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Abstract

This paper focuses on the exposure of common stocks to inflation risk and assesses the

impact of this exposure on portfolio choice. We show that the relation between real stock

returns and inflation rates, as well as the parameter uncertainty involved with this relation, has

substantial influence on optimal asset allocations. During the 1985 – 2010 period, inflation risk

induces a typical long-term investor to allocate up to 40 percentage points less of his wealth

to stocks, as compared to a benchmark investor who believes that stocks are not exposed

to inflation risk. The benchmark investor generally overstates expected stock returns and/or

understates return volatility, resulting in too high stock allocations.

Keywords: inflation hedging, Fisher hypothesis, asset allocation, parameter uncertainty
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1 Introduction

Inflation risk is one of the primary concerns for long-term investors such as pension funds. Al-

though various financial instruments to hedge this risk have been developed over the last two

decades, a large part of a pension fund’s portfolio still consists of investments in assets that are

potentially exposed to inflation risk, such as common stocks.

There is a long tradition of studying the relation between stock returns and inflation, particu-

larly in the context of the ‘Fisher hypothesis’; see e.g. Fama and Schwert (1977), Boudoukh and

Richardson (1993), Barnes et al. (1999), and Bekaert and Wang (2010). In his classical Theory of

Interest (1930), Irving Fisher postulated that the anticipated rate of inflation is completely incor-

porated in the ex ante nominal interest rate. At the same time, he precluded a relation between the

expected real rate and expected inflation, emphasizing the independence of the real and monetary

sectors. The proposition that ex ante nominal returns contain the market’s perception of antici-

pated inflation rates can be applied to all assets. As a consequence, expected nominal returns on

any asset would move one-to-one with expected inflation.

A widely adopted view in the economic literature is that an asset is a good hedge against in-

flation if the Fisher hypothesis holds true; i.e. if the marginal effect of a unit change in inflation

on nominal stock returns (often referred to as the Fisher coefficient) is equal to unity. Empirical

studies based on monetary assets produced ambiguous results about the Fisher effect (Roll, 1972).

However, using the argument that stocks are claims to real assets, the Fisher effect was widely

believed to hold for common stocks until the early seventies (Lintner, 1973; Fama and MacBeth,

1974; Nelson, 1976). This ‘accepted dogma’ (Fama and Macbeth, 1974) was subjected to seri-

ous empirical scrutiny only after the subsequent episode of soaring inflation rates and poor stock

market performance (Jaffe and Mandelker, 1976; Nelson, 1976). Fama and Schwert (1977) trans-

lated the Fisher hypothesis into a regression framework and estimated the relation between stock

returns and proxies of expected and unexpected inflation. Contrary to other assets, such as real

estate, stock returns were found to be a poor hedge against both expected and unexpected infla-

tion for the 1953 – 1971 period in the United States. These results were confirmed for other major

stock markets by e.g. Solnik (1983) and Gultekin (1983). Instead of being an inflation hedge, stock
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holdings turned out to suffer from considerable exposure to inflation risk.

Boudoukh and Richardson (1993) partially rehabilitate the Fisher hypothesis, however. They

criticize earlier studies for using only monthly or quarterly data to test the Fisher effect. They

find evidence in favor of the Fisher effect for five-year stock returns. With a one-year investment

horizon there is some evidence for a significantly negative relation between nominal stock returns

and inflation. Solnik and Solnik (1997) extend the analysis of Boudoukh and Richardson (1993)

to countries other than the United States. The authors emphasize that the horizon effects found in

the literature do not necessarily contradict the Fisher hypothesis. If unanticipated inflation shocks

are negatively correlated with innovations in the stock return process, this effect may outweigh

the one-to-one increase in expected stock returns due to the Fisher effect in the short run. Due

to the persistent nature of the inflation process, the effect of a change in expected inflation on

expected returns will dominate in the long run, however. Using a panel data set consisting of stock

index returns and inflation rates in eight major economies, they establish a Fisher coefficient that

increases towards unity as the investment horizon gets longer. In a related study Schotman and

Schweitzer (2000) show that the sensitivity of stock returns to expected and unexpected inflation

is an important determinant of the demand for stocks in a multi-period context, along with the

persistence of inflation. They conclude that stocks act as an inflation hedge for investment horizons

exceeding fifteen years, whenever inflation persistence is high and there is at least partial feedback

between expected nominal returns and expected inflation.

Several explanations have been provided to explain the short-run and long-run inflation hedg-

ing properties of stocks. Fama (1981) argues that inflation is a proxy for real economic activity.

High inflation rates are associated to a future decrease in real economic activity. In the short run,

this results in a negative relation between inflation and stock returns. In the long-run, however,

a positive relation between inflation and stock returns is more plausible. Campbell and Shiller

(1988) demonstrate that the effect of an increase in inflation is twofold. The first effect is an in-

crease in the discount rate (resulting in lower stock returns) and the second effect is an increase

in future dividends (resulting in higher stock returns). Campbell and Shiller (1988) show that the

second effect dominates in the long run.

Although there is both theoretical and empirical evidence that stocks act as a long-term hedge
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against inflation, this evidence has certain limitations. There exists an important strand of literature

emphasizing that inflation reduces real asset returns and that inflation exacerbates credit market

frictions, adversely affecting financial markets and long-term growth. See Boyd and Smith (1998),

Huybens and Smith (1998, 1999), and Schreft and Smith (1997, 1998). Furthermore, the Fama

and Schwert (1977) approach suffers from a serious econometric problem. This has been already

noted by Bodie (1976) and Schotman and Schweizer (2000), who underline the different time

series properties of stock returns and inflation, the former being much more volatile than the latter.

Consequently, it may be hard to accurately estimate a model relating asset returns to inflation,

particularly for short samples.

