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Abstract 
 

This paper examines the risk and return of the so-called “capital structure arbitrage”, which 
exploits the mispricing between the company’s debt and equity. Specifically, a structural model 
connects a company’s equity price with its credit default swap (CDS) spread. Based on the 
deviation of CDS market spreads from their model predictions, a convergence type trading 
strategy is proposed and analyzed using daily CDS spreads on 419 North American obligors for 
the period of 2006-2010.  
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1     Introduction 
 
The first structural pricing model for credit risk was developed by Merton (1974), based on the 
results of Black and Scholes (1973), who values equity as a call option on the firms’ assets. 
Following his work Black and Cox (1976) and Longstaff and Schwartz (1995) developed first-
passage time models with an exogenous default barrier which also constitute the fundament for 
the CreditGrades model of Finger et al. (2002). While the asset value dynamics of firms in the 
CreditGrades model is based on diffusion process, Zhou (2001) additionally introduced jumps to 
account for sudden market changes. Although, Cserna and Imbierowitz (2008) show that the 
Zhou model is superior for capturing even slight inefficiencies, however, such additional return 
comes from more frequent and, therefore, more expensive trading in terms of commissions. In 
addition, the Zhou model is more sophisticated than the CreditGrades and the Merton models, 
what also makes it more difficult to implement and reduces its popularity among traders.  
 
Since the early 2000’s, capital structure arbitrage has become popular among hedge funds and 
bank proprietary trading desks. The arbitrageur may use a structural model to gauge the richness 
and cheapness of the credit default swap (CDS) spread. She can calculate the “fair” value of the 
CDS spread via some structural model based on a company’s liability structure and its market 
value of equities. When the arbitrageur finds that the market CDS spread is substantially larger 
than the predicted spread, a number of possibilities can be entertained. The arbitrageur may think 
that either the equity market mis-prices equity value or the CDS market is “wrong”.  Luckily, 
both cases result in the exact same strategy: the arbitrageur should sell credit protection and 
delta-hedge it by selling short delta equities and expect convergence to occur. The logic is that if 
the CDS spread widens or if the equity price rises, the best one could hope for is that the 
theoretical relation between the CDS spread and the equity price would prevail, and the equity 
position can cushion the loss on the CDS position, and vice versa. The reverse is true when the 
market CDS spread is substantially lower than the predicted spread, when the arbitrageur should 
buy credit protection and hedge it by buying delta shares. 
 
Although, such arbitrage strategy relaying on temporal mispricing of the market may look 
appealing at the first glance, but the “wrongfulness” of the market is questionable. In Currie and 
Morris (2002), traders are quoted saying that the average correlation between the CDS spread 
and the equity price is only on the order of 5% to 15%. Similar results are reported in Yu (2005), 
where correlation is between 1% and 6% among investment grade obligors and between 7% and 
23% among speculative grade and not rated obligors. Therefore, the lack of a close correlation 
between the CDS and equity markets suggests that there can be prolonged periods when the two 
markets hold diverging views on an obligor. Irrational behavior of investors may also be an 
issue. In fact, prolonged periods of time before convergence may be partially caused by emotion 
driven or purely speculative trading in equity and/or the CDS markets. In other words, the 
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divergence in short term and long term views of investors may cause drawdown on the capital 
structure arbitrageur position.  
 
Furthermore, the arbitrageur is apt to imperfections of model implementation that can reduce the 
profitability of capital structure arbitrage. For example, the CDS market spread could be higher 
than the equity based model spread because of a sudden increase in asset volatility, newly issued 
debt or hidden liabilities that have come to light. These elements are omitted in a simple 
implementation of structural models using historical volatility and balance sheet information 
from Compustat quarterly data. In other words, one might enter into a trade when there are no 
profitable opportunities in either the CDS or the equity market.   
 
In a first step, I calculate CDS premiums using two structural models, namely, the Merton model 
and the CreditGrades model. While the Merton model is very well known among academicals, 
the CreditGrades model was published in 2002 by affiliates of large investment banks and 
quickly became an industry benchmark according to Currie and Morris (2002) and Yu (2005). 
Further, I compare these model CDS spreads to market observations. For this purpose I employ a 
dataset which comprises stock prices, CDS spreads, balance sheet data and ratings for a total of 
419 obligors in the period from January 2006 to December 2009. I find that predictions of the 
CreditGrades model follow market CDS spreads quite accurately whilst predictions of the 
Merton model are substantially underestimated comparing to the market CDS spreads. The 
deviations between market and model spreads serve as an indication of inaccurate market pricing 
and signal arbitrage opportunities in the firm’s capital structure. Further, I use the assumption of 
F. Yu (2005) that the particular CDS is priced correctly if the deviation to the respective model 
spread amounts to less than 50 percent1. Therefore, if deviations from convergence can be 
observed, positions according to the principles of capital structure arbitrage are initiated. 
Accordingly, a portfolio is formed including debt (CDS) together with equity (stocks) as a 
hedging device. The individual positions are terminated if 
 

a) market and model spreads converge 
b) losses amount to 20 percent of initial capital 
c) convergence did not occur during pre-specified holding period 

 
My analysis of investment strategy follows the one presented in Yu (2005) and Duarte, Longstaff 
and Yu (2007), and Cserna and Imbierowicz (2008). In addition to a popular CreditGrades 
model, I also include the Merton model which is not used in any of previously mentioned 
studies. Moreover, this paper extends the analysis of Yu (2005) and Duarte, Longstaff and Yu 
(2007) by implementing a significantly larger database of North American obligors and taking 
the observation period from 2006 to 2010, which also extends the study of Cserna and 
Imbierowicz (2008). The analysis of Yu (2005) shows the riskiness of the arbitrage strategy for 
                                                
1 100 percent and 200 percent deviations are also used in this research. 
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individual trades. However, when individual trades are aggregated into monthly capital structure 
arbitrage portfolio returns, the strategy appears to offer attractive Sharpe ratios ranging from 0.15 
to 0.89 for different strategies. Furthermore, monthly index capital structure arbitrage returns 
cannot be explained by several well known equity and bond market risk factors. Cserna and 
Imbierowicz (2008) find that the capital structure arbitrage strategy produce significant positive 
average returns in the investigated period of 2002-2006. Moreover, they find that average 
monthly returns decline over time and, they provide empirical evidence that the CDS market 
becomes efficient after years 2004/2005. Also, Cserna and Imbierowicz (2008) show that the 
arbitrage strategy provides higher returns for speculative grade obligors than for investment 
grade obligors which is in line with standard investment theories. Additionally, they show that 
more complex models like the model of Zhou (2001) and Leland and Toft (1996) produce larger 
arbitrage returns than the CreditGrades model. Although, the study of Duarte, Longstaff and Yu 
(2006) show very attractive Sharpe ratios for capital structure arbitrage strategies ranging from 
0.80 to 0.92, however, researchers emphasize riskiness of those strategies. The initial capital 
required to produce a 10 % annualized standard deviation of returns is between 45 % and 90 %, 
whereas other fixed income arbitrage strategies require only 30 % to 65 % of initial capital. 
Moreover, Duarte et al. (2007) find that capital structure arbitrage returns are related to factors 
that proxy for economy-wide financial distress. Also, neither of the strategies hold significantly 
positive alpha after accounting for fees.   
 
The remainder of this paper is structured as follows. In the next section the anatomy of trading 
strategy is presented in depth, followed by dataset presentation and description of the Merton, the 
CreditGrades and the Zhou model. In the next part I present the hypothesis of this paper, 
followed by implementation and calibration of both models used in this study. Thereafter, I 
present the case study of Consolidation Coal Inc and overall results of the trading strategy for all 
obligors. Finally, I check the aggregate index returns for systematic equity market risk factors.  
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2     Anatomy of the Trading Strategy 
 
This section analysis the anatomy of capital structure arbitrage. Since this is a model based 
strategy, I start with an introduction to CDS pricing, and then explore issues of implementation.  

