
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After converting the **kern humdrum files into MIDI using the hum2mid program I verified the 

data generated by the software by playing the MIDI files in a media player. The conversion had 

resulted in a library of broken MIDI files. The problem was to blame on a bug in the at the time 

current version of the hum2mid application which was not ready for the newer 64-bits architecture 

newer computers use nowadays. After contact with the toolkit’s developers this issue was corrected 

and the current version of the **kern humdrum toolkit converts **kern humdrum files to their MIDI 

counterpart successfully on older as well as newer computers. 

 The software used to conduct the three experiments defined in chapter four makes use of a 

third-party library called Music21 (Cuthbhert & Ariza, 2010; "music21: a toolkit for computer-aided 

musicology," 2011)  to interpret the musical information contained in the datasets. This interpreter is 

very strict when it comes to syntax and the slightest syntactic error causes the program to exit as 

opposed to the hum2mid-tool which is more lenient when it comes to syntactic mistakes.  

Testing the generated MIDI dataset with Music21’s interpretation software revealed that  a large 

quantity of the files generated by the hum2mid program could not be read by Music21’s 

interpretation software. Music21’s interpretation software is an absolute necessity for the three 

experiments and losing a large amount of files in our datasets would be problematic so we needed to 

convert the data differently and without using the hum2mid application in order to achieve 

maximum compatibility with the Music21 parser. Browsing through Music21’s API documentation 

("Music 21 Documentation," 2011) revealed that Music21 has the option to store its output into 

various standard audio representation formats like **kern humdrum and MIDI and thus it created 

the opportunity to create a custom parser based on Music21’s own interpretation software and thus 

ensuring that the files generated would be compatible with our experimental software.    

 After writing a custom parser in Python (Sanner, 1999), parser.py in the tools directory of the 

experimental toolset, which tried converting the original **kern files into their MIDI equivalent. This 

parser is a strict convertor and any syntactic errors in the source **kern humdrum file cause the file 

to be excluded from both the **kern humdrum and the MIDI dataset.  

The amount of files converted successfully determines the size of the dataset for our experiments. 

A complete overview for the converted data for both the MIDI and **kern humdrum dataset can be 

found in table 1. The scores in both the **kern humdrum and the MIDI datasets are identical. 
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Table 1: Description of the Datasets for the First Two Experiments  

Dataset Amount of files  Converted successfully  Percentage  

Countries  8454 8062 95.36%  

Asia 2241 2169 96.79%  

Europe 6212 5893 94.86%  

Composers 787 469 59.59%  

Bach 246 220 89.43%  

Corelli 247 47 19.03%  

Haydn 212 201 94.81%  

Mozart 82 1 1.22%  

Totals 9241 8531 92.32%  

 

The numbers in table 1 indicate that the parser has some trouble with parsing a percentage of the 

original source files. It should be noted that the musical scores composed by Wolfgang Amadeus 

Mozart in the composers dataset gives the new parsing software significant trouble as only one of 

the files is converted successfully . The expectation is that this will have a positive result on the 

accuracy the classification software achieves, as it has to only classify three classes instead of four. 

The Bodhidharma dataset contains 988 MIDI files which are divided into 38 individual classes, 

after testing whether or not the files could be read with Music21’s converter software it turns out 

that 728 (73.68 %) of the files were correctly parsed and interpreted. The musical scores were 

originally evenly divided over each of the classes, putting 26 files in each of the classes however due 

to the loss of 26.32 percent of the files the categories are not evenly represented  which may cause 

some difficulties whilst performing the baseline calculation in the experimental phase. Most classes 

still have more than 70 percent of their original contents intact in only four occasions there is a 

significant loss of information for a specific class. These losses occur in the following datasets: Adult 

Contemporary (53.85%), Bluegrass (46.15%),  Contemporary country (50%) and most notably the 

Celtic class (30.77%). None of the classes could be converted without the loss of one or more files. 

The two classes with the best conversion rate were Country blues and Swing with a 92 percent 

conversion rate.  A complete overview of all of the classes in the Bodhidharma set and the successful 

conversion rate for each of the individual classes can be found in table 2. 
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Table 2: Classes and Successful Conversion Rate for the Bodhidharma Dataset  

Class Amount of files Converted successfully Percentage 

Adult contemporary 26 14 53,85% 

Alternative Rock 26 20 76,92% 

Baroque 26 23 88,46% 

Bebop 26 21 80,77% 

Bluegrass 26 12 46,15% 

Blues rock 26 18 69,23% 

Bossa Nova 26 21 80,77% 

Celtic 26 8 30,77% 

Chicago blues 26 18 69,23% 

Classical 26 22 84,62% 

Contemporary country 26 13 50,00% 

Cool 26 22 84,62% 

Country blues 26 24 92,31% 

Dance pop 26 21 80,77% 

Flamenco 26 22 84,62% 

Funk 26 19 73,08% 

Hardcore rap 26 21 80,77% 

Hard rock 26 20 76,92% 

Jazz soul 26 22 84,62% 

Medieval 26 23 88,46% 

Metal 26 16 61,54% 

Modern classical 26 20 76,92% 

Pop rap 26 21 80,77% 

Psychedelic 26 18 69,23% 

Punk 26 18 69,23% 

Ragtime 26 22 84,62% 

Reggae 26 16 61,54% 

Renaissance 26 21 80,77% 

Rock and roll 26 19 73,08% 

Romantic 26 20 76,92% 

Salsa 26 15 57,69% 

Smooth jazz 26 19 73,08% 

Soul 26 18 69,23% 

Soul blues 26 19 73,08% 

Swing 26 24 92,31% 

Tango 26 23 88,46% 

Techno 26 19 73,08% 

Traditional country 26 16 61,54% 

Totals 988 728 73,68% 
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The Bodhidharma dataset was also used in Boudewijn Beks’ thesis (Beks, 2010) but he converted 

the MIDI data to musicXML and then to **kern humdrum before using it for his experiments. The 

complexity of the original MIDI files also had an impact on his conversion accuracy. The conversion 

rate for his experiments was 46,53%. Music21, the library used for the new experiments and more 

thoroughly described in chapter 4.2, internally converts files from a dataset to a Python object but 

the conversion rate of the Music21 interpreter is higher than the results attained by the mid2hum 

and mid2xml tools from the **kern humdrum toolkit. 