Where many studies view stocks as a potential hedge against the inflation risk in a portfolio

consisting of nominally risk-free bonds, we acknowledge the existence of inflation-linked bonds in

developed and emerging economies. Nowadays inflation risk stemming from stock holdings seems

a bigger concern than inflation risk associated with fixed-income securities. Therefore, rather than

considering stocks as a potential hedge against inflation risk, we focus on the inflation risk expo-

sure of long-term investors that can be attributed to their stock holdings. We assess the influence of

this risk on portfolio selection. To do so, we consider an investor who divides his wealth between

the S&P 500 Total Return Index and inflation-linked bonds paying a risk-free real rate. He sets his

portfolio weights in such a way that he maximizes the expected utility associated to his real wealth

at the end of his investment horizon. An important assumption the investor has to make is about

the relation between real stock returns and inflation. He can a priori assume that real returns are

independent of expected or unexpected inflation (or both), but he can also remain more agnostic

by allowing for feedback between real returns and inflation. The investor who assumes that real

stock returns are independent of inflation lives in a world free of inflation risk, whereas the ag-

nostic investor is exposed to inflation risk via his stock holdings. These different beliefs are likely

to result in different portfolio outcomes. The goal of this study is to quantify and to explain the

difference in stock allocations between the agnostic investor and the investors who make strong

a priori assumptions about the relation between real stocks returns and inflation. To deal with the

aforementioned econometric problems, we adopt a Bayesian approach and compute optimal asset

allocations that account for parameter uncertainty.
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The setup of the remainder of this paper is as follows. A brief literature review is provided in

Section 2. The investment problem of the two investors that we consider is described in Section 3.

Section 4 explains the Bayesian approach to determine optimal portfolio weights in the presence of

parameter uncertainty. The data used for the empirical part of this paper are described in Section 5.

Section 6 contains the empirical results. Section 7 presents an extension of our analysis by taking

into account the dividend yield. Finally, Section 8 concludes.

2 Literature review

Since long inflation hedging has been a topic of interest to both academics and practitioners. The

goal of this section is not to provide a complete overview of the literature on this subject, but

to review previous contributions that are relevant in the context of this paper. In particular, we

consider several studies that relate inflation hedging to portfolio choice.

Many studies related to portfolio choice focus on nominal asset returns, thereby ignoring the

role of inflation. In particular, the CAPM model assumes that assets having the same correlation

with the market portfolio have the same required return. According to Elton et al. (1983), the

CAPM model therefore fails to capture the impact of inflation on the required rate of return of an

asset. Similar to Boonekamp (1978), the authors argue that investors subject to inflation risk should

be concerned with real asset returns. Additionally, Boonekamp (1978) shows that if inflation is

uncertain, an investor will generally use the hedging properties of an asset to determine the optimal

portfolio composition. Manaster (1979) and Sercu (1981) study the relation between real and

nominal efficient sets. They show that a nominally efficient portfolio is equal to a real efficient

portfolio plus an additional ‘hedging portfolio’. Sercu (1981) shows that only for an investor with

logarithmic utility real and nominal efficient portfolios coincide.

Also Bodie (1976) focuses on real asset returns. He uses a real mean-variance framework to

assess the hedging potential of stocks and considers the global minimum variance portfolio con-

sisting of stocks and nominally risk-free bonds, as well as a portfolio consisting of nominally

risk-free bonds only. He defines the hedging potential of stocks as the difference in real return

variance between the two portfolios. He defines the associated costs of hedging as the difference
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in expected real returns between the two portfolios. Both the hedging potential and the cost of

hedging depend on the properties of real asset returns and inflation rates. In the empirical part of

his study, Bodie (1976) shows that a short position in stocks can be used to hedge against inflation.

Similar to Bodie (1976), Schotman and Schweitzer (2000) adopt the mean-variance framework

in real terms. They focus on the demand for an asset arising from its hedging potential, i.e. from

its correlation with inflation. Under certain assumptions this ‘hedge ratio’ is shown to depend on

three main parameters: inflation persistence, the Fisher coefficient and the sensitivity of nominal

stock returns to unexpected inflation. Schotman and Schweizer (2000) conclude that inflation per-

sistence is the fundamental parameter determining the hedging capacity of stocks in the long-run.

In the empirical part of their study they find that stocks are a bad hedge against inflation in the

short-run, but a good hedge in the long-run. Hoevenaars et al. (2008) analyze the asset allocation

problem of an investor whose liabilities are subject to real interest rate and inflation risk at vari-

ous time horizons. They consider a broad set of assets, including T-Bills, bonds, credits, stocks,

commodities, hedge funds, and real estate. The hedging capacity of an asset is measured by means

of the correlation between nominal asset returns and the rate of inflation at various investment

horizons. They conclude that T-bills are the best hedge against inflation at all horizons. Bonds,

credits, stocks and listed real estate are a good hedge in long-run, but perform poorly in short-run.

Commodities are good hedge in both the short-run and the long-run. Hedge funds are partial hedge

in short-run, but a good hedge in long-run.

All of the above studies have in common that they view stocks as a potential hedge against

inflation risk and propose a measure to assess the hedging capacity of stocks. Moreover, they all

ignore parameter uncertainty; in particular the large uncertainty bounds involved with the impact

of inflation on stock returns. In recent years the stock return predictability literature has developed

methods that are capable of dealing with the problem of parameter uncertainty; see for example

Barberis (2000). In these studies, the uncertainty surrounding parameter estimates is explicitly

taken into account in the investor’s decision problem, thus allowing for the computation of opti-

mal asset allocations in the presence of parameter uncertainty. Using insights from this field, the

present study aims to shed light on the portfolio implications of the relation between real stock

returns and inflation. Instead of viewing stocks as a potential hedge against inflation risk, we focus
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on the inflation risk exposure associated to stock holdings and its consequences for asset alloca-

tion.