2.1     CDS Pricing 

 
A credit default swap (CDS) is an insurance contract against credit events such as the default on 
a bond by a specific issuer (the obligor). The buyer pays a premium to the seller once a quarter 
until the maturity of the contract or the credit event, whichever occurs first. The seller is 
obligated to take delivery of the underlying bond from the buyer for face value should a credit 
event take place within the contract maturity. Although, this is the essence of the credit default 
swap contract, there are a number of practical issues. For example, if the credit event occurs 
between two payment dates, the buyer owes the seller the premiums that have accrued since the 
last settlement date. Another complicating issue is that the buyer usually has the option to 
substitute the underlying bond with other debt instruments of the obligor of equal priority. 
Therefore, the CDS spread has to account for the value of a cheapest-to-deliver option. For a 
simpler treatment of CDS pricing I assume continuous premium payments and ignore the 
embedded option2. 
First, the present value of the premium payments is equal to 
 

퐸 푐 푒푥푝 − 푟 푑푢 1{ }푑푠 , 

 
where 푐 denotes the CDS spread, 푇 is the CDS contract maturity, 푟 the risk-free interest rate, and 
휏 the default time of the obligor. Assuming independence between the default time and the risk-
free interest rate, this can be written as  
 

푐 푃(0, 푠)푞 (푠)푑푠, 

where 푃(0, 푠) is the price of a default-free zero-coupon bond with maturity 푠, and 푞 (푠) is the 
risk-neutral survival probability of the obligor, 푃푟(휏 > 푠), at 푡 = 0.  
 
 
                                                
2 Duffie and Singleton (2003) show that the effect of accrued premiums on the CDS spread is typically small. For a 
discussion on cheapest-to-deliver option, see Berndt et al. (2004). 



7 
 

Second, the present value of the credit protection is equal to  
 

퐸 (1− 푅)푒푥푝 − 푟 푑푢 1{ } , 

 
where 푅 measures the recovery of bond market value as a percentage of par in the event of 
default. Assuming a constant 푅, this can be written as 
 

−(1 − 푅) 푃(0, 푠)푞 (푠)푑푠, 

 
where −푞 (푡) = −푑푞 (푡) 푑푡⁄  is the probability density function of the default time. The CDS 
spread is then determined by setting the initial value of the contract to zero: 
 

푐 = −
(1 − 푅)∫ 푃(0, 푠)푞 (푠)푑푠

∫ 푃(0, 푠)푞 (푠)푑푠
. 

 
The preceding derives the CDS spread on a newly issued contract. If it is subsequently held, the 
relevant issue is the value of the contract as market conditions change. To someone who holds a 
long position from time 0 to 푡, this is equal to 
 

휋(푡,푇) = 푐(푡,푇) − 푐(0,푇) 푃(푡, 푠)푞 (푠)푑푠, 
 

(2.1) 

 
where 푐(푡,푇) is the CDS spread on a contract initiated at time 푡 and with maturity date 푇, and 
푞 (푠) is the probability of survival through 푠 at time 푡. 
 
To compute the risk-neutral survival probability, I use the structural approach, which assumes 
that the default occurs when the firm’s value falls below a certain default threshold. Since the 
equity is treated as the residual claim on the assets of the firm, the structural model can be 
estimated by fitting equity prices and equity volatilities. Because of the focus on trading 
strategies, the choice of a particular structural model should be less important. One model can 
produce slightly more unbiased spreads than another, but it is the daily change in CDS spread 
that is of principal concern here. At a daily frequency the only important contributor to the CDS 
spread is the equity price, as other inputs and parameter that vary from one model to another are 
essentially fixed. Another issue would be that different structural models produce different hedge 
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ratios, that can impact trading profits. However, Schaefer and Strebulaev (2004) show that even 
a simple model such as Merton’s (1974) produce hedge ratios for corporate bonds that cannot be 
rejected in empirical tests.  
 
Consequently, I use the Merton’s model and the CreditGrades model to implement the trading 
analysis. The CreditGrades model is jointly developed by RiskMetrics, JP Morgan, Goldman 
Sachs and Deutsche Bank. The latter model is based on the model of Black and Cox (1976), and 
contains the additional element of uncertain recovery. This latter feature helps to increase the 
short-term default probability, which is necessary to produce realistic levels of CDS spreads. 
Although, CreditGrades model is not very appealing on theoretical side due artificially increased 
short-term CDS spreads, however, on the practical side, the model provides closed-form 
solutions to the survival probability and the CDS spread. The CreditGrades model is also reputed 
as the model used by most capital structure arbitrage professionals. For completeness, sections 
3.2 and 3.3 give an overview over of the Merton model and the CreditGrades model, 
respectively.  

2.2     Implementation 

Assume that one has available time series of observed CDS market spreads 푐 = 푐(푡, 푡 + 푇) on 
newly issued, fixed maturity contracts. Also, there is available time series of observed equity 
prices 푆  and information about the capital structure of the obligor. Such dataset allows traders to 
calculate theoretical CDS spread based on the ones chosen structural model. Let the predicted 
CDS spread be 푐  and the difference between the two time series 푒 = 푐 − 푐 . 
 
If the focus is on pricing, then one would like to attain the best possible fit to market data. 
However, what motivates capital structure arbitrage is the trader’s belief that 푒  will move 
predictably over time. Specifically, assume that the pricing error has a mean of 퐸(푒) and a 
standard deviation of 휎(푒). As mentioned before, one would not expect pricing error to be 
unbiased, however, say that there comes a point at which the deviation becomes unusually large, 
for example when 푒 > 퐸(푒) + 2휎(푒). At this point trader sees an opportunity for trading. If he 
considers the CDS overpriced, then he should sell the credit protection. On the other hand, if he 
considers the equity to be overpriced, then he should sell the equity short. Either way trader’s 
strategy is based on the assumption that convergence will occur.  
 
To see this logic more clearly, assume that the theoretical pricing relation is given by 푐 =
푓(푆 ,푅,휃) where 푆  is the equity price, 푅 is the expected recovery on a specific class of a firm’s 
debt3 and 휃 denotes the other fixed parameters, such as asset volatility. The actual CDS spread is 
given by 푐 = 푓(푆 ,푅 , 휃) where 푅  is the implied recovery rate obtained by inverting the 
                                                
3 In our case, it is senior subordinated debt 
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pricing equation. When 푐 > 푐 , it may be that the implied recovery rate 푅  is unreasonably 
high, for example close to 1, and shall decrease to a lower level. The correct strategy in this case 
is to sell CDS and sell equity as a hedge, which is similar to strategy involving stock options, 
when one would sell overpriced stock options and use delta hedging to neutralize the effect of 
changing stock price. Another possibility is that the CDS is priced fairly, but the equity price 
reacts too slowly to new information. In this case the equity is overpriced and one should short 
CDS as a hedge against shorting equity. Both cases involve the same trading strategy. Yet 
another possibility is that other parameters of the model, such as the debt per share are mis-
measured. This can be a problem when using balance sheet variables from the financial 
statements that are infrequently updated. Moreover, the gap between the CDS market and model 
spreads could simply be due to model misspecification. It is possible to address the last two 
scenarios, for example, by calibrating the model with option implied volatility, carefully 
monitoring the changes in a firm’s capital structure or simply trying alternative models.  
 
The other important part of previously described trading technique is hedging. While delta 
hedging is typically invoked in this context, there are differences from the usual practice in 
trading equity options where the trader bets on volatility and uses hedging to neutralize the effect 
of equity price changes. Trading the CDS, the equity hedge is often static, meaning that the 
equity position stays fixed for entire duration of the strategy. Moreover, traders often modify the 
model based hedge ratio according to their own opinion of the particular type of convergence 
that is likely to occur, for example, trader may decide to underhedge if he feels confident about 
the CDS spread falling, or in reverse, he may decide to overhedge if he feels that it is more likely 
that the equity price will fall. However, some traders do not seem to use a model based hedge 
ratio at all. Instead, they identify the maximum loss that can occur should the obligor default, and 
shorts an equity position in order to break even. In this research, I use the model based hedge 
ratio when entering the trade and fix this hedge ratio throughout the trade.  
 
The next important aspect of the trading strategy is the liquidation of the open position. I assume 
that the exit will occur on the following conditions: 
 

1) The pricing error 푒  reverts to its mean 퐸(푒). 
2) Convergence has not occurred by the end of pre-specified holding period or the sample 

period. 
 

To summarize, the risk involved in capital structure arbitrage trading can be understood in terms 
of the subsequent movements of the CDS spread and the equity price. For example, after the 
arbitrageur has sold credit protection and sold equity short, four likely scenarios can happen: 
 

1) 푐  ↓, 푆  ↓. This is the case of convergence, allowing the arbitrageur to profit from both 
positions. 
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2) 푐  ↓, 푆  ↑. The arbitrageur loses on the equity, but profits from the CDS. He will profit 
overall if the CDS spread falls more rapidly than the equity price rises, allowing 
convergence to take place partially. 

3) 푐  ↑, 푆  ↓. The arbitrageur loses on his CDS position, but the equity position acts as a 
hedge against this loss. There will be overall profit if the equity price falls more rapidly 
than the CDS spread rises. 