Tests with the Music21 MIDI interpreter revealed a bug which made the interpreter ignore the 

very last note on any given score. In order to circumvent this bug an additional empty rest was 

appended to the MIDI-score during conversion from **kern humdrum to MIDI.  This additional rest 

was not appended to the files in de Bodhidharma dataset, as there is no equivalent of this dataset in 

the **kern humdrum format. 

4.2 Software toolkit 

The software used in this thesis differs from the software used in the original research by van Zaanen 

and Gaustad (2010). The original software was only intended to work with the **kern humdrum 

format and for this thesis the toolkit was expanded to allow support different file formats.  This new 

implementation uses a free and open-source library developed by the Massachusetts Institute of 

Technology, Music21 4  to perform the analysis on the extracted data. The software is written with 

compatibility in mind, meaning that previous experiments should still be able to run properly.  

 Music21 is a software toolkit with similarities to the Humdrum toolkit, but Music21 is not bound 

to the specific **kern humdrum syntax as it supports a collection of different formats like for 

example MusicXML and also MIDI. The toolkit also allows us to create graphical representations of 

the interpreted data, we can either measure the pitch levels and even regenerate the measures that 

are available in the source data. Music21 is a highly active project and is receiving constant updates. 

It can be downloaded from its official subversion repository.  

One of the big differences between Music21 and the **kern humdrum toolkit is that basic 

programming skills are required in order to use the tools that come with the toolkit. Music21 merely 

provides the developer with an API (Applications Programmer interface) which can be used to extend 

his/her own programs with the features the Music21 toolkit offers. It is not possible to run 

experiments from the command line as is the case with the **kern humdrum toolkit. Music21 is 

written in Python and by writing Python scripts one can use the library in order to gain information 

about a musical score.  

                                                           
4
 http://mit.edu/music21/ 
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As the original software was specifically written for the **kern humdrum format it invoked 

methods and commands that were solely applicable for the ASCII-representation that is used by the 

**kern humdrum files. Music21 uses an entirely different method of extracting information from the 

various file types. It splits a single score into different accessible objects which can be read and 

modified from within the Python program. Luckily a large part of the existing codebase used in the 

original research could be reused without the need for a rewrite.  

The parsing program which extracts the various features from the musical scores and prepares 

them for machine-learning purposes is the only actual part of the software that required a complete 

rewrite. Even though the internal working of the new interpretation class changed drastically, the 

new parser’s output was aimed to be as close to the output generated by the original version’s 

output as possible. This allows the results generated by the new parser to be compatible with the 

other tools that were inside the original version’s toolkit. This circumvented the need to rewrite the 

whole toolkit to add support for multiple file formats.  

The software application performs a variety of operations on the dataset while conducting the 

experiment. These operations can be categorized in six stages which are displayed in figure 3. 

 

Figure 3:  Schematic overview of the various tasks the toolkit performs. 

 

4.2.1 Preparation 

The first step the software undertakes is randomly dividing each of the individual songs in the 

dataset in so called folds. The songs are evenly distributed amongst the folds regardless of their 

original class.  The folds are used for 10-fold cross validation and are used in the training and testing 

step of the application and described in more detail in section 4.2.5. After the division is complete 

the software proceeds into the next preparatory step namely the baseline calculation. Calculating the 

baseline assigns the most common class to each file in the corpus. This process results in the highest 

accuracy attainable without using any information from the contents of the files. This accuracy can in 

turn be compared against the results of the new parsing software. Ideally the new parser’s accuracy 

should significantly surpass the accuracy attained by the baseline calculation. As  a general rule of 
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thumb we can assume that the amount of individual classes has a direct influence on the height of 

the accuracy of the baseline calculation. 

4.2.2 Pattern extraction 

During the next step the application prepares the files in the different folds for the machine-

learning and classification tools. This preparation extracts various features from the source file, 

generating an output which can be used for machine-learning. Table 4 shows which features were 

implemented in the Music21 version of the parsing software: 

Table 3: The Individual Encodings Available in the New Parser. 

Encoding Abs./Rel. Description Polyphonic 

Pitch absolute Absolute Numeric representation of the pitch-space of an individual 

note or chord (e.g. C4=0, C#4=1 etc.) 

No 

Duration 

absolute 

Absolute Numeric representation of the tempo which applies to an 

individual note, chord or rest taking into account modifiers 

like dots 

No 

Multiple pitch 

absolute 

Absolute Same as pitch absolute but applied to each voice Yes 

Multiple duration 

absolute 

Absolute Same as duration absolute but applied to each voice Yes 

Pitch contour Relative Indicates whether or not the current note’s pitch is either 

higher (+1), lower (-1) or equal (0) to the previous note or 

chord 

No 

Duration contour Relative Indicates whether or not the duration of the current note 

or rest is longer (+1), shorter (-1) or equal (0) to the 

previous duration 

No 

Duration relative 

division 

Relative Divides the duration from the current element with the 

duration of the previous element 

No 

Duration relative 

subtraction 

Relative Same as duration relative division only subtracts the 

previous note pitch space from the current note. 