3 Theoretical framework

Our starting point is the pure asset allocation problem studied by, amongst others, Barberis (2000),

Ang and Bekaert (2002) and Guidolin and Timmerman (2007). We consider two investors who

both have initial nominal wealth fWt D 1 at time t , when the price level equals Pt D 1. Each

investor seeks to maximize utility over real-term wealth WtCk D fWtCk=PtCk at time t C k

(where k denotes e.g. months). We assume power utility over real term wealth; that is

u.WtCk/ D
W

1��

tCk

1 � �
; (1)

where � is the coefficient of relative risk aversion. Power utility (also referred to as constant

relative risk aversion utility) is a widely applied utility function, with encompasses both quadratic

and logarithmic utility functions as special cases (Wakker, 2008). The investor is assumed to follow

a k-period buy-and-hold strategy. At time t he decides about the proportion of wealth �t he wishes

to allocate to a stock index, the other investment option being a riskless inflation-linked bond with

maturity k. Although the inflation-linked bond provides a hedge against inflation, its real return is

usually low. To benefit from the real equity premium, it may be attractive for the investor to extend

his portfolio with an investment in a stock index. The utility of terminal real wealth WtCk can be

written in terms of real stock returns as

u.WtCk/ D

�
� exp.rt .k// C .1 � �/ exp.rf;t .k//

�1��

1 � �
(2)

where rf;t .k/ is the continuously compounded k-period risk-free real rate and rt .k/ D
Pk

sD1 rtCs

the k-period logarithmic real stock return, which boils down to the sum of one-period log real

returns.

It is our goal to determine the impact of inflation risk on the investor’s optimal choice. In the

seminal work of Fama and Schwert (1977) the relation between asset returns and inflation has
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been studied using linear regressions of the form

RtC1 D � C ˇIEt Œ�tC1� C 

�
�tC1 � IEt Œ�tC1�

�
C "tC1; (3)

where RtC1 denotes nominal asset returns from time t to t C 1, IEt Œ�tC1� expected inflation, and

�tC1 � IEt Œ�tC1� unexpected inflation. An asset is called a complete hedge against inflation if

ˇ D 
 D 1. In this case real returns are uncorrelated with inflation and nominal asset returns

move one-to-one with total inflation. This situation corresponds to the idea that the price of a

stock, which ultimately represents a claim on real assets, should not be affected by inflation. An-

other possibility that has received considerable attention in the literature is that stock returns are

affected by unexpected inflation only, that is ˇ D 1 but 
 6D 1. This application of the Fisher

(1930) hypothesis to stock returns has been studied empirically by, amongst others, Boudoukh

and Richardson (1993) and Solnik and Solnik (1997). Fama and Schwert (1977) call such an asset

a complete hedge against expected inflation.

Relating to this classical framework, we assume that our investor uses the following stylized

reduced-form vector autoregressive (VAR) model to capture the dynamics between one-period real

stock returns (rtC1) and one-period expected (�e
tC1

) inflation and unexpected inflation (�u
tC1

):

0BBBB@
rtC1

�e
tC1

�u
tC1

1CCCCA D

0BBBB@
�1

�2

0

1CCCCAC

0BBBB@
0 ˇ1 0

0 ˇ2 0

0 0 0

1CCCCA
0BBBB@

rt

�e
t

�u
t

1CCCCAC

0BBBB@
"1;tC1

"2;tC1

"3;tC1

1CCCCA ; (4)

where ."1;t ; "2;t ; "3;t / is a series of independent multivariate normally distributed disturbances,

with mean zero and covariance matrix

Cov ."1;t ; "2;t ; "3;t / D † D

0BBBB@
�2

1
�12 �13

�12 �2
2

�23

�13 �23 �3
3

1CCCCA : (5)

The variables �e
tC1

D IEt Œ�tC1� and �u
tC1

D �tC1 � IEt Œ�tC1� in Equation (4) are (proxies of)

expected and unexpected inflation, respectively. The first equation in Model (4) directly relates
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real stock returns to expected inflation via the Fisher coefficient ˇ1. The correlation between "1;t

and "1;3 (say �13) captures the influence of unexpected inflation on innovations in stock returns.

Additionally, the VAR model allows for correlation between innovations in real stock returns and

shocks in expected inflation via �12. The second equation specifies expected inflation as an AR(1)-

process. Finally, in the third equation unexpected inflation is assumed to be a white noise process

with variance �2
3

. The main difference between Model (4) and existing models in the literature

(see e.g. Schotman and Schweitzer, 2000) is that we assume that expected inflation, rather than

inflation itself, follows an AR(1)-process. This specification is adopted mainly for the sake of

obtaining a more accurate model of expected inflation, as suggested by Ang et al. (2007).

3.1 Investor beliefs

In our subsequent analysis we quantify the impact of inflation risk on asset allocation by solving

the investor’s optimization problem for three different sets of beliefs about the relation between

real stock returns and inflation in the model of Equation (4). These beliefs correspond to differ-

ent definitions of inflation hedge, as proposed by Fama and Schwert (1977). First, we solve the

problem for a benchmark investor who believes that stock returns act as a complete hedge against

inflation, meaning that real stock returns are uncorrelated with expected and unexpected inflation

(i.e. ˇ1 D 0, �12 D 0 and �13 D 0). According to the benchmark investor, real stock returns

follow the iid process

rtC1 D �1 C "tC1; (6)

where ."t / is a series of independent normally distributed disturbances with mean zero and vari-

ance �2, uncorrelated with shocks in expected and unexpected inflation. An investor who believes

that real stocks returns satisfy Equation (6) is not exposed to any inflation risk, thus forming a nat-

ural benchmark. Second, we consider the optimal asset allocation of a ‘Fisherian’ investor. This

investor rules out a relation between real stock returns and expected inflation by setting ˇ1 D 0,

but he does allow the innovations in stock returns to be correlated with shocks in expected and

unexpected inflation (�12 6D 0; �13 6D 0). For this investor, stocks are a complete hedge against
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expected inflation, but not against unexpected inflation. Finally, we consider an ‘agnostic’ investor

who bases his beliefs on the estimated VAR model of Equation (4), without imposing any prior

restrictions. The difference in optimal stock allocations between the benchmark and the agnostic

investor is interpreted as a measure for the exposure of stocks to inflation risk. This definition is

motivated by the fact that the portfolio allocations of the two investors will be the same in a world

without such risk.

3.2 Horizon effects

The inflation hedging literature has devoted considerable attention to horizon effects in the return-

inflation relation; see e.g. Boudoukh and Richardson (1993), Solnik and Solnik (1997) and Schot-

man and Schweitzer (2000).