4) 푐  ↑, 푆  ↑. This is a sure case of divergence. The arbitrageur suffers losses from both 
positions regardless of the size of the equity hedge. 

 
Clearly, the delta hedging is effective in the second and the third scenarios. The likelihood of the 
first scenario, however, is critical to the success of capital structure arbitrage.  
 

2.3     Trading Returns 

The main part of this paper is the analysis of the trading returns. At the initiation of the trading 
strategy, the credit default swap position has zero market value. Although, this may be possible 
theoretically, however, in practice traders must have a margin account. Therefore, trading returns 
can be calculated by assuming that the arbitrageur possesses certain level of initial capital, which 
is also used to finance initial equity hedge. The assumed amount of initial capital is not trivial, 
since some of the trades may have to be liquidated early due to a large drawdown.  
 
After the initiation of trading strategy, the value of the CDS and the equity positions can change. 
While the latter is trivial, the value of the CDS position has to be calculated according to 
equation 2.1. However, implementation of equation 2.1 is not straightforward and several 
simplifying assumptions have to be made. First, equation 2.1 requires secondary market quotes 
on an existing contract, while the CDS market predominantly quotes spreads on freshly issued 
CDS contracts with a fixed maturity. Therefore, I use the approximation  푐(푡,푇) ≈ 푐(푡, 푡 + 푇). 
This assumption should not have high impact to trading returns as I use only a 30-day 
convergence window.  
 

2.4     Trading Costs 

Except in section 8, where I explore the impact of the transaction costs on trading returns, I 
assume a 5% bid/ask spread for trading CDS. This implies that for an obligor with 100 basis 
point spread, the buyer of the CDS will be paying 102.5 bp per annum while the seller will 
receive only 97.5 bp. Clearly, the level of CDS transaction costs was higher during the earlier 
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phase of the market. However, Yu (2005), and Cserna and Imbierowicz (2008) motivates 5% 
bid/ask spread to be reasonable estimate in recent periods. In addition, since the CDS bid/ask 
spread probably the largest source of trading costs for capital structure arbitrage, I ignore the 
transaction costs on common stocks. This assumption should not distort the trading returns as I 
will use static equity hedging in the trading strategy.  
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3     Data 
 
In this study I use daily observations of 5-year mid-market CDS spreads obtained from 
DataStream. The choice of 5-year CDS contracts on senior unsecured debt is motivated by the 
largest liquidity and in line with the literature. My sample contains data of US dollar 
denominated CDS contracts of North American obligors from 2006 through the end of 2009 
covering the peak of financial crisis which is of the main interest of this research.  
 
Firstly, in order to generate subset suitable for trading analysis I remove all cases with standard 
deviation of zero for more than five trading days. Furthermore, I exclude all obligors with less 
than one full year of daily observations. Although, such actions may cause survivorship bias, but 
they help to construct data sample suitable for trading analysis.     
  
Secondly, I restrict CDS data sample to publicly traded companies as I need firm-specific 
information to employ structural credit risk models. However, financial companies are excluded 
from this study as it is difficult to interpret their capital structure. Consequently, I obtain daily 
stock quotes from CRSP and quarterly balance sheet data from COMPUSTAT. Additionally, 
S&P credit ratings are retrieved from COMPUSTAT ratings and 5-year constant maturity 
Treasury yields are obtained from DataStream. It is worth mentioning that quarterly balance 
sheet data is lagged by one month from the end of the quarter in order not to have look-ahead 
bias 4 . Further, I merge the CDS data with daily stock observations and balance sheet 
information. Additionally, I divide merged dataset into subsets accordingly to S&P credit ratings 
of the obligors. Consequently, data filtering yields final data sample of 419 obligors with overall 
371321 daily CDS quotes. 

Table 1: Number of observations per rating class and calendar year 
The table displays the number of daily observations on CDS for all rating classes and non-rated issuers (NR) over 
the period 2006 until 2009 for individual years as well as the complete time horizon.     
                
   Rating 2006 2007 2008 2009 2006-2009   
  NR 3,402 3,060 2,620 2,886 11,968   
  D 134 176 104 183 597   
  B 6,501 6,254 5,941 6,243 24,939   
  BB 14,468 13,290 12,165 12,113 52,036   
  BBB 43,404 39,208 37,859 38,733 159,204   
  A 26,402 24,747 24,925 25,050 101,124   
  AA 3,952 3,878 4,044 4,085 15,959   
  AAA 1,672 1,447 1,367 1,008 5,494   
  Total 99,935 92,060 89,025 90,301 371,321   

                                                
4 The same method is used in F.Yu (2005) 
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Table 2: Summary statistics for the 419 obligors across credit rating 
N is the number of obligors, SPD is the daily CDS spread in basis points, VOL is the 1000-day historical equity 
volatility, LEV is the leverage ratio defined as total liabilities divided by the sum of total liabilities and the equity 
market capitalization, and SIZE is equity market capitalization in millions USD.   
                
   Rating N SPD VOL LEV SIZE   
  NR 15 398 0.44 0.44 10,342   
  D 1 1151 0.80 0.88 4,089   
  B 27 529 0.50 0.62 5,182   
  BB 62 362 0.44 0.49 6,519   
  BBB 179 173 0.35 0.44 12,477   
  A 111 113 0.35 0.37 29,207   
  AA 17 186 0.35 0.33 73,162   
  AAA 7 26 0.35 0.34 177,931   
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4     Empirical Analysis 

4.1     Hypotheses  

Prior findings of Yu (2006), Larsen and Bajlum (2007), and Cserna and Imbierowicz (2008) 
suggest that the CDS market has been inefficient. I am analyzing this in more detail by splitting 
the overall sample into investment grade and speculative grade obligors, also through the years 
of observation. Since CDS have not been issued before the mid-1990’s, it can be assumed that 
the market did not always reflect accurate pricing and inefficiencies in general exist.   
 

H1: The capital markets remain efficient throughout the observation period reflected in 
non-positive excess capital structure arbitrage returns. 

 
While stocks are traded on an exchange, CDS are still traded in an over-the-counter market, 
resulting in more constrained trading. However, through time and experience investors should 
improve their pricing and trading knowledge and react faster and more accurate to changing 
market information. Therefore, I expect that the CDS market becomes more efficient over time, 
which would be reflected in declining capital structure arbitrage returns. If, on the other hand, 
strategy holding period returns remain stable or even increase through time, there could be two 
possible explanations: the market remains inefficient or the models used are misspecified.  
 

H2: Capital markets are efficient during Credit Crunch reflected in non-positive capital 
structure arbitrage returns in the period of 2007-2008. 

 
During the years of Credit Crunch there was a lot of human emotion such as fear and insecurity 
which led to sudden jumps in asset prices. Therefore, arbitrageurs should have had plenty of 
good opportunities to make money in the markets, since asset values returned to fundamentals, 
if, of course, had not defaulted. Thus, I expect somewhat higher capital structure arbitrage 
returns during 2007-2008 year period.  
 

 H3: The arbitrage returns will increase by declining credit quality of obligors.  
 
The other part of my analysis concerns the difference in arbitrage returns over rating classes. 
Risk averse investors demand higher rewards for riskier positions. Accordingly, investment in 
higher rated obligors, which can be assumed to have a smaller default probability and less 
volatility in market spreads, should also produce lower returns in my arbitrage strategy compared 
to investments in lower rated obligors.   
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5     Model Implementation 

5.1     Preliminaries 

Let 푉 , 푆 , 퐷 ,  and 퐾  denote the asset value, the market value of equity, the amount of total 
liabilities, and the default barrier of the associated firm at time t divided by the number of shares 
outstanding, respectively. Correspondingly, 휎  and 휎  are used to denote annualized asset and 
equity volatilities. 푅 symbolizes the recovery rate on the senior unsecured debt underlying CDS 
contract initiated at time 푡 = 0 with maturity 푇 = 5. Considering recent Fitch overview of U.S. 
high yield bond recovery rates5, results of Covitz and Han (2004), and Altman, Brady, Resti and 
Sironi (2005), R is set to 0.4, as it is a long term mean of U.S. corporate recovery rates over 
senior unsecured debt. Furthermore, Δ푡 = 1/252, and 푟 is five-year constant maturity Treasury 
yield used as a proxy of risk-free interest rate.  

5.2     The Merton Model 

Merton (1974) proposes a simple model of the firm that provides a way of relating credit risk to 
the capital structure of the firm. In this model the value of the firm’s assets is assumed to follow 
a lognormal diffusion process with a constant volatility. The firm has issued two classes of 
securities: equity and debt. The equity receives no dividends whilst the debt is a pure discount 
bond where a payment is promised at time T.  
 