No 

Pitch modulo Absolute Folds the notes in the first voice to the fourth octave and 

returns the numeric value (i.e. C1 is transformed to C4 

which returns 0) 

No 

Multiple Pitch 

Modulo 

Absolute Same as Pitch modulo only applied to all voices Yes 
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The harmonics functions, which were available in the original parser were omitted as they were 

not used in the original research and thus they are not needed for the experiments described in this 

thesis. If these functions are required for future research they need to be developed at that time. 

These functions were primarily used by Boudewijn Beks in his 2010 thesis and were used as an 

extension to the already existing functions that classify polyphonic musical scores. 

The system stores the extracted encodings in individual files and  these encodings are represented 

as numerical data. As an example let us recall our earlier excerpt from Bach’s “Die kunst der Fuge” 

and manually extract its pattern for both pitch- and duration absolutes and pitch relative and 

duration relative features experiments.  The system converts the MIDI or **kern humdrum syntax 

into an object which contains a representation of the elements in a musical score (measures, notes, 

rests etc.) 

 

Figure 3:  Converting a Musical Score into a Pattern   

  

Note d a F d c# d e f REST* 

Duration Half Half Half Half Half Quarter Quarter Half Half 

Converted (Absolute) 2:0.5 9:0.5 5:0.5 2:0.5 1:0.5 2:0.25 4:0.25 5:0.5 0.5 

Converted (Relative)  7:0.0 -4:0.0 -3:0.0 -1:0.0 1:-0.25 2:0.0 1:0.25 0.0 

* Rests have no pitch as they produce no sound and therefore for rests only the duration is 

calculated 

 

Converted (Absolute): In this case the conversion software looks at each element and stores its 

absolute value as a numeric value. The note D is converted to a numeric value which responds to the 

number of semi tones with respect to middle C (C4  equals 0) in the case of the note D the numeric 

value would be two whereas D# would be converted to the number three etc.  

In some cases only a partial feature can be extracted because one of the features might not apply 

to the given element. In the example the last element (a rest) only the duration (0.5) can be 

calculated because a rest does not have a pitch and therefore this attribute is omitted in the 

calculation. 

Converted (Relative): In this case the conversion software looks at each individual element and 

compares this with the previous element in the song. Therefore the first note in the song cannot 

generate any output as there is no predecessor to compare to which is represented in the example 

with a shaded  cell, this first element is not omitted, but used for calculating the value of the second 
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element. The differences between the previous note and the current note are measured and saved 

as the value for this feature (e.g. from note D  to note A is a difference of seven semitones and the 

difference between a half note and a half note is zero). 

The three experiments implement yet another combination of features which is not illustrated in 

the example in figure 3 due to its  simplicity. Pitch- and duration contour simply looks at the previous 

element in the song and determines whether or not the pitch or duration is equal (0), higher (1) or 

lower (-1) than the previous element. 

Each of the three experiments are set up to generate three feature files for each individual song in 

the dataset. These encodings consist of a group of two encodings: 1.) pitch absolute and duration 

absolute, 2.) pitch relative and duration relative division and 3.) pitch contour and duration contour. 

4.2.3 Generate feature vectors 

In the next step, the software generates the so-called feature vectors for each of the three 

experiments. By using different pattern sizes in the form of n-grams, we can verify whether or not 

the size of a pattern has influence on the results of the classification and if so which pattern length is 

optimal for correct classification.  

The toolkit is set up to extract patterns with a sequential size of one to seven consecutive 

elements in a given song. These elements represent different aspects of the song. In the absolute 

experiments, the elements describe individual notes, rests etc. whereas in the relative and contour 

experiments the elements describe relative note information (e.g. the difference between two 

notes). 

 These probabilities are computed by looking at a sequence of words or entities located before 

the entity in question (Jurafsky & Martin, 2009). An n-gram is a sequence of words/entities with the 

length of n. An n-gram model is a type of probabilistic model used to predict the next entity in a 

given sequence of words or entities. Jurafsky and Martin (2009) describe an n-gram model as a 

statistical language model that assigns probabilities to any given sequence of words.  N-gram models 

are commonly used in statistical natural language processing but are also used for other purposes 

(e.g. genetic sequence  analysis). 

In a linguistic context n-grams are utilized for a variety of tasks varying from word-boundary 

prediction to handwriting- and speech recognition. As n-grams can be used on a sequence of entities, 

we can also apply the probabilistic principle to the data we extracted from the three datasets. The 

numeric representation of the various features (absolute, relative and contour) is used as a 

sequence. When the n-grams have been extracted from the data files, the software assigns weights 

to the patterns using information retrieval techniques. 
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4.2.4 TF * IDF 

Term Frequency-Inverse Document Frequency (TF*IDF) is used to assign a weight to the extracted 

patterns (Akiko, 2003). This weight indicates how common a unique pattern is amongst the scores in 

one of the experiment’s datasets.  TF*IDF is a common information retrieval technique usually 

implemented in order to find the importance of a certain word (or sentence and in this case an 

occurrence of numerical information) in a specific query on a range of documents. TF*IDF is 

commonly used in the vector space model together with cosine similarity to determine whether or 

not two individual documents are similar or not (Lochbaum & Streeter, 1989). Variations of this 

technique are often used in search-engines in order to rank the most relevant documents given a 

user’s query.  

Van Zaanen and Gaustad’s research (van Zaanen & Gaustad, 2010) has indicated that these very 

mechanics can also be applied on the data which has been extracted from the music files in our 

dataset. The individual patterns are weighted and linked to an individual class. In the case of van 

Zaanen  and Gaustad’s research the musical data was monophonic (or handled as such by the parsing 

software), Boudewijn Beks has expanded this research in his thesis and implemented an algorithm 

that handled more complex polyphonic patterns. (Beks, 2010). 