To gain insight into the risk-return trade-off in relation to the investment horizon, it is useful to

derive the (conditional) mean and variance of the real stock returns in the agnostic investor’s VAR

model. Standard VAR calculations yield

IEt Œrt .k/� D k�1 C ˇ1ŒA.ˇ2; k/�e
t C B.ˇ2; k/�2�; (7)

Var t Œrt .k/� D k�2
1 C 2B.ˇ2; k/ˇ1�12 C C.ˇ2; k/ˇ2

1�2
2 : (8)

Here

A.ˇ2; k/ D

kX
iD1

ˇi�1
2 ; B.ˇ2; k/ D

kX
iD1

i�1X
jD1

ˇ
j�1
2

; C.ˇ2; k/ D

kX
iD1

� i�1X
jD1

ˇ
j�1
2

�2
: (9)

In Appendix A we show that, under certain conditions, the optimal share of wealth invested in the

stock by a power utility investor is an increasing function of the expected real stock return and

a decreasing function of the variance of real stock returns. The benchmark investor believes that

real returns are iid. Equation (A.8) makes clear that there are no horizon effects for this investor,

as both the mean and the variance grow linearly with the investment horizon.

Unless ˇ1 D 0, the real value of the agnostic investor’s investment at t C k will depend

on the evolution of the inflation process, which induces horizon effects. From Equations (7) it

becomes clear that the initial level of expected inflation affects the agnostic investor’s optimal
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stock holdings. With ˇ1 < 0, high (low) initial expected inflation predicts low (high) expected

returns and thus low (high) future stock returns, decreasing (increasing) the invested share in

stocks. More formally, for the agnostic investor the conditional mean in Equation (7) is lower

than kIEt Œrt .1/� D k.�1 C ˇ1�e
t / for �e

t > IEŒ�t � D �2=.1 � ˇ2/.

Predictability of stock returns from inflation rates may give rise to negative autocorrelation

in stock returns. With ˇ1�12 sufficiently negative and �12 < 0, a positive shock in stock returns

generally coincides with a contemporaneous negative shock in expected inflation. Since ˇ1 > 0,

the negative inflationary shock will decrease future stock returns. If the persistence in the inflation

process is high, stocks will remain low until inflation rates have reached normal values again.

Hence, the initial increase in stock returns is followed by a decrease, resulting in mean reversion.

A similar mean reversion effect may occur for ˇ1 < 0 and �12 > 0. In both cases the negative

autocorrelation in stock returns causes the k-period return to be lower than k�2
1

.

If the conditional variance of the k-period return is lower than k�2
1

, the VAR investor considers

stocks to be less risky in the long run. Consequently, he will allocate more wealth to stocks at

longer investment horizons. The conditional variance in Equation (8) is lower than kVar Œrt .1/� D

k�2
1

for ˇ1�12 sufficiently negative. With ˇ1�12 not negative enough, the conditional variance

may exceed k�1. In this case the VAR investor considers stocks to be more risky in the long run,

implying that he will allocate less wealth to stocks at longer investment horizons.

4 Bayesian approach

As emphasized in the introduction, accurate parameter estimates for the return equation of Model (4)

are generally difficult to obtain. In particular, estimates for ˇ1 are usually characterized by large

standard errors. This is due to the fact that, at short horizons, the time series properties of asset

returns, which are highly volatile, differ considerably from those of the inflation process, which

tends to be slowly moving and persistent. Nevertheless, it has been demonstrated in the asset allo-

cation literature that a statistically significant relation in this type of regressions is not a necessary

condition for economically significant results (see e.g. Kandel and Stambaugh, 1996). Barberis

(2000) sketches three alternative ways to deal with return regressions that are characterized by low
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significance levels. The first option is to assume that insignificant coefficients are equal to zero.

The second option is to ignore the considerable uncertainty in the estimated coefficients and to

treat them as if they were exactly known. The third and preferred option is to account for parame-

ter uncertainty. The latter option can be implemented by adopting a Bayesian approach for solving

the investor’s optimization problem as discussed in Section 3. Suppose that at time t D T , the

investor estimates the parameters of Equation (4) using all available information about real returns

and inflation. The estimated model parameters O� and the information set IT determine the con-

ditional k-period return distribution with density function p.rT .k/jIT ; O�/. For an investor who

treats the estimated parameters as fixed, the optimization problem boils down to

ET

�
u.WT Ck/

�
D max

�

Z
u.WT Ck/p.rT .k/jIT ;b�/drT .k/: (10)

Instead of using fixed parameter values, the Bayesian approach applies a posterior distribution

p.� jIT / to summarize the uncertainty about the parameters given the information set IT . This

posterior distribution is used to weigh the conditional return distributions p.rT .k/jIT ; �/ in an

objective function of the form

max
�

Z Z
u.WT Ck/p.rT .k/jIT ; �/p.� jIT /drT .k/d�: (11)

This integral can be evaluated by means of simulation. A large number, say N , of end-of-period

returns rT .k/ is simulated by repeatedly drawing a set of model parameters from the posterior

distribution, subsequently drawing the corresponding return value from the conditional distribution

p.rT .k/jIT ; �/. The corresponding utility levels are then averaged over the N outcomes and the

optimal value of � is obtained using a numerical optimization routine. The details of this procedure

are explained in the following two subsections.

4.1 Benchmark investor

The simple iid model of our benchmark investor involves parameter uncertainty about the mean

and variance of stock returns; see Equation (6). Assuming normality of the error term "t , we can

apply conventional methods (Zellner, 1971; Barberis, 2000) to obtain the posterior distribution
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p.�; �2 j IT /. Using an uninformative prior p.�; �2/ / 1=�2, we first sample a value of �2

from an inverse gamma distribution with parameters .T � 1/=2 and .1=2/
PT

tD1.rt � r/2. Subse-

quently, the corresponding value of � can be sampled from a normal distribution with parameters r

and �2=T . For each drawn pair of parameters .�; �2/, the corresponding conditional k-period real

stock return, as seen from the perspective of the benchmark investor, can be sampled from a normal

distribution with mean k� and variance k�2. By repeating this procedure N times, we can approx-

imate the posterior distribution p.�; �2jIT /. This yields a sample rT .k/.1/; rT .k/.2/ : : : rT .k/.N /

from the predictive distribution of k-period returns. The integral in Equation (11) is approximated

by

1

N

NX
iD1

u
�
WT Ck.rT .k/.i//

�
: (12)