If at time T the firm’s asset value exceeds the promised payment, D, the lenders are paid the 
promised amount and the shareholders receive the residual asset value. On the other hand, if the 
asset value is less than the promised payment the firm defaults, the lenders receive a payment 
equal to the asset value, and the shareholders get nothing.  
 
In this model a firm’s asset value is modeled as a lognormal process and it is assumed that the 
firm would default if the asset value, 푉, falls below a certain default boundary 푋. Moreover, the 
default is allowed at only one point in time, 푇. The equity, 퐸, of the firm is modeled as a call 
option on the underlying assets. The value of the equity is given as 
 

퐸 = 푉Φ(푑 ) − 푋 푒푥푝(−푟푇)Φ(푑 ), (5.1) 
 
where 

                                                
5 For further details see Fitch Ratings,  “U.S. High Yield Default and Recovery Rates 2009 Review and Outlook” 
(2010) 
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푑 =
ln 푉

푋 + 휇 + 1
2휎 푇

휎√푇
, (5.2) 

 
푑 = 푑 − 휎√푇, (5.3) 

 
and Φ represents the cumulative normal distribution function. The debt value, 퐷, is then given by 
 

퐷 = 푉 − 퐸. 
 
The CDS spread can be computed as6 
 

푠 = −
1
푇 푙푛 Φ(푑 ) +

푉
푋 푒푥푝

(푟푇)Φ(−푑 ) , 

 
where 푉 is the initial asset value of the firm, 푋 is the default barrier for the firm, i.e., if the firm’s 
asset value 푉 is below 푋 at the terminal date 푇, then the firm is in default. 휇 is the drift of the 
asset return, and 휎 is the volatility of the asset returns.  
 
Hedging costs are proportional to the size of Δ, which may be computed in closed-form as 
follows: 
 

Δ =
휕퐶
휕푆 

 

=
휕퐶
휕푉 ∙

휕푉
휕푆 

 

=
휕
휕푉 ∙ Φ

(−푑 ) ∙
1

Φ(푑 ) 

 

= −Φ(−푑 ) ∙
휕푑
휕푉 ∙

1
Φ(푑 ) 

 

=
−Φ(−푑 )
Φ(푑 ) ∙

1
푉휎√푇

 

 
 
 

                                                
6 For further details refer to Navneet Arora et al, “Reduced Form vs. Structural Models of Credit Risk: A Case Study 
of Three Models” (2005) 
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5.3     The CreditGrades Model 

In this model, 푉  is assumed to follow a geometric Brownian motion with zero drift under the 
risk-neutral measure, namely 
 

푑푉
푉 = (푟 − 푞)푑푡 + 휎  푑푊 , 

 
where 푊  is a Wiener process, 푟 is a risk-free interest rate, 푞 is dividend rate and  (푟 − 푞) is asset 
drift rate. In CreditGrades technical document it is assumed that over time a firm issues more 
debt to maintain a steady level of leverage, or else pays dividends so that the debt has the same 
drift as the stock price. Therefore, (푟 − 푞) = 0.Such assumption of zero drift rate results in 
stationary leverage ratios. According to Collin-Dufresne and Goldstein (2001) structural credit 
default models with stationary (mean-reverting) leverage ratios produce credit spreads that are 
more consistent with empirical findings compared to outputs of other structural credit default 
models. Therefore, the default barrier is defined by 퐾 = 퐿 ∙ 퐷 , where 퐿 is a log-normal random 
variable with      퐸(퐿) =  퐿  and 푣푎푟(ln퐿) =  휆  revealed at the moment of default 7 . The 
uncertainty of the default barrier allows possibility that the firm’s asset value may be closer to 
the default point than we may expect it to be according to past accounting data. Therefore, 
randomness of the default barrier results in higher short-term default probabilities. The current 
probability 푞(푡)  that the asset value does not reach the default barrier before 푡 ∈  [0;  푇]  is 
approximated using time-shifted Brownian motion, yielding the following result8:  
 

                                     푞(푡) =  Φ(푎 ) − 푑 ∙ Φ(푎 ), (5.4) 
 

where Φ(. . ) is the cumulative distribution function of the standard normal distribution and 
 

푎± =  −
퐴
2 ± ln

푑
퐴 ,               퐴 =  휎 ∙ 푡 + 휆 ,               푑 =  

(푆 + 퐿 ∙ 퐷 ) ∙ 푒푥푝(휆 )
퐿 ∙ 퐷

. 

 
Note that 푞(0)  ≠ 1 due to uncertainty in the default barrier at 푡 = 0. Moreover, it implicitly 
includes the possibility of default in the period (−푡; 0]. Although, this may be considered an 
issue in modeling assumptions, at the same time, this feature aids in obtaining a simple formula 
for survival probability and in producing reasonable spreads for short maturity instruments.  
 
The value of the current credit default swap premium 푐(0,푇)  initiated at time 푡 = 0  with 
maturity 푇 is expressed as 
                                                
7 In this paper I keep R constant and use implied 퐿 of 10 first CDS quotes, as specified in F.Yu (2005)  
8 The approximation assumes that 푊  starts not at 푡 = 0, but from an earlier time. As a result, even for very small 푡 
the default probability is not equal to 0. For more details refer to Lardy, Finkelstein, Khuong-Huu and Yang (2000). 
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푐(0,푇) = 푟 ∙ (1 − 푅) ∙
1 − 푞(0) + 퐻(푇)

푞(0) − 푒푥푝(−푟 ∙ 푇) ∙ 푞(푇) − 퐻(푇)  , 
 

(5.5) 

 
where  

퐻(푇) = 푒푥푝(푟 ∙ 휉) ∙ 퐺(푇 + 휉) − 퐺(휉) ,     
 
퐺(푇) =  푑 ⁄ ∙ 훷(푔 ) + 푑 ⁄ ∙ 훷(푔 ), 
 

푔± =  
− 푙푛푑  ± 휔 ∙ 휎 ∙ 푇

휎 ∙ √푇
,               휉 =

휆
휎

,                휔 =
1
4 + 2 ∙

푟
휎

 . 

 
The asset volatility 휎  is approximated in Finger et al. (2002) as 
 

휎 = 휎 ∙
푆

푆 + 퐿 ∙ 퐷
 , 

 
whereas 휎  is estimated from historical data. Specifically, in CreditGrades Technical Document 
it is shown that the most precise estimation window is 1000-day period.  
 
Hedging costs are proportional to the size of 훿 , which may be computed through             

훿(푡,푇) = ( , ) and equation (5.5): 

 

훿(0,푇) =
1
푟
휕푐(0,푇)
휕푆 푞(0) − 푞(푇)푒 − 푒 퐺(푇 + 휉) − 퐺(푇) , 

 
Because by definition 푐 is numerically equal to 푐(0,푇), which corresponds to an equity price of 
푆. I then differentiate 푐(0,푇) numerically with respect to 푆 to complete the evaluation of 훿.  

5.4     The Model of Zhou 

This model is the most sophisticated model among the three models described in this research. 
Although, the Zhou model is theoretically appealing and Czerna and Imbierowitz (2008) find 
that this model generates close to market CDS spreads, the Zhou model is not popular among 
traders due to its complexity. The application of this model consists of a parameter estimation 
which is followed by a Monte Carlo approach. Let 푋  denote the asset value of the associated 
firm at time 푡 relative to the default barrier, i.e. 푋 = 푉 퐾⁄ . Here, it is assumed that 푉 = 푆 +
퐷  and 퐾 = 퐷 . In Zhou (2001) 푋  follows a jump-diffusion process given by 
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= (휇 − 휆 ∙ υ)푑푡 + 휎푑푊 + (Π− 1)푑푌  ,      (5.6) 

 
where 휇  is a drift and 휎  is a volatility parameter, 푌  is a homogenous Poisson process with 
intensity 휆 , and Π  is the log-normal jump-amplitude with 푙푛Π~푁(휇 ;  휎 ) . The parameter 휐 
satisfies 휐 = 퐸(Π − 1) = 푒푥푝(휇 + 휎 2⁄ )− 1. 
 