The complete TF-IDF formula is divided into two segments, each describing a variable used in the 

formula. The first variable, the term frequency value (TF), is the number of times a term appears in 

any given document divided by the total words that appear in the document. This division acts as a 

normalization and makes sure there is no bias which favors longer documents over shorter ones. This 

results in the following formula: 

 

In this formula the ni,j depicts the number of times the term ti appears in document dj. The 

denominator in turn represents the length of document dj which is measured by counting the total 

number of terms in document dj. 

The TF variable is commonly used in natural language processing and if a specific term occurs  

commonly in a single document, this document is considered more relevant than documents that not 

or less frequently contain this term.   

The second variable, the IDF-value which was originally proposed in 1972 by Karen Spärck Jones 

(Garcia, 2008; Robertson, 2004) is calculated by searching the entire collection of documents. The 

measure is obtained by dividing the total number of documents by the number of document in which 

the word/pattern occurs and then taking the logarithm of the that outcome. The formula for the IDF 

value for term t looks like this; 
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The formula for the IDF variable might look more complex than it actually is. In the formula |D| 

stands for the cardinality (or the total number of documents in the corpus), which in this thesis is the 

total number of classes as a document is a collection of musical scores of a certain class.  

The second part of the formula  |{d : t ϵ d }| stands for the number of documents in which the 

term t appears. In natural language processing the formula is adjusted slightly in order to prevent an 

erroneous  calculation if the term is not found in the corpus itself (which would result in a division by 

zero) but this is not required for our setup as each of the patterns is available in at least one of the 

documents (musical scores).  

Both variables are combined in the last step of the formula and the result is a weight for a single 

term in relation with a given document; 

 

A term in a document will receive a high TF-IDF score if it occurs often in the current document 

but it is not well represented amongst the rest of the corpus. If a pattern gains a high TF-IDF score, 

this means that this is important for a specific class or genre. Terms that are commonly represented 

in many of the documents in the corpus will achieve a low TF-IDF score which in turn results a low 

importance.  

The TF-IDF weightings are used in the classification process in order to determine which class 

belongs to the document in the corpus. If a single pattern occurs in all of the classes it achieves a 

TF*IDF score of zero (0) and because this individual pattern occurs in each of the classes it is 

impossible to use this pattern for classification and thus as a result it is discarded. 

4.2.5 Training, testing and classification 

When the pattern collection process is complete, the system is ready to be trained on the files that 

are available in each of the 10 folds and the classification process can commence.  

In paragraph 4.2.1  we briefly mentioned the K-fold cross validation technique (Mullin & 

Sukthankar, 2000). This means that the machine learning system is trained on the extracted patterns 

available in the training data in a methodical way. In K-fold cross validation a pool of labeled data is 

partitioned into k equally sized subsets (in our case 10) and each of these subsets is used as testing 

data whilst the other K-1 subsets (9) are used as training data. Afterwards the average accuracy 

across all K-tests is computed which results in the average accuracy for the specific test. The main 

advantage of this method over the alternative, randomly selecting train and testing data, is that the 

way the data is divided is not critical. Every song in the corpus gets to be in the testing set exactly 
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once and is available in the training data K-1 times. This means that there is no bias towards a 

specific file or genre because all patterns are used exactly the same amount of times. 

The major downside for using K-fold cross validation is that the training algorithm has to run its 

course k times which makes it a more timely process. As an example, the experiments we ran during 

the course of this thesis ran on a computer which had 11 CPU-units available for calculation and just 

the **kern humdrum experiments took over a week and a half to complete.  

The classification process stores the information for each of the tests in a Tab-separated file which 

is compatible with most statistical software packages and allows us to extract the results from each 

of the individual experiments . 

  



28 
 

5. Results 

After each of the individual experiments were executed, the results were stored in a TSF (Tab-

separated file) and were imported in the open source statistical package R5  (Team, 2008).  

The results were loaded into a linear model and by using statistical methods like the analysis of 

variance (ANOVA), Tukey HSD, mean and standard deviation on each of the datasets and for each of 

the experiments we can check whether or not the various experiments have run their course 

correctly and measure the accuracy for the individual experiments as such. 

5.1 Experiment #1 –Testing the conversion software 

The initial intention was to compare the software’s output to the research conducted by van Zaanen 

et al. in 2010 and therefore the datasets used for this experiment (Countries and Composers) were 

kept identical to the datasets used in the original experiment.  However due to the fact that 

Music21’s parser cannot handle each of the individual **kern humdrum files correctly, which in turn 

causes the datasets to  differ significantly, it is impossible to utilize a paired T-test to compare the 

accuracy of both experiments to each other. The inconsistencies between the two datasets are 

illustrated in table 1.  

Even though the majority of the difference in the dataset is caused by Music21’s parsing software 

there are some other factors that influence the difference between the results generated by the 

original and the current implementation of the software. 

In personal communication van Zaanen indicated that some “hacks” were implemented in the 

original version of his parsing software which in turn allowed it to interpret syntactically incorrect 

source-files which would be rendered useless otherwise. These hacks are not usable in the Music21 

version of our software. 

  Another key difference between the two software implementations is that repeats in songs are 

expanded in van Zaanen’s research which means that a repeat is actually visible in the system’s 

output whereas Music21 does not support expansion of repeats as of yet and thus only outputs the 

notes of an individual repeat once resulting in smaller output files and potentially different patterns.  

In conclusion, it is impossible to compare the results generated by both systems to each other, 

but fortunately we can still determine the new implementations’ overall performance which is 

depicted in table 4. 

  

                                                           
5
 R or the R project is available at: http://www.r-project.org/ and is also available in the package manager of 

most popular Linux distributions. 

http://www.r-project.org/
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Training the system on the data available in the corpus has a positive effect on the accuracy in 

comparison to the baseline calculation for each of the features. This is reflected in the results of the 

linear model which states that there is a significantly positive effect on the accuracy for all of the 

experiments with regards to the baseline (the p value for each of the experiments in comparison to 

the baseline is 0, indicating a significant difference). 