4.2 Agnostic investor

In contrast to the benchmark investor, the Fisherian and agnostic investors take into account the

relation between real returns and inflation and estimate the VAR model of Equation (4). A recent

overview of Bayesian estimation methods for such models is provided by Koop and Korobilis

(2009). By defining

yt D

0BBBB@
rtC1

�e
tC1

�u
tC1

1CCCCA ; Zt D

0BBBB@
1 �e

t 0 0

0 0 1 �e
t

0 0 0 0

1CCCCA ; � D

0BBBBBBB@

�1

ˇ1

�2

ˇ2

1CCCCCCCA
: (13)

We can write the agnostic investor’s VAR model as yt D Zt� C "t , where the disturbance vector

"t D ."1;t ; "2;t ; "3;t / is assumed to be independent multivariate normally distributed, with mean

zero and covariance matrix †. Stacking the observations for all time periods, we write y D Z� C

". Here y and " are .3k � 1/ vectors and Z is a .3k � 4/ matrix. With this setup we can use

an uninformative independent normal-Wishart prior and conditional posterior distributions p.� j
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y; †�1/ � N.�; V � / and p.†�1 j y; �/ � W . NS�1; v/. Here

V � D

 
TX

tD1

Z0
t†

�1Zt

!�1

; � D V �

TX
tD1

Z0
t†

�1yt I (14)

with

v D k; S D

TX
tD1

.yt � Zt�/.yt � Zt�/0: (15)

A Gibbs sampling algorithm is then used to draw sequentially from p.� j y; †�1/ and p.†�1 j

y; �/. We then exploit the fact that given parameters .�; †/ the distribution of the k-period return

is normal to obtain a sample from the predictive distribution r
.1/
T

; : : : ; r
.N /
T

, which is then used in

Equation (12) to obtain expected utility for different stock allocations �t .

For the Fisherian investor, who believes that stocks are a hedge against expected but not against

unexpected inflation, we adopt an approach similar to the one outlined here. We estimate the VAR

model of Equation (4), while imposing the restriction ˇ1 D 0. We also impose this restrictions on

the matrix Zt in Equation (13).

5 Data

To obtain optimal portfolios using the methods discussed in Section 4, we need data on real stock

returns, (proxies of) expected and unexpected inflation and a risk-free real rate. We focus on the

United States and take the S&P 500 Total Return Index as our stock index. We use the data from

the Survey of Professional Forecasters as a proxy for expected inflation and we also take realized

inflation from this source.1 Together, this yields a proxy for unexpected inflation. Furthermore, we

use total inflation to convert nominal stock returns to real returns. For the risk-free real rate we use

the real yield curve as provided by the U.S. Department of the Treasury, with maturities equal to

1From 1991 onwards the Survey of Professional Forecasters contains real-time data about the realized inflation rate,
which are subject to subsequent revisions. We do not make use of this additional data and simply use the ‘final’ value
in our calculations. Our main reason for doing so is that the real-time data is not available for the 1985 – 1991 period,
which is part of our sample period. The realized inflation rates available in the Survey of Professional Forecasters can
be derived from the CPI series named ‘USCONPRCE’ taken from Thomson Reuters Datastream, corresponding to U.S.
all urban seasonally adjusted CPI, provided by the Bureau of Labor Statistics.
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five, seven and ten years.2

5.1 Sample period, data frequency and risk aversion

Although the economic literature has shown that it is reasonable to model inflation as a mean-

reverting process, both the average level of inflation and the volatility of the inflation process

differ considerably over subperiods. The differences between the Great Moderation, starting in

the mid-1980’s, and the previous inflationary period are particularly large (see Stock and Watson,

2005). To avoid any structural breaks, our sample period starts in the first quarter of 1985 and runs

until the first quarter of 2010. In previous studies various data frequencies have been used. Fama

and Schwert (1977) analyze monthly, quarterly and semi-annual data. Boudoukh and Richard-

son (1993) and Bekaert and Wang (2010) estimate long-term models using one-year to five-year

(overlapping) stock returns. Given our relatively short sample period, we opt for quarterly (non-

overlapping) data. The final input required for estimating our model is the coefficient of relative

risk aversion �. In a recent review article, Meyer and Meyer (2005) compare and synchronize the

empirical evidence obtained thus far in the literature. Based on studies by Friend and Blume (1975)

and Blake (1996), they report risk aversion coefficients for wealth outcome variables between 2

and 5. In line with Guidolin and Timmermann (2007), we use a risk aversion coefficient � D 5 for

our main analysis and provide additional results for a wide range of other values as a robustness

check.

5.2 Expected inflation and stock index returns

In a recent study, Ang et al. (2007) show that surveys provide the best out-of-sample inflation fore-

casts. We use the one-quarter ahead inflation forecasts as available from the Survey of Professional

Forecasters as a proxy for expected inflation. The deadline for forecast submission is typically in

the second month of each quarter.3 Forecasters are asked to predict the average quarter-to-quarter

annualized inflation rate. To match the inflation forecasts with the appropriate stock returns, we

observe that during our sample period the average quarterly inflation rate is highly correlated with

2See http://www.ustreas.gov/offices/domestic-finance/debt-management/interest-rate/real yield historical.shtml.
3The deadline was generally the third week of the second month of the quarter during the period 1990 – 1998, the

end of the second week in the period 1999 – 2004, and the middle or the start of the second week thereafter.
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the inflation rate obtained from dividing the mid-quarter CPI levels (the correlation during our

sample period equals 0.98). Therefore, we associate to each quarterly inflation forecast the return

on the stock index from the 15th of the second month of the quarter until the 15th of the second

month in the next quarter.4 As noticed by Ang et al. (2007), expectations of simple inflation rates

differ from expectations of continuously compounded rates by Jensen’s inequality term. Since this

effect will generally be of little influence, we treat the forecasts of the simple rate inflation rate as

forecasts of the continuously compounded inflation rates. Unexpected inflation rates are obtained

by subtracting expected inflation from realized inflation rates.