Note that 푊 ,푌  and Π are assumed to be independent. According to Scherer (2005) and Zhou 
(2001), the specification in (5.6) allows for the possibility of sudden changes in firm’s asset 
value resulting in higher short term spreads. Applying Ito’s lemma Cserna and Imbierowicz 
(2008) obtain 
 

푑푥 = 휇 − − 휆 ∙ υ 푑푡 + 휎푑푊 + 푙푛Π dY .  (5.7) 
 

Let 휃 = (휇, 휎, 휆, 휇 ,휎 )′ denote the parameter vector to be estimated from observed sample of 
푥  with 푛 observations. As shown in Wong (2006), the probability of observing more than one 
jump during a short period of time (i.e. between two sampling periods) is small enough to ignore. 
Hence, the corresponding likelihood function 퐿(휃) is given by 
 

퐿(휃) = 푔(푥 |푥 , 휃), 

 
where 푔(푥 |푥 ,휃) is the density function of 푥   conditioning on 푥  which is approximated via 
 

g(x |x ,θ) = (1− λ ∙ Δt) ∙ f (x |x ,θ) + λ ∙ Δt ∙ f (x |x , θ). 
 

The maximum likelihood estimation is performed numerically for each firm followed by a 
Monte Carlo approach, which incorporates the estimates of 휃 and is based on simulated samples 
of the discrete time version of 푥  given in (5.7) under the risk-neutral measure. However, this 
procedure is complicated, since 푥  itself is a non-linear function.  
 
The simulated samples are generated for each observation of 푥 . Let 푥 ,  denote the i-th simulated 
observation in the j-th sample and let 휏  denote a hitting time satisfying 휏 = 푚푖푛 푖  푥 , ≤ 0 , 
where 푖 = 1, … ,푚  and 푗 = 1, … ,푀 . The current credit default swap premium 푐(0,푇)  is 
calculated by 

푐(0,푇) = −푇 ∙ 푙푛 1 −
푧
푀 , 

 



20 
 

where  

푧 = (1− 푅) ∙ 푒푥푝 푥 ,       푖푓 휏 ≠ ∅
0                                          표푡ℎ푒푟푣푖푠푒.
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6     Calibrating Model Parameters 

6.1     The CreditGrades Model 

First of all, in order to implement the survival probability formula (5.4), it is necessary to link the 
initial asset value 푉  and the asset volatility 휎  to market observables. It is accomplished by 
examining the boundary conditions9. The focus is on long-term tenors (푡 > 휆 휎⁄ ), since the 
short-term default probability is mainly driven by the level of 휆. 
 
In general, the equity and asset volatilities are related through  
 

휎 = 휎
푉
푆
휕푆
휕푉, 

 
where 푆 is the firm’s equity price and 휎  the equity volatility. 
 
The first boundary condition is the behavior of 푉  near the default threshold 퐿 ∙ 퐷 . The 
assumption is that as default approaches, the value of the equity approaches zero (that is, 
푉| = 퐿퐷). The second boundary condition is far from default barrier, where 푆 푉⁄ → 1.The 
simplest expression of the initial asset value 푉  that satisfies the near and far from default 
boundary conditions is 
 
                                                                  푉 = 푆 + 퐿퐷, (6.1) 
 
where 푆  is the current stock price. This also gives the needed relation between market 
observables and asset value and asset volatility 
 

휎 = 휎
푆

푆 + 퐿퐷
. 

 
In deriving (5.4), another assumption has been that the asset value has zero drift (푟 − 푞) = 0 . 
It is important to note that it is not the asset drift itself, but rather the drift of the asset value 
relative to the default boundary that is relevant in this situation. It is assumed that on average 
over time a firm issues more debt to maintain a stable level of leverage, or else pays dividends so 
that the debt has the same drift as the stock price. Therefore, given (6.1), to avoid arbitrage the 
same drift should be assigned to the asset value 푉, implying that the drift of the assets relative to 
the default barrier is indeed zero.  
 
                                                
9 Finger et al. “CreditGrades Technical Document” (2002) 
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Although, Cao, Yu and Zhong (2007) and Benkert (2004) have shown that implied volatility 
derived from option markets dominates historical volatility in forecasting the future volatility on 
individual stocks, the latter one is used in this research due to data availability and accuracy.  
Therefore, 1000 days of equity returns standard deviation is used as a volatility estimate. This 
choice is well justified in CGTD (CreditGrades Technical Document) as it provides the most 
accurate estimates of the volatility implied by the 5-year CDS quotes.  
 
The percentage standard deviation (휆) of the global recovery 퐿 is estimated using the Portfolio 
Management Data and Standard & Poor’s database (Hu and Lawrence (2000)). Based on the 
results of the previously mentioned study 휆  is set equal to 30% . Further, using the 
recommendations given in CGTD the expected recovery on a specific class of firm’s debt (푅)10 
is set equal to 0.4. Although, all the previous aspects of CreditGrades model application were in 
line with the CGTD the implementation of the CreditGrades model here differs from that of 
CGTD in one crucial aspect. The CGTD assumes that 퐿 = 0.5 and uses a bond-specific recovery 
rate 푅 taken from a proprietary database from JP Morgan. In practice, traders usually leave 푅 as 
a free parameter to fit the level of market spreads. In this research, however, 푅 is fixed and 퐿 is 
left as a free parameter to fit actual credit default swap spreads. Specifically, I minimize the sum 
of squared residuals of ten first observations  
 

min 푒 = (푐 − 푐 ) , 

 

 
(6.2) 

 
 

where 푐  is observed market spread at time 푡, 푐  is calculated model spread at time 푡.  
 
Table 3: average CreditGrades model and market CDS spreads 
N is the number of obligors, SPD is the daily CDS spread in basis points.  
 

Rating N SPD CreditGrades 
NR 15 398 474 
D 1 1151 1013 
B 27 529 373 
BB 62 362 334 
BBB 179 173 204 
A 111 113 147 
AA 17 186 194 
AAA 7 26 384 

 

                                                
10 The value of 푅 is consistent with Moody’s estimated historical recovery rate on senior unsecured debt. 
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6.2     The Merton Model 

First of all, asset values and asset volatilities of the obligors are not directly observable and, 
therefore, have to be linked to market observables. All the companies are publicly traded, 
therefore, stock prices of the obligors can be observed on a daily basis. Another important 
variable, equity volatility, can be estimated from historical data. These two observables together 
with associated quarterly balance sheet data allow for estimation of asset value and asset 
volatility through equation (5.1) and  

휎 퐸 = Φ(푑 )휎 푉 , 
 
where  푑  is from equation (5.2). 
 
Further, using MS Excel Solver and VBA I solve for the values of asset volatility and asset 
value. Specifically, the values of parameters are found when 
 

퐹 (휃) + 퐺 (휃) = 0, 
where  
휃 = (휎 ,푉, 휎 ,퐸,퐷, 푟,푇), 
 
퐹(휃) =  푉Φ(d ) − Xe Φ(d ) − E,                         퐺(휃) = Φ(푑 )휎 푉 − 휎 퐸, 
 

푑 =
log 푉

푋 + 푟 + 휎
2 푇

σ √T
,                                          푑 = 푑 − 휎 √푇. 

 
Therefore, having solved for asset value and asset volatility, which is considered to be static over 
the observation period, I can compute the theoretical CDS spreads for all obligors.    
 
Table 4: average Merton model and market CDS spreads 
N is the number of obligors, SPD is the daily CDS spread in basis points.  
 

Rating N SPD Merton  
NR 15 398 102 
D 1 1151 530 
B 27 529 487 
BB 62 362 247 
BBB 179 173 99 
A 111 113 65 
AA 17 186 25 
AAA 7 26 56 
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7     Case Study of Consolidation Coal Inc 

7.1    Application of CreditGrades Model 

In this section I use Consolidation Coal company as an example to illustrate the general 
procedure. In the first step, theoretical CDS spreads are computed from the CreditGrades model. 
As shown above, CreditGrades model requires the following inputs: the equity price 푆, the debt 
per share 퐷, the mean global recovery rate 퐿, the standard deviation of the global recovery rate 휆, 
the expected recovery rate on a specific class of a firm’s debt - 푅, the equity volatility 휎 , and the 
risk-free interest rate 푟. Specifically, I use  
 
 휎 = 1000-day historical equity volatility, 
 푟 = five-year constant maturity Treasury yield, 
 휆 = 0.3, 
 푅 = 0.4, 
            퐹푖푛푎푛푐푖푎푙_퐷푒푏푡 = 0.5 ∗ (푂푡ℎ푒푟_푆푇_퐿푖푎푏푖푙푖푡푖푒푠 + 푂푡ℎ푒푟_퐿푇_푙푖푎푏푖푙푖푡푖푒푠) + 
                                            +푆푇_퐵표푟푟표푤 + 퐿푇_퐵표푟푟표푤 +  0 ∗ (퐴푐푐푡_푃푎푦푎푏푙푒). 
 