For the **kern humdrum experiments table 4 shows an increase in accuracy in comparison to the 

baseline for every n-gram size peaking at around a pattern-size of five to seven. This illustrates that 

for this part of the experiment the highest classification  accuracy is attained by a relatively high n-

gram size. In other words a longer sequence of elements in a song will more accurately classify a 

given score than a shorter sequence. 

Table 4: Quantitative Results for the **Kern Humdrum Experiments Mean Accuracy and Standard Deviation. 

Class Composers Countries 

 Absolute Contour Relative Absolute Contour Relative 

Baseline 46.93% (5.35) 46.93% (5.35) 46.93% (5.35) 73.10% (0.92) 73.10% (0.92) 73.10% (0.92) 

1 84.39% (6.67) 49.00% (1.98) 60.07% (19.57) 77.95% (0.63) 73.33% (0.58) 80.77% (1.82) 

2 94.94% (3.88) 38.13% (15.99) 79.38% (18.66) 92.14% (6.82) 55.14% (24.17) 97.38% (2.52) 

3 91.66% (3.34) 73.26% (9.63) 89.28% (13.92) 99.89% (0.15) 64.57% (18.97) 99.93% (0.09) 

4 90.98%  (3.78) 82.29% (8.23) 93.03% (11.07) 99.99% (0.01) 86.91% (8.02) 100% (0.00) 

5 92.62% (3.27) 85.20% (6.86) 94.03% (8.26) 100% (0.00) 98.12% (1.44) 100% (0.00) 

6 93.16% (3.23) 88.20% (5.67) 94.03% (4.12) 99.99% (0.01) 99.76% (0.29) 100% (0.01) 

7 93.20% (5.21) 89.73% (6.19) 92.94% (3.99) 99.99% (0.01) 99.92% (0.11) 99.98% (0.02) 

1-2 94.48% (3.60) 37.11% (14.37) 80.92% (14.82) 92.14% (6.92) 55.14% (24.17) 97.38% (2.52) 

1-3 94.57% (3.79) 58.50% (12.34) 85.69% (15.64) 99.89% (0.02) 78.03% (2.29) 99.98% (0.02) 

1-4 94.76% (3.39) 67.94% (11.40) 87.81% (15.04) 99.99% (0.01) 90.17% (4.18) 99.99% (0.01) 

1-5 94.83% (3.33) 71.23% (11.08) 89.28% (14.48) 99.99% (0.01) 98.59% (0.84) 99.99% (0.01) 

1-6 95.13% (3.23) 74.69% (10.41) 90.17% (14.08) 99.99% (0.01) 99.90% (0.12) 99.99% (0.01) 

1-7 95.39% (3.21) 77.07% (10.93) 90.97% (13.80) 99.99% (0.01) 99.99% (0.01) 99.99% (0.01) 



30 
 

There is a relationship between the attained accuracy and the pattern size or the combination of 

pattern sizes. Contrary to the results achieved by van Zaanen in his 2010 experiment, in which the 

pattern sizes peaked at around an n-gram size of 3 or 4, the accuracy achieved by the experiments in 

this thesis increase whenever the n-gram size increases. This means that longer patterns or a 

combination of a short and longer patterns increase the accuracy of the classification process.  

On the other hand this means that smaller patterns have less influence on whether or not a given 

score can be classified correctly. 

As stated before, there is no way to compare these results with van Zaanen’s original research as 

the datasets used in this thesis differ from the datasets used by van Zaanen. Even though the 

difference in the dataset exists, we can  still compare the highest attained accuracy for both systems. 

These accuracies were generated by the absolute experiments as they are the only ones that are 

available in van Zaanen’s 2010 publication. The comparison is depicted in table 5. 

 

Table 5: Accuracy For each of the Experiments by both Software Implementations **Kern Humdrum. 

Dataset  Thesis’ version Van Zaanen’s version 

Countries 100%  (0.00) 95.54% (1.72)  

Composers 95.39% (3.21) 82.07% (4.25)  

 

The figures in table 5 clearly indicate that the new parser is gaining a marginal increase in 

accuracy in comparison to the original software. However the difference in accuracy does not 

confirm that the new parser is working better and this is because the datasets are significantly 

different.  

The increased accuracy attained by the new parsing software can also be explained by comparing 

the files available in each of the datasets which were used for each of the experiments. Especially 

with both the Corelli and the Mozart dataset there is a significant loss of files which almost rules the 

class out in its entirety in the conducted experiment. Realistically speaking, the software only has to 

take two classes into consideration instead of the four classes that were used in the original research.  

This gives the system used in this thesis a huge advantage and this directly explains the increase in 

accuracy for the composers dataset. The countries dataset also shares this advantage with 710 files 

which were excluded from the classification process and thus the increase in accuracy is also 

explainable here.  
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5.2 Experiment #2 – Applying the conversion software to MIDI 

The same procedure was repeated for experiment two. This experiment was conducted at the same 

time in order to assure that the files are nearly identical for both experiments. The only major 

difference is that the file type has changed from **kern humdrum to MIDI. The MIDI dataset lacks 

three files because Music21’s parser cannot extract the features from these files. A t-test revealed 

that the majority baseline did not significantly differ and thus the absence of these three files has no 

significant influence on the experimental results. The results for the MIDI experiment are found in 

table 6. 

 

 

As is the case with the first experiment, the experiments conducted have a higher accuracy in 

comparison to the majority baseline in almost all cases which in turn indicates that the machine 

learning algorithm is outperforming the baseline calculation significantly for each of the three 

Table 6: Quantitative Results for the MIDI Experiments Mean Accuracy and Standard Deviation. 