5.3 Sample statistics

During our sample period the average quarterly real returns on the S&P 500 Total Return Index

equals 1.7%, with standard deviation 7.8%; see Table 1. The inflation rate has a quarterly average

value of 0.73%, with a standard error equal to 0.57%. Forecasted quarterly inflation, our proxy for

expected inflation, equals on average 0.73% with standard error 0.24%. The difference between

realized and forecasted inflation, our proxy for unexpected inflation, is on average 0.00% with

standard deviation 0.48%. The risk-free real rate depends on the starting date and the maturity.

Table 3 displays the real rate for various starting dates (the 15th of February of 2003 up to 2010)

during our sample period and maturities of five, seven and ten years. For example, at the end date

of our sample, the 15th of February 2010, the quarterly real yields equal 0.01%, 0.22% and 0.36%

for maturities of five, seven and ten years, respectively.

Figure 1 displays quarterly stock index returns, together with expected and unexpected infla-

tion rates over time. The inference problems mentioned in Section 1 become apparent immediately,

as the return series is very volatile in comparison to the slowly moving processes of expected and

unexpected inflation.

4Hence, the first quarter of the year starts on the 15th of February and runs until the 15th of May.
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6 Empirical analysis

In this section we present the posterior distributions of the model parameters of the benchmark,

agnostic and Fisherian investors. We discuss the estimation results and relate them to existing

studies in the inflation hedging literature. Subsequently, we move on to the discussion of the opti-

mal stock holdings of the three investors. The comparison of their optimal asset allocations allows

us to quantify the impact of inflation risk on portfolio choice and to assess the relation between

inflation risk and the investment horizon.

6.1 Setup

We draw samples of size N D 1; 000; 000 from the posterior parameter distributions correspond-

ing to the models of Equations (4) and (6). We also estimate a restricted version of Equation (4),

corresponding to a Fisherian investor who precludes a relation between real stock returns and ex-

pected inflation (ˇ1 D 0), but who does allow the innovations in stock returns to be correlated

with shocks in expected and unexpected inflation (�12 6D 0; �13 6D 0). The means and standard

deviations of the parameters of the three posterior distributions are displayed in Table 2. To assess

parameter stability and to illustrate the structural break in the data in the year 2009, we consider

different end dates for our sample period. The end dates run run from the first quarter of 2003 until

the first quarter of 2010.

6.2 Posterior distributions

We first consider the benchmark investor. We see that the expected quarterly real return is around

2% for the samples ending in 2003 – 2007, after which it decreases sharply. This decrease is

accompanied by a considerable increase in real return volatility.

Turning to the other two investors, our main interest goes to the parameters ˇ1 (the Fisher coef-

ficient), �12 and �13. For all samples that end before 2009, the posterior means and standard errors

of the model coefficient are fairly constant over time. In particular, the signs of ˇ1 (positive), �12

(negative), �13 (negative), and �23 (positive) are the same, regardless of the sample period. Hence,

expected inflation positively affects expected stock returns, but return innovations are negatively
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correlated with unexpected inflation (�13 < 0). Furthermore, return innovations are negatively

correlated with unexpected changes in expected inflation (�12 < 0) and changes in unexpected

inflation are positively correlated with unexpected changes in expected inflation (�23 > 0).

Interestingly, the relationship between stock returns and unexpected inflation changes consid-

erably after 2008. With the end date of the sample period set to either 2009 or 2010, the signs

of �12 and �13 turn out positive, but with relatively large standard errors. This change of signs

is likely to be caused by the financial crisis. The stock market collapse was accompanied by a

sudden, unexpected decrease of the inflation rate.

While the negative correlation between stock returns and unexpected inflation is in line with

previous literature, this is not the case for the positive sign relation between inflationary expec-

tations and expected stock returns (see e.g. Bekaert and Wang, 2010). We contribute this to our

sample period that is restricted to the Great Moderation. Several studies show that sustained pe-

riods of high inflation (and high expected inflation) can adversely affect real activity and lower

stock returns; see e.g. Barnes et al. (1999). If a period of stagflation is included in the sample, it

is likely that this effect will be captured. In a relatively stable inflationary environment, however,

high expected inflation may reflect positive demand shocks, leading to higher company profits and

stock returns.

Nevertheless, the sign of ˇ1 requires careful interpretation. The large standard deviations in

Table 2 illustrate the magnitude of the parameter uncertainty problem. For example, with the end

year set to 2003, the posterior mean of the intercept in Equation (6) equals 0.020, while its posterior

standard deviation is more than three times as large. Similarly, the standard deviation of the �1-

parameter is twice as large as its posterior mean in the VAR model of Equation (4). Regardless of

the end date of the sample, the posterior mean of ˇ1 is positive, but the corresponding standard

deviation is very large. In case of a classical VAR analysis, one should therefore seriously start

questioning the usefulness of Equation (4).

As noticed in Section 4, the parameters ˇ1, �12 and �13 can be used to test the Fisher hy-

pothesis in the traditional regression framework of Fama and Schwert (1977).5 During all sample

periods the posterior mean of ˇ1 is not significantly different from zero. Hence, the approach of the
5Throughout, we determine the significance of a parameter in the Bayesian way, by looking at the posterior proba-

bility, which is the Bayesian equivalent of the p-value.
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benchmark investor, who assumes ˇ1 D 0, does not seem unreasonable. Up to 2009, the posterior

mean of �13 is significantly negative, implying that stocks do not act as a complete hedge against

unexpected inflation. As of 2009, �12 and �13 are not significantly different from zero anymore,

and it is reasonable for the benchmark investor to assume that stocks are a complete hedge against

both expected and unexpected inflation, in which case real stock returns are iid.6

6.3 Portfolio implications

We obtain optimal stock allocations for the period following the last day of our sample period,

while assuming that stock returns and inflation rates continue to behave as during our sample

period. As mentioned in Section 3.2, the initial level of expected inflation affects the optimal allo-

cation to stocks for the agnostic investor via ˇ1 > 0. We initially abstract from this effect by setting

the initial inflation rate equal to its long-term average value, so that it has no predictive power. We

first consider the traditional approach of calculating optimal stock allocations and ignore parameter

uncertainty. Table 4 displays the optimal stock holdings for our benchmark investor; see the col-

umn captioned ‘benchmark (no PU)’. Portfolio weights are also provided for a Fisherian investor

who believes that stocks are a complete hedge against expected inflation (ˇ1 D 0), but not against

unexpected inflation (�13 6D 0); see the column captioned ‘Fisher (no PU)’ in Table 4. Finally,

Table 4 also reports the stock holdings for the investor who is agnostic about the relation between

real returns and expected and unexpected inflation (‘VAR (no PU)’). For all three investors we

report the optimal stock allocations for different sample periods and investment horizons equal to

five, seven and ten years.