푆푇_퐵표푟푟표푤  and 퐿푇_퐵표푟푟표푤  are the short-term and long-term interest bearing financial 
obligations including bank overdrafts, bonds, loans, etc. 푂푡ℎ푒푟_푆푇_퐿푖푎푏푖푙푖푡푖푒푠  and 
푂푡ℎ푒푟_퐿푇_퐿푖푎푏푖푙푖푡푖푒푠  represent current and long-term obligations that do not bear explicit 
interest, such as tax liabilities and pension liabilities. 0.5 multiplier for 푂푡ℎ푒푟_푆푇_퐿푖푎푏푖푙푖푡푖푒푠 
and 푂푡ℎ푒푟_퐿푇_퐿푖푎푏푖푙푖푡푖푒푠 , as some of these are similar to financial liabilities (pension 
liabilities, leases, etc.) while some of them are not (deferred taxes, provisions, etc.). 0 percent 
weight is used for accounts payable as they do not participate in the financial leverage of a 
company.  
 
The liabilities of subsidiaries are consolidated at 100 percent on a consolidated balance sheet 
even though the parent company may not own 100 percent of the subsidiary. To adjust for this, 
in CreditGradets Technical Document it is assumed that the subsidiary has a debt-to-equity ratio 
of 푘. Thus, 

푀푖푛표푟푖푡푦_퐷푒푏푡 = 푘 ∗ 푀푖푛표푟푖푡푦_퐼푛푡푒푟푒푠푡, 
 
where 푀푖푛표푟푖푡푦_퐼푛푡푒푟푒푠푡 represents the portion of interest the parent company does not own in 
the subsidiary. The total debt used in debt per share calculation is then given by 
 
퐷푒푏푡 = 퐹푖푛푎푛푐푖푎푙_퐷푒푏푡 − 푘 ∗ 푀푖푛표푟푖푡푦_퐼푛푡푒푟푒푠푡. (7.1) 
In the calculation it is assumed that 푘 = 1 and 푀푖푛표푟푖푡푦_퐷푒푏푡 is limited to no more than half of 
퐹푖푛푎푛푐푖푎푙_퐷푒푏푡.  
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The total number of shares is the sum of all classes common shares and preferred equity, namely 
 
푁푢푚푏푒푟_표푓_푆ℎ푎푟푒푠 = 퐶표푚푚표푛_푆ℎ푎푟푒푠 + 푃퐹퐷_푆ℎ푎푟푒푠. (7.2) 
 
퐶표푚푚표푛_푆ℎ푎푟푒푠  is the number of shares outstanding and 푃퐹퐷_푆ℎ푎푟푒푠  is the number of 
preferred shares outstanding. Finally, debt per share (퐷) can be calculated from (7.1) and (7.2) 
 

퐷 =
퐷푒푏푡

푁푢푚푏푒푟_표푓_푆ℎ푎푟푒푠. 

 
Although, I closely follow method specified in CreditGrades Technical Document, however, as 
mentioned in previous section, application of CreditGrades model here differs from the original 
one in specification of global recovery parameter. In CGTD 퐿 is set equal to 0.5 and 푅 is taken 
from a proprietary database from JP Morgan. In this approach, however, 푅 is fixed and 퐿 is fitted 
to data. Specifically, global recovery rate has to satisfy equation (6.2). In this case I find that 
implied 퐿 is equal to 0.87. Plugging this estimate along with the above assumed parameters in 
the CreditGrades model allows the theoretical CDS spread for the Consolidation Coal Inc to be 
computed. 
  
Figure 1 compares the market and model CDS spreads for the Consolidation Coal Inc. For ease 
of comparison, it also shows the Consolidation Coal equity price and equity volatility during the 
same period. There are some observations that can be made from figure 1. First of all, comparing 
the market spread in the first panel and the equity price in the second panel, there appears to be a 
negative association between changes in the CDS spread and the equity price of Consolidation 
Coal company. In fact, a simple calculation confirms this observation, since correlation between  
the CDS spread and the equity price of Consolidation Coal Inc is -0.49. It can be seen from the 
first and second panels in figure 1 that major changes in the equity price are reflected in the 
changes of opposite direction of the market CDS spread. Secondly, despite calibrating the model 
using only the first ten observations, the market and the model CDS spreads stay quite close and 
roughly follow the same trend through almost all five years of observation. One key difference 
between the two, however, is that the model spread appears much more volatile.  
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Figure 1: Time-series of CDS spreads, equity prices, and equity volatilities for the Consolidation Coal 
Inc 
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Next, I conduct a simulated trading exercise following the ideas laid out in section 2. For each of 
the 997 days in Consolidation Coal sample period, I check whether the market spread and the 
model spread differ by more than a threshold value. Specifically, the following conditions are 
verified 

푐 > (1 + 훼)푐   or  푐 > (1 + 훼)푐 , (7.3) 
  

where 훼 is a trading trigger. In this research 훼 = 1, 2 and 3. Recall that 푐  and 푐  are the market 
and the model spread, respectively. In the first case, a CDS position with a notional amount of $1 
and –훿  shares of the common stock are shorted. In the second case, a unit-sized CDS position 
along with –훿  shares is bought. These positions are held for a 30-day period or until 
convergence, where convergence is defined as 푐 = 푐 .  
 

Table 5: Summary statistics of holding period returns for the Consolidation Coal Inc 
휶 푵 푵ퟏ 푵ퟐ Mean Min Max Sharpe 

0.5 741 3 280 0.7% -24.1% 46.8% 0.25 
1.0 486 3 168 0.9% -24.1% 38.8% 0.24 
2.0 226 2 48 0.5% -24.1% 12.5% 0.24 

 
Table 5 presents the summary statistics on holding period returns. 훼  is a trading trigger as 
described above. 푁 is the total number of trades entered into. 푁  is the number of trades with 
drawdown exceeding 20%. 푁  is the number of trades with negative holding period returns. The 
mean, minimum and maximum of holding period returns are also presented in table 5.   
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Figure 2: Histograms of holding period returns for the Consolidation Coal Inc 
 
It is not difficult to see the overall risk of the strategy declining when the threshold for trading is 
raised. Not only does the distribution of holding period returns become seemingly tighter (Figure 
2), the fraction of trades with negative returns declines as well. The mean returns increases when 
alpha is raised from 0.5 to 1.0. However, it declines again, when alpha is further raised to 2.0. 
This decline in returns may be explained by the size of equity hedge, since larger gap between 
market and model spreads requires larger equity hedge, which might reduce overall profitability.   

7.2     Application of Merton Model 

In this section I will illustrate the general procedure of application of Merton model for the same 
Consolidation Coal Inc. First of all, the CDS spreads are computed using Merton model. 
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Merton’s model requires the following inputs: risk-free interest rate 푟, initial asset value 푉, the 
default boundary 푋, asset volatility 휎 , equity volatility 휎 , and the total debt 퐷. Specifically, I 
use 
 
 푟 = five-year constant maturity Treasury yield, 
 퐷 = total liabilities of the obligor, 
 휎 =1000-day historical equity volatility.  
 
The last parameters 휎 ,푉 are calculated using Solver and MS Excel VBA as specified in section 
5.2. The total debt of the obligor is used as a proxy of the default boundary11. Therefore, the 
output of the estimation process is asset volatility of 0.25, which is assumed constant, and asset 
value equal to $ 14,2 billion.  
 
Next, figure 3 compares the market and model CDS spreads for the Consolidation Coal Inc. 
Despite very limited opportunities to calibrate parameters of Merton model, the market and the 
model CDS spreads stay quite close and roughly follow the same trend through almost all five 
years of observation. One key difference between the two, however, is that the market spread 
appears much less volatile. The same property is observed in section figure 1 with CreditGrades 
model.  
 

 

Figure 3: Time-series of CDS spreads for the Consolidation Coal Inc 
 
Further, I use the same trading strategy described in previous section, namely formula (7.3).  
 