Class Composers Countries 

 Absolute Contour Relative Absolute Contour Relative 

Baseline 46.57% (5.52) 46.57% (5.52) 46.57% (5.52) 73.11% (0.92) 73.11% (0.92) 73.11% (0.92) 

1 83.50% (6.64) 48.24% (1.45) 44.23%  (24.95) 78.43%  (0.69) 73.34%  (0.58) 81.78% (1.89) 

2 93.00%  (3.60) 28.23%  (16.47) 66.86%  (16.51) 96.02%  (1.80) 73.55%  (0.61) 98.47% (0.70) 

3 91.13%  (3.53) 62.27%  (9.72) 68.13%  (9.16) 99.97%  (0.03) 76.98%  (2.12) 99.98% (0.02) 

4 93.22%  (3.55) 72.81%  (10.47) 76.89%  (8.23) 100%  (0.00) 89.68%  (4.34) 100% (0.00) 

5 93.22%  (3.01) 80.93%  (7.17) 83.29%  (6.22) 100%  (0.00) 98.47%  (0.87) 100% (0.00) 

6 95.42%  (2.38) 88.19%  (4.78) 91.43%  (5.80) 100%  (0.00) 99.87%  (0.11) 100% (0.00) 

7 97.86%  (1.96) 91.44%  (3.96) 93.87%  (4.77) 100%  (0.00) 100%  (0.00) 100% (0.00) 

1-2 92.73%  (3.62) 27.80%  (15.15) 64.18%  (10.63) 96.02%  (1.80) 73.55%  (0.61) 98.47% (0.70) 

1-3 92.61%  (3.34) 50.64%  (13.29) 69.59%  (10.90) 99.97%  (0.03) 76.98%  (2.12) 99.98% (0.02) 

1-4 93.00%  (3.12) 58.82%  (10.79) 70.70%   (9.76) 100%  (0.00) 89.68%  (4.34) 100% (0.00) 

1-5 93.63%  (3.14) 62.71%  (10.37) 72.78%   (9.63) 100%  (0.00) 98.47%  (0.87) 100% (0.00) 

1-6 94.36%  (2.87) 64.86%  (9.59) 74.45%   (10.13) 100%  (0.00) 99.87%  (0.11) 100% (0.00) 

1-7 94.58%  (3.00) 67.40%  (8.51) 75.25%  (10.24) 100%  (0.00) 100%  (0.00) 100% (0.00) 
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features. Once again the p-value for all of the experiments equals to 0 indicating a significant 

difference. 

The linear model allows us to compare the results generated by the **kern humdrum and the 

MIDI experiment to each other in order to see whether or not there are any significant differences 

between the accuracy attained by the **kern humdrum and the MIDI experiments. 

The accuracies generated by the composers experiments for each file type differ significantly from 

each  other (P < 0.05) whereas the accuracies generated by the countries datasets are not 

significantly different to each other (P = 0.26). 

For the Countries experiments this indicates that there is a nearly one-to-one conversion from 

**kern humdrum to MIDI and that Music21’s parsing software is treating the MIDI files the same as 

their **kern humdrum counterpart. The data files used in the Countries experiment solely consist of 

scores that just use one single voice and this makes the conversion from **kern humdrum to MIDI 

relatively easy and this is illustrated by the significant accuracies attained for each of the feature 

experiments. 

The results for the Composer datasets differ significantly, meaning that the accuracies attained by 

each of the feature experiments differ between the **kern humdrum and the MIDI variant of the 

dataset. The main differences in accuracy are found in respectively the relative and contour 

experiments.  

Figure 4 clearly indicates the differences between the two versions of the Composers dataset and 

clearly indicates a drop in accuracy for the MIDI variant especially for the accuracy of the Relative 

dataset. This drop in accuracy can be explained by the way the patterns are modified during the 

conversion from the original **kern humdrum files to their MIDI equivalent. Evidently the 

conversation of the patterns has caused significant differences in comparison to the original version 

of the dataset. The problem lies within Music21’s parser and this is probably to blame on the alpha 

state of the Music21 toolkit. 

The low accuracy for the contour experiments in both versions of the experiment is because the 

patterns generated by these experiments generally contain too little information in order to properly 

classify each of the scores. 
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Figure 4: Accuracies for Respectively the MIDI and **Kern Humdrum Composers Experiments. 

 

 

 

Even though the accuracy differs for the two datasets, the graphs have a similar shape indicating 

that the pattern size inflicts both versions of the dataset in a similar way. But due to the loss of some 

information in the conversion from **kern humdrum to MIDI, the **kern humdrum experiment 

generally outperforms the MIDI experiment.  
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Because the results for both Countries datasets do not significantly differ from each other the 

accuracies depicted in figure 5 are closer together. 

 

Figure 5: Accuracies for Respectively the MIDI and **Kern Humdrum Countries Experiments. 

 

 

 

Notice that in this case, even though the achieved accuracy is not significantly different  there are 

still some differences between the two accuracies attained by the two experiments. In this case, the 

MIDI experiments seem to outperform their **kern humdrum  counterpart as each of the pattern 

sizes and combinations of pattern sizes seem to perform above the baseline whereas for the **kern 

45

55

65

75

85

95

105

1 2 3 4 5 6 7 1-2 1-3 1-4 1-5 1-6 1-7

Countries MIDI 

Absolute

Contour

Relative

Baseline

45

55

65

75

85

95

105

1 2 3 4 5 6 7 1-2 1-3 1-4 1-5 1-6 1-7

Countries **kern humdrum 

Absolute

Contour

Relative

Baseline



35 
 

humdrum experiments there are a few patterns-sizes that perform significantly lower in comparison 

to the majority baseline. 