6.3.1 Benchmark investor

For a benchmark investor who ignores parameter uncertainty the allocation to stocks decreases

with the investment horizon. As shown by Barberis (2000), there are usually no horizon effects for

such an investor, but this only holds if the real risk-free rate does not change with the maturity of

the inflation-linked bond. As can be seen from Table 3, the risk-free rate increases with the matu-
6An important issue to address is the possibility of a unit root in the autoregressive model for expected inflation.

Fortunately, Sims et al. (1990) explain that unit roots are not a problem in a Bayesian setting.
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rity. Consequently, our inflation-linked bond becomes a more attractive investment opportunity in

the long run, which is reflected in the decreasing share of stocks at longer investment horizons.

In Table 4 we observe certain differences in the benchmark investor’s optimal stock alloca-

tions across sample periods. These differences are due to changes in the model parameters across

sample periods, as well as to changes in the risk-free real rate over time. The changes in the model

parameters result in changes in the mean and variance of stock index returns, affecting optimal

portfolio holdings.

6.3.2 Agnostic investor

In addition to the term structure of real interest rates, another factor determines the existence and

magnitude of horizon effects for the VAR investor. This factor is the predictability of stock returns

on the basis of inflation. With ˇ1 > 0 and ˇ1�12 sufficiently negative, we would observe mean

reversion in stock prices, making stocks less risky at longer investment horizons. With exception

of the sample periods running until 2006 and 2007, the agnostic investor’s stock allocations are

decreasing in the investment horizon, despite the fact that ˇ1�12 < 0. Even with a constant

term structure the stock allocations decrease with the investment horizon, which means that stock

returns are not mean-reverting. As of 2009, the correlation between innovations in stock returns

and shocks in expected inflation is positive (�12 > 0). In combination with ˇ1 > 0, this means

that stock returns are mean averting, which makes them riskier at longer investment horizons.

The differences in the agnostic investor’s optimal stock allocations across sample periods are

due to changes in the risk-free real rate and the initial level of expected inflation. They are also

caused by changes in the model parameters featuring Equation (4). Changes in the model param-

eters result in changes in the mean and variance of the stock index returns, leading to changes in

optimal portfolio weights.

The differences in optimal portfolio holdings between the benchmark and the agnostic investor

are substantial. Table 4 shows that the difference in stock allocations is particularly large for the

samples ending in 2009 and 2010. For these samples the variance of stock returns is relatively high

according to the agnostic investor’s VAR model, due to the mean aversion in stock returns implied

by �12 > 0 and ˇ1 > 0. This causes the agnostic investor’s optimal stock allocation relatively low.
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Since the risk-free real rate may depend on the level of expected inflation, it is more realistic

to set the initial value of expected inflation equal to its value at the end date of our sample period

(which coincides with the start date of our simulations). This procedure ensures that we take a

realistic combination of the risk-free real rate and the level of expected inflation. We notice that

the initial level of expected inflation only matters for the agnostic investor; in the VAR model of

Equation (4) the initial value of expected inflation affects the eventual portfolio holdings. For all

sample periods the initial level of expected inflation is below its long-term average value. Hence,

the agnostic investor starts with a relatively low level of expected inflation, yielding relatively low

expected real returns due to ˇ1 > 0. The agnostic investor faces an additional horizon effect in

addition to the impact of the term structure of real interest rates and potential predictability effects.

If the highly persistent process of expected inflation is below its long-term average value, it will

slowly increase over time. Due to ˇ1 > 0, expected stock returns will also increase over time.

This makes stocks a more attractive investment in the long run. Clearly, such a horizon effect is

not present in the benchmark investor’s stock holdings. Table 5 displays the allocation to stocks

for the agnostic investor based on the more realistic initial levels of expected inflation (see the

columns captioned ‘no PU’). The differences in stock allocation between the benchmark and the

agnostic investor are even larger than before and amount to as much as 40 percentage points for

the sample ending in 2009 and a five-year investment horizon.

6.3.3 Fisherian investor

We now turn to our Fisherian investor, who believes that stocks are a complete hedge against

expected, but not against unexpected inflation. Table 4 makes clear that his stock allocations do

not differ much from those of the benchmark investor. This is due to the fact that the impact of

unexpected inflation on real returns only occurs via the error term in the restricted version of the

model in Equation (4), and not via the Fisher coefficient ˇ1. It is exactly the Fisher coefficient

that plays an crucial role in the existence of predictability and mean reversion effects and the

determination of the conditional mean and variance of real returns (see Equations (7) and (8)).
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6.3.4 Parameter uncertainty

Until sofar we discussed optimal portfolio weights that did not yet account for parameter un-

certainty. Table 4 also reports the optimal stock holdings based on the Bayesian approach. With

parameter uncertainty, all three investor face an additional horizon effect. From the perspective

of the benchmark investor who incorporates parameter uncertainty, returns are no longer indepen-

dent but positively correlated. If returns are high in a given period, it is likely that the state of the

world is one with a high realization of the parameter �1 in Equation (6), which implies that the

returns will be high in subsequent periods as well. This positive correlation makes the variance of

the multi-period real returns grow faster than linearly over time. Since parameter uncertainty in-

creases with the investment horizon, it induces considerable horizon effects. As can be seen from

Table 4, based on the sample ending in 2004 the benchmark investor allocates 17 percentage points

less to stocks with a ten-year investment horizon, relative to a five-year investment horizon. For the

agnostic investor the impact of parameter uncertainty is even larger. The agnostic investor’s VAR

model contains more parameters than the simple model of the benchmark investor and is therefore

subject to higher degree of parameter uncertainty. Also the portfolio weights of the benchmark

and the agnostic investor differ more substantially if parameter uncertainty is accounted for, ac-

cording to Table 4. With a ten-year investment horizon, the difference in stock allocations amounts

to as much as almost 20 percentage points for the sample ending in 2008. The agnostic investor

allocates much less of his wealth to stocks than the benchmark investor.