 

                                                
11 “Quantitative Risk Management: Concepts, Techniques and Tools”, McNeil, Frey and Embrechts (2005) 
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Table 6: Summary statistics of holding period returns for the Consolidation Coal Inc 
휶 푵 푵ퟏ 푵ퟐ Mean  Min Max Sharpe 

0.5 806 0 357 0.8% -17.2% 36.7% 0.16 
1.0 472 0 155 1.3% -17.2% 24.6% 0.24 
2.0 230 0 60 2.0% -1.9% 12.0% 0.36 

 
Table 6 presents the summary statistics on holding period returns. 훼  is a trading trigger as 
described above. 푁 is the total number of trades entered into. 푁  is the number of trades with 
drawdown exceeding 20%. 푁  is the number of trades with negative holding period returns. The 
mean, minimum and maximum of holding period returns are also presented in table 6.   
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Figure 4: Histograms of holding period returns for the Consolidation Coal Inc 
 
It is not difficult to see the overall risk of the strategy declining when the threshold for trading is 
raised. Not only does the distribution of holding period returns become seemingly tighter (Figure 
4), the fraction of trades with negative returns declines as well. The mean of returns increases 
when alpha is raised from 0.5 to 2.0. In contrast to previous application of the CreditGrades 
model, the mean of returns does not decline when alpha is raised from 1.0 to 2.0.   
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8     Model Results 

8.1     Analysis of Model Results 

In this section I replicate the previously in detail described trading algorithm for all 419 obligors 
using the CreditGrades model and Merton model. Specifically, I set an initial capital of $0.5 for 
each trade which longs or shorts the CDS position with a $1 notional amount along with its 
equity hedge and use the same trading trigger as equation (7.3).  
 
For the analysis of the capital structure arbitrage returns I split the sample into two rating sub-
categories. In these sub-samples the firms are characterized as investment grade, defined for the 
rating interval BBB- to AAA, and speculative grade, ranging from rating class D to BB+. This 
allows me to analyze lower CDS spread and lower volatility investment grade obligors 
separately from higher CDS spread and higher volatility speculative grade obligors. Supposedly, 
speculative grade trading should result in higher capital structure arbitrage returns due to higher 
volatility. However, speculative grade obligors are more likely to default, which would hurt 
capital structure arbitrage returns.  
 

 

Figure 5: Average monthly capital structure arbitrage returns over the time period 2006-2009, 
the CreditGrades model results on the left, and Merton model results on the right hand side. 
Note: the graphs show returns with trading trigger 휶 = ퟏ. 
 
In figure 5, in the graph of the CreditGrades model on the left hand side, it can be observed that 
the arbitrage strategy results in significant positive average returns, arguing with the first 
hypothesis. Although, the average returns consistently decline during the period of 2006-2008, 
but it spikes in 2009 with average monthly returns of around 15%. Interestingly, the total capital 
structure arbitrage returns of the CreditGrades model show smoothly declining pattern for the 
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period 2006-2008 despite the financial crisis and emotion shaded trading in the financial 
markets, supporting conjecture that market participants learned about the market and its 
dynamics and adjusted their trading behavior and pricing over time. However, the result of 2009 
is worth closer analysis, as the average monthly return of 15% is rather high in comparison to 
previous periods of observation.  
 
In contrast, results of the Merton model suggest that markets were efficient during the years of 
2006-2008, supporting the first hypothesis. However, it is interesting that in 2009, contrary to the 
same year result of the Creditgrades model, the Merton model produced significantly negative 
average monthly capital structure arbitrage returns.    
 

Table 7: average monthly capital structure arbitrage returns through years and rating classes 
of the CreditGrades model 
Rating Class: Low is rating B+ and lower, Intermediate is rating BB- to BBB+ and High is A- and higher.  
Investment grade includes companies of credit rating BBB- and higher, whereas speculative grade includes 
companies of BB+ and lower.  
Note that non-rated companies are included only in Total* line.  

 
alpha Rating Class 2006 2007 2008 2009 Total Sharpe 

0.5 

Low 2.0% 0.4% -9.0% 36.1% 6.8% 0.21 
Intermediate 6.0% 3.5% 0.5% 24.1% 8.2% 0.43 
High -0.3% -1.2% -0.2% 10.9% 2.1% 0.30 
Investment Grade 4.3% 1.0% 0.0% 18.7% 5.7% 0.23 
Speculative Grade 1.3% 5.3% -0.7% 26.3% 7.7% 0.40 
Total* 3.5% 1.8% -0.1% 19.5% 5.9% 0.22 

1.0 

Low 1.8% 3.0% -8.8% 17.3% 3.0% 0.16 
Intermediate 5.3% 3.9% 3.1% 20.9% 8.0% 0.45 
High 0.4% -1.0% 0.0% 6.8% 1.4% 0.26 
Investment Grade 4.1% 1.0% 1.9% 15.0% 5.3% 0.38 
Speculative Grade 0.9% 7.6% 0.1% 20.2% 6.9% 0.42 
Total* 3.2% 2.2% 1.6% 15.6% 5.5% 0.29 

2.0 

Low 0.2% 23.9% -11.5% 13.2% 6.3% 0.21 
Intermediate 6.2% 4.9% 1.7% 16.0% 7.0% 0.46 
High 1.5% 0.4% 0.1% 2.8% 1.2% 0.30 
Investment Grade 5.3% 2.1% 1.3% 10.6% 4.7% 0.15 
Speculative Grade 0.7% 12.8% -2.4% 14.9% 6.3% 0.29 
Total* 4.2% 4.1% 0.7% 11.1% 4.9% 0.18 
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Figure 6: Histograms of holding period returns of the CreditGrades 
model with alpha equal to 1.0 

 

Figure 7: Histograms of holding period returns of the Merton model 
with alpha equal to 1.0 
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Table 8: average monthly capital structure arbitrage returns through years and rating classes 
of  Merton model 
Rating Class: Low is rating B+ and lower, Intermediate is rating BB- to BBB+ and High is A- and higher.  
Investment grade includes companies of credit rating BBB- and higher, whereas speculative grade includes 
companies of BB+ and lower.  
Note that non-rated companies are included only in Total* line.  
 

alpha Rating Class 2006 2007 2008 2009 Total Sharpe 

0.5 

Low -11.1% -6.0% 3.7% -10.7% -5.9% -0.11 
Intermediate 0.3% -2.8% -0.4% -12.2% -3.6% -0.20 
High 0.2% 0.4% 3.6% -14.5% -2.3% -0.12 
Investment Grade 0.1% -1.4% 0.6% -9.2% -2.3% -0.63 
Speculative Grade -1.8% -4.1% 3.2% -29.0% -7.5% -1.09 
Total* -0.4% -2.2% 1.0% -13.3% -3.5% -0.46 

1.0 

Low -1.5% 2.4% -1.7% 5.8% 1.1% 0.03 
Intermediate 0.5% -2.1% -0.6% -6.4% -2.1% -0.09 
High 0.2% 0.2% 2.4% -15.6% -2.9% -0.12 
Investment Grade 0.3% -0.9% 0.7% -6.9% -1.6% -0.44 
Speculative Grade 0.5% -2.4% -1.1% -18.0% -5.0% -0.88 
Total* 0.2% -1.5% 0.1% -9.5% -2.5% -0.33 

2.0 

Low -1.1% 3.2% 2.5% 14.1% 4.5% 0.15 
Intermediate 1.2% -0.7% 0.4% 0.0% 0.2% 0.01 
High 0.2% -0.2% 4.2% -10.1% -1.3% -0.05 
Investment Grade 0.6% -0.7% 1.3% -2.3% -0.2% -0.01 
Speculative Grade 1.7% 0.8% 3.7% -5.0% 0.4% 0.09 
Total* 0.7% -0.7% 1.5% -3.5% -0.4% -0.03 

 
The first hypotheses does not seem to hold with the CreditGrades results. At the same time, the 
results of the Merton model suggest that the capital markets were efficient during the same 
period. The results of year 2009, however, require closer examination. Although, it was expected 
that the efficiency of capital markets decline during the period of 2007-2008, results of the 
CreditGrades model seem to reject this hypothesis. At the same time, both models show high 
average monthly returns in absolute values during year of 2009. This may be caused by model 
misspecification and/or increased inefficiency of the markets. Further, as it is seen in table 7, the 
third hypothesis is supported on average, since the capital structure arbitrage returns of 
speculative grade obligors are higher than the returns of investment grade obligors for the 
CreditGrades model for all levels of alpha. In contrast to the capital structure arbitrage returns of 
the Merton model (table 8), where riskier obligors on average show significantly worse results 
than the higher investment grade obligors.  
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The Sharpe ratios of applied strategies are difficult to interpret for the Merton model, since most 
of the ratios are negative, suggesting that riskless investment would be superior. The Sharpe 
ratios of strategies using the CreditGrades model, however, range from 0.16 to 0.46. It is 
important to note that the highest Sharpe ratios are generated for speculative grade obligors. The 
choice of trading trigger appears to be of secondary importance., however, the best Sharpe ratios 
seem to be generated with trading trigger 훼 = 1. In comparison to previous studies of Duarte et 
al. (2007) and Yu (2005), Sharpe ratios presented in this study are lower by 0.2 on average.  