All in all we can conclude that even though the conversion from **kern humdrum to MIDI has its 

quirks and flaws, mainly due to the conversion software from Music21 handling the file types 

somewhat differently especially for the files that contain multiple voices. It is possible that Music21 

tries grouping simultaneous notes into chords in order to prevent reaching the 320ms limit the MIDI 

file system has. 

5.3 Experiment #3 – Testing the MIDI-only dataset 

The Bodhidharma dataset is the most difficult experiment conducted in this thesis. This difference in 

difficulty is reflected by the majority baseline calculation which has a very low accuracy as is depicted 

in table 8. The attained accuracy for the majority baseline is this low because the files in the dataset 

are (almost) evenly represented and scores are divided over a large amount of classes (36). As a 

comparison, the two other experiments use two and four classes respectively.  

 

Table 7: Quantitative Results for the Bodhidharma dataset – Accuracy and Standard Deviation. 

 Encoding 

n-gram size  Absolute Contour Relative  

Baseline 1.98% (1.10) 1.98% (1.10) 1.98% (1.10)  

1 48.08%  (10.00) 4.95% (2.62) 47.21% (6.32)  

2 76.78%  (3.33) 20.42% (7.04) 71.72% (4.31)  

3 77.40% (1.23) 36.73% (8.10) 75.66% (1.71)  

4 80.84% (0.65) 52.49% (7.03) 77.34% (1.54)  

5 80.61% (1.16) 64.23% (4.85) 77.29% (1.78)  

6 80.50% (1.38) 71.27% (2.86) 77.86% (1.39)  

7 80.35% (1.41) 73.73% (2.24) 77.80% (1.49)  

1-2 65.03%  (6.26) 17.37% (4.85) 65.18% (3.52)  

1-3 71.16%  (4.13) 26.88% (4.31) 70.56% (4.07)  

1-4 74.22%  (3.04) 38.05% (6.13) 73.05% (3.76)  

1-5 76.12%  (2.62) 46.76% (5.52) 74.79% (3.49)  

1-6 77.40%  (2.13) 53.47% (5.76) 75.88% (2.87)  

1-7 80.35%  (1.93) 58.08% (4.41) 76.59% (2.70)  
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The figures in table 7 illustrate that the performance of the contour functions is far below the 

performance of the other encodings. Even with this marginal drop in accuracy the software is still 

doing much better than the baseline calculation. This concludes that the software is doing its job 

correctly and thus we can conclude that even for this complex setup the tests gain successful results. 

The results show that by implementing our system we can identify patterns which work better 

than the baseline calculation for a complex dataset of 36 individual classes.  

By looking at the results of the single size n-grams in table 8, we can see that the highest accuracy 

is attained around an n-gram size of four or five whereas longer sequences cause the accuracy to 

drop.  

This shows us that small patterns, which reoccur more frequently than larger patterns are less 

useful for the classification process in comparison to the larger patterns. However the possibility that 

one of the larger patterns reoccurs is smaller (versus a small pattern) and this affects the patterns 

usefulness.   

The results attained from the single sized n-grams can be combined in order to classify on a 

combination of short and longer patterns.  Using a combination of single sized patterns improves the 

accuracy attained by the classification process and it remains improving for the remainder of the 

experiment. 

It is interesting to compare the results of our parsing software against the results from the MIREX 

2005 competition (McKay  & Fujinaga (2005)).  During the MIREX competition some of the classes 

available in the had subclasses as depicted in figure 6; 

 

Figure 6: The complex dataset used in the MIREX2005 competition clearly depicting the parent (in bold) and 

subcategories (with in turn additional subcategories) used in the competition’s dataset. Image taken from the MIREX results 

paper (McKay & Fujinaga, 2005). 
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The toolset used in this research does not support subcategories and therefore each category is 

defined as its own category without the presence of the parent category. In the MIREX competition 

partial points were granted for classifying an individual piece into the correct parent category and full 

points were given for classifying both the correct parent- and subcategory. This was done to identify 

whether or not the parser made large errors (wrong parent category) or small errors (parent 

category correct, specific subcategory incorrect).  

Luckily the MIREX 2005 also conducted a so-called raw experiment which is similar to the method 

that we implemented in this thesis. The raw experiment only counted classifications into the correct 

subcategory and did not grant points for estimating the parent category correctly. This lines up 

perfectly with the method we implemented which lacks support for subcategories and subcategories 

within subcategories and thus we can compare the results generated by the system’s in the 

competition to the results generated by our own. 

As we have stated before the datasets used in the MIREX2005 competition differs significantly 

from the one used in this thesis because Music21 cannot convert all the musical scores in the original 

dataset. Unfortunately the software version used to conduct the experiments in this thesis does not 

allow us to make up for the loss of these files and therefore the classification accuracy is biased in 

the advantage of the system used in this thesis.  

In order to compensate this bias we will take 73.68% of the mean accuracy from the experiment 

that gained the best results in order to compensate for the loss of roughly 27% of the files in the 

dataset. This is the best compensation we can make without rerunning the entire experiment. The 

mean accuracy across all folds for the best performing experiment (absolute encoding) is 68.67%. 

After compensation this leaves a mean accuracy of 50.60% A comparison of the overall accuracy for 

all the contestants in the MIREX 2005 competition and our software toolkit is depicted in the table 8. 

 

Table 8: Comparison between the Mean Accuracy for the Systems in the MIREX2005 Competition 

and the System Used in this Thesis (Raw). 

Parser  Mean accuracy  

Our parser 50.6%  

Boddhidharma 46.1%  

Basili et al. (NB) 45.0%  

Basili et al. (J48) 41.0%  

Li 39.8%  

Ponce de Leon & Inesta 15.3%  
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The results in the comparison shown in table 8 depict our parser is doing its job better than each of 

the parsers which competed in the MIREX competition in 2005.  