Table 5 provides optimal stock allocations for the agnostic investor based on an initial level

of expected inflation equal to its value at the end date of our sample period, taking into account

parameter uncertainty (see the columns captioned ‘with PU’). However, for several sample periods

the influence of the initial level of expected inflation on portfolio allocations is dominated by the

impact of parameter uncertainty.

6.3.5 Level of risk aversion

Our results depend on the investor’s coefficient of relative risk aversion. As discussed before, em-

pirical evidence suggests that this coefficient should be between 2 and 5. Barberis (2000) obtains

results for � as high as 20. As an illustration, Table 6 reports the Bayesian stock allocations for the
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benchmark and the agnostic investor for � D 2; 3; 4 and � D 10. The main conclusion is that the

impact of inflation risk can be very substantial for investors who are relatively little risk averse.

This effect is caused primarily by the fact that such investors allocate a relatively large proportion

of their wealth to stocks. The inflation exposure of stocks, as measured by the difference in opti-

mal stock allocation between the benchmark investor and the agnostic investor, is of a significant

magnitude for a wide range of plausible risk aversion coefficients.

7 Dividend yield as an additional predictive factor

As noted by Ang and Bekaert (2007), the ‘conventional wisdom’ in the financial literature is

that dividend yields strongly predict excess returns, with stronger predictability at longer invest-

ment horizons. Ang and Bekaert (2007) critically re-examine this dogma using long data sets for

four countries (United States, France, Germany, and United Kingdom). The authors pay particu-

lar attention to appropriate correction for heteroskedasticity and removal of any moving average

structure in regression error terms, which turns out to be crucial for statistical inference at long

horizons. The authors find that dividend yields predict excess returns only at short horizons, to-

gether with the short rate. Dividend yields do not have any long-horizon predictive power. At short

horizons, the short rate strongly negatively predicts returns. In another critical study, Boudoukh et

al. (2008) show that the use of overlapping returns in combination with highly persistent predictive

variables (such as the dividend yield) results in estimated coefficients for the predictive variables

that are almost perfectly correlated across horizons under the null hypothesis of no predictability.

Thanks to our Bayesian approach the controversy in the literature about the predictive power

of the dividend yield does not have to refrain us from considering a fourth investor who includes

dividend yields in his VAR model, in addition to expected and unexpected inflation. By analyzing

the asset allocations of this additional investor, we can explore the role of expected and unexpected

inflation in the situation that dividend yields are already part of the agnostic investor’s VAR model.

Even if dividend yields do not significantly affect stock returns, our Bayesian approach ensures

that we take into account all information that is contained in the relation between stock returns and

dividend yields.
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7.1 Dividend yields and investor beliefs

Similar to Ang and Bekaert (2007), we focus on the one-year rolling window dividend to circum-

vent seasonality. That is, we aggregate the dividends paid in the four quarters prior to time t and

divide this by the value of the stock index at time t , resulting in D4
t D ŒDt C Dt�1 C Dt�3 C

Dt�4�=Pt . We download the rolling-window dividend yields corresponding to the S&P 500 Total

Return Index from Thomson Reuters Datastream. Its sample mean equals 2.44% during the 1985

– 2010 period, with a standard deviation of 0.90%; see the last column in Table 1. To obtain the

asset allocations of our fourth investor, we proceed in a similar way as before. We specify a four-

dimensional restricted VAR model in which the log dividend yield dt D log.D4
t / affects stock

returns over the period from time t until t C 1. The new VAR model is given by
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where ."1;t ; "2;t ; "3;t ; "4;t / is a series of independent multivariate normally distributed distur-

bances, with mean zero and covariance matrix Cov ."1;t ; "2;t ; "3;t ; "4;t / D †. The VAR model

of Equation (16) is an extension of Equation (4). The log dividend yield calculated over the four

quarters prior to time t affects stock returns over the period from t until t C 1 in the first equation

of the extended VAR model. The fourth equation of the new VAR model specifies the log dividend

yield as a simple autoregressive process. We apply the Bayesian methods explained in Section 4

to obtain optimal stock allocations, taking into account parameter uncertainty.

For the purpose of comparison, we also estimate a simple two-dimensional VAR model for

returns and dividend yields (similar to Barberis, 2000). This VAR model is specified as
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where ."1;t ; "2;t / is a series of independent multivariate normally distributed disturbances, with
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mean zero and covariance matrix Cov ."1;t ; "2;t / D †. The simple VAR model corresponds to an

agnostic investor who ignores the role of expected and unexpected inflation.

7.2 Estimation results

The estimation results for the simple VAR model are given in the upper part of Table 7. Dividend

yields positively affect expected stock returns. According to the posterior probabilities this effect is

almost significant at a 5% level. The positive coefficient of the dividend yield in the return equation

results in mean reversion in stock returns, since the correlation between return innovations and

shocks in the dividend yield is highly negatively. Furthermore, from the last equation of the VAR

model we observe that the log dividend yield is a highly persistent process. Table 7 makes clear

that the parameters of the simple VAR model are relatively stable over time.

Also in the extended VAR model dividend yields positively affect expected stock returns. For

the samples ending before or in 2008, the positive impact of the dividend yields is also signifi-

cant. In Section 6 we established a positive, but not significant influence of expected inflation on

expected stock returns in the VAR model of Equation (4). In the extended VAR model, which con-

tains the dividend yield as a an additional predictive factor, expected inflation negatively (but not

significantly) affects expected stock returns for the samples ending before or in 2008. Moreover,

the correlation between innovations in stock returns and shocks in expected inflation is negative

in these cases. For the samples ending in 2009 or 2010, the coefficient of