8.2     Analysis of Year 2009 Results 

In this section I will closer analyze the causes of higher than normal average monthly capital 
structure arbitrage returns for both models. In order to facilitate the analysis, I have constructed 
equally weighted stock index as well as equally weighted CDS and delta indexes.  
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Figure 6: from top to bottom: average stock price, average market and model CDS spreads and 
the average delta values of the CreditGrades model and the Merton model for all obligors 
through the observation period.   
 
As it can be seen in figure 6, on average the Merton model predicts market CDS spread very 
accurately till the beginning of 2008. However, afterwards market CDS spread and CDS spread 
predicted by the Merton model diverge in value until the end of observation period, when market 
and model CDS spreads converge again. The CreditGrades model, on the other hand, seems to 
follow the market CDS spread quite accurately until the middle of 2009, when it started to 
diverge from the market CDS spread. Interestingly, while the average market CDS spread was 
heavily falling during year 2009, the CreditGrades model predicted a steady CDS spread. On the 
other hand, it looks like the market CDS spread is converging to the value predicted by the 
Merton model.  
   
The other important factor is the absolute value of model delta. Although, consistently 
decreasing, delta of both models remained quite large comparing to first couple of years of 
observation. It appears that the cause of high (in absolute value) average monthly capital 
structure arbitrage returns is over-hedging with stocks. The CreditGrades model produced a 
“buy” signal in the CDS market and, also, caused hedging by buying delta stocks in the market. 
As we can see in figure 6, such strategy on average resulted in loss on the CDS contract and gain 
on the stocks. However, due to heavy hedging, the overall value of this strategy was positive. 
The opposite is true for the Merton model during the same period, since Merton model produced 
a “sell” signal.  
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9     Robustness of the Results 
 
As in any study of trading strategies, one needs to examine the robustness of the returns to a 
variety of parameters that can influence how the strategies are implemented. Table 9 and table 10 
present average monthly capital structure arbitrage returns for the CreditGrades and the Merton 
model respectively having the CDS market bid/ask spread increased from 5 percent to 10 
percent.  
 

Table 9: Summary statistics of monthly excess returns for the CreditGrades model 
Here alpha is 1.0 and bid-ask spread is increased to 10%, the difference column indicates difference between the 
mean returns having 5% bid/ask spread and 10% bid/ask spread. 
 

Rating Class 2006 2007 2008 2009 Total Difference 
Low 1.8% 3.0% -8.8% 17.3% 3.0% 0.00% 
Intermediate 4.9% 3.9% 3.0% 20.6% 7.9% -0.17% 
High 0.4% -1.0% 0.0% 6.8% 1.4% 0.00% 
Investment Grade 3.9% 1.0% 1.9% 15.0% 5.2% -0.06% 
Speculative Grade 0.7% 7.4% 0.0% 19.2% 6.6% -0.30% 
Total 3.0% 2.2% 1.6% 15.5% 5.4% -0.10% 

 

Table 10: Summary statistics of monthly excess returns for the Merton model 
Here alpha is 1.0 and bid-ask spread is increased to 10%, the difference column indicates difference between the 
mean returns having 5% bid/ask spread and 10% bid/ask spread. 
 

Rating Class 2006 2007 2008 2009 Total Difference 
Low 2.0% 0.4% 4.9% -4.1% 0.9% -0.23% 
Intermediate 0.5% -2.1% -0.6% -6.4% -2.1% -0.01% 
High 0.2% 0.2% 2.4% -15.6% -2.9% 0.00% 
Investment Grade 0.3% -0.9% 0.7% -6.9% -1.6% 0.00% 
Speculative Grade 1.2% -2.8% 0.3% -20.1% -5.0% -0.05% 
Total 0.4% -1.5% 0.5% -9.7% -2.6% -0.10% 

 
 
As it can be seen in table 9, raising the CDS bid/ask spread to 10 percent does not eliminate the 
monthly capital structure arbitrage returns for the CreditGrades model. The mean returns, 
however, are decreased by up to 30 basis points. In the application of the Merton model (table 
10), we can observe a decrease in total mean returns by up to 23 basis points.  
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Table 11: regression of capital structure arbitrage monthly index returns on common market 
factors 
Abbreviations: Int. is intercept, Mkt-Rf is excess market return, SMB is “Small Minus Big” i.e., the return of a 
portfolio of small stocks in excess of the return on a portfolio of large stocks, HML is “High Minus Low” i.e., the 
return on a portfolio of stocks with a high book-to-market ratio in excess of the return on a portfolio of stocks with a 
low book-to-market ratio, UMD is “Up Minus Down” or momentum factor i.e., calculated as the return on a 
portfolio with an overweight of companies with the highest return and an underweight of companies with the lowest 
return.  
Note: p-value is presented below estimates. 
 

  Int. Mkt-Rf SMB HML UMD 푹ퟐ  

Merton Model 
-0.26 -0.15 -0.03 -0.09 0.07 0.78 
0.02 0.00 0.60 0.03 0.00   

CreditGrades Model 
0.13 0.00 -0.02 0.00 0.04 0.07 
0.37 0.96 0.82 1.00 0.16   

 
Table 11 presents regression results of capital structure arbitrage monthly index returns on 
common market factors. Specifically, I use the Fama-French three-factor model with additional 
momentum factor to proxy for equity market risk. Table 11 shows that there is an apparent 
relation between capital structure arbitrage monthly index returns of the Merton model and 
common market factors with exception of SMB factor. R-squared in this case is also rather high 
– 0.78. As analyzed in section 7.2, this is caused by rather high delta used for delta-hedging with 
stocks and/or model mis-specification as seen from a large distance between market and model 
CDS spreads in figure 6. Therefore, we can see results of the Merton model to be highly 
dependent on equity market factors. 
 
Capital structure arbitrage monthly index returns of the CreditGrades model, on the other hand, 
present completely different estimates. With R-squared being at only 0.07, none of the equity 
market factors is significant even at 10% level. Although, the intercept of the regression is quite 
close to the original level of the mean monthly capital structure arbitrage returns in table 7 
(alpha=1), suggesting that none of the risk factors can bid away the “alpha” of the strategy, 
however, the “alpha” itself is not statistically significantly different from zero. Therefore, one 
cannot reject hypothesis that capital markets were efficient during the observation period, which 
is in line with results of Cserna and Imbierowicz (2008) saying that “the CDS market overcame 
its inefficiency in the years 2004/2005 consistent with soaring trading volumes and the 
introduction of CDS index trading at this time”. 
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10     Conclusion  
 
This paper presents a popular trading strategy in which the arbitrageur takes advantage of the 
temporary divergence between the CDS market spreads and predicted spreads from a structural 
credit risk model. My simple implementation computes theoretical CDS spreads by calibrating 
the industry standard12 CreditGrades model as well as basic Merton model, further, compares the 
time-series of market and model CDS spreads. A CDS position is entered into whenever the 
market and model CDS spreads diverge from each other by a fixed threshold level, with an 
accompanying equity position taken out as a hedge.  
 
The results of the Merton model show that average monthly capital structure arbitrage returns are 
negative which may be caused by model mis-specification and/or calibration error. The results of 
the CreditGrades model, on the other hand, show that the capital structure arbitrage strategy 
produces significant positive average returns in the investigated period. However, the strategy 
does not produce a statistically significant “alpha”, suggesting that positive average monthly 
arbitrage returns may be caused due to the short sample period and/or survivorship bias. Very 
similar results are met if higher transaction costs are incorporated. The decline of average returns 
over time using the CreditGrades model further indicates an improving CDS market as average 
monthly arbitrage returns are diminishing.  
 
Partitioning the sample into rating intervals reveals that the arbitrage returns are much larger for 
high risk obligors which holds true for the results of both models. This result is in line with 
standard investment theories, also this adheres to the notion of risk averse investors who demand 
higher rewards for increasing risk. In addition, I find that the mean monthly capital structure 
arbitrage returns generated by the CreditGrades model cannot be explained by the well known 
equity market risk factors. 
 
This study leaves some questions to future research, especially the use of more advanced 
structural credit risk models like Leland and Toft (1996) or Zhou (2001). These models could be 
able to better capture fast paced CDS and equity market movements during the credit crisis 
starting in 2007. Moreover, another important issue to check is the average monthly arbitrage 
returns during post credit crisis period.     
  

                                                
12 According to F. Yu (2005), “How Profitable Is Capital Structure Arbitrage?” 
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