The compensation we added in order to even out the results is not entirely fair towards our 

experiment, as the files we excluded from the dataset because they were unparsable by Music21’s 

interpreter are classified as incorrect automatically whereas utilizing the majority baseline and 

probably would have had a somewhat positive impact on the achieved percentage.  

The results of this experiment do show that the system can be used to classify MIDI files, as not 

only do the results outperform the majority baseline calculation, but in turn they also beat the scores 

attained by each of the systems that competed during the MIREX2005 competition. 
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6. Conclusion 

During the course of this thesis we have set up four hypotheses.  Using the results from our 

experiments we can either confirm or deny these hypothesis. 

H0:  Converting a library of **kern humdrum files into a library of MIDI-files and  running the same 

experiments on both the original and the converted data should result in a similar outcome.  

Both **kern humdrum and MIDI experiments have attained an increase in classification accuracy 

by using the new implementations of the new software used in this thesis. Unfortunately we could 

only compare one of the datasets to each other as the polyphonic Composers dataset seems to be 

converted in a different way. Even though this conversion does not allow us to compare the results 

of both experiments to each other, each of the experiments significantly outperforms the majority 

baseline calculation, which means that the system is working as intended. 

The monophonic Countries dataset achieved very similar results for each of the experiments and 

the MIDI dataset actually performed slightly more accurate classification then the **kern humdrum 

experiment.  

The second and third experiments conducted during the course of this thesis prove that even 

though MIDI files are structurally and technically completely different than **kern humdrum, they 

can still be used in order to classify musical scores 

 

H1: While the previous hypothesis predicts that we can get similar information out of both 

experiments, we also predict that some of the parameters used in the original experimental setup 

might need adjustment order to gain these results.  

During the course of these experiments there was no need to change parameters for any of the 

programs. Even though the output generated for both file types is different, the classification process 

has similar results and thus there is no need for additional or changed parameters. During the course 

of this thesis there were some technical issues with the data preparation as we have illustrated in 

chapter 4. Most of these problems are to blame on the alpha state which the Music21 software 

currently resides in and are bound to be fixed in a newer release. 

 

H2: Quantization of the MIDI timings is necessary because MIDI is known to handle the exact timing 

of musical events differently compared to **kern humdrum which is a precise one to one 

representation of a musical score.   

Even though we expected that the MIDI-timing limitations were going to be troublesome, the 

experiments seemed to have no trouble handling and converting the files or the timings in these 

MIDI files. 
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H3: Given a dataset that solely consists of unconverted MIDI-files the expectation is that the 

machine-learning algorithm will perform classification of a large categorized dataset significantly 

better than baseline classification algorithm.  

Experiment three has shown that we can apply the same techniques previously applied to **kern 

humdrum and MIDI files to a MIDI-only dataset. Even though the classification task for the MIDI-only 

experiment was more difficult than the difficulty first two experiments the overall accuracy gained by 

the experiment still outperformed the majority baseline calculation.  

The difference between the majority baseline and the achieved accuracy is visible in each of the 

experiments we have conducted for both the **kern humdrum and the MIDI files. This leads us to 

conclude that the techniques introduced by van Zaanen in his 2010 research may be applied to MIDI 

without any real complications.  

The biggest problem encountered during the course of this thesis is caused by the conversion 

software which the Music21 library implements. Not only does the software have some trouble with 

some of the scores available in the datasets, but also the output generated by the conversion 

software tends to differ per file type for the polyphonic scores. 

As Music21 is still currently alpha software and the compatibility with these polyphonic MIDI and 

**kern humdrum files might increase over the course of new releases.  Music21 is constantly 

updated and thus I foresee that most of the bugs that currently reside in the library’s codebase will 

be fixed before the software goes into beta and eventually into release. 
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7. Future research and follow-up recommendations 

During the experimental phase of this thesis we have established that the way Music21 parses the 

different file formats in a different way. Future research should look into the differences caused by 

the conversion software Music21 uses and try to determine why this difference occurs.  

It might be entirely possible that newer versions of the Music21 parser will cause the output for 

each of the different file types to change and future research may gain different result as a result of 

changes made to the Music21 toolkit. 

In this thesis the files that could not be read were discarded and not used in the experiments, this 

creates an unfair advantage whilst comparing the results of the experiments to another other 

experiments conducted. In order to counter this, files that are unparsable by Music21’s internal 

conversion software and normally would be excluded from the corpus should be classified without 

looking at the files content by utilizing the majority baseline calculation. By implementing this 

technique, files that are unparsable are still taken into account in a relatively fair way whilst 

conducting the series of experiments and hopefully this will average out the big differences that were 

encountered in the results of the experiments conducted in this thesis. 

The three conducted experiments were all tied to a single voice in a given song. In future research 

one could use the features which are bound to multiple voices to generate more complex patterns to 

train the system upon. 

While writing the software used in this thesis, Music21’s developers announced they 

implemented a toolset for feature-extraction capabilities into the library itself (Cuthbhert, 2011). 

Native support for feature-extraction simplifies and standardizes the way features are extracted and 

prevents the necessity of writing support for additional file-formats as Music21 supports many file-

formats out of the box. Implementing the internal classification tools into a new version of the 

classification tools might improve the accuracy gained by each of the experiments. 

This thesis has shown that classification on a more complex file-types result in a significant 

increase in accuracy so the next logical step is using these machine-learning techniques on digitized 

media (MP3, WAV etc.). The downside to this follow up research recommendation is that it is 

practically impossible to extract pattern information from digitized audio representation and thus the 

experiment  cannot be conducted using the Music21 library or the software used in this thesis and 

would require a different experimental setup all together. 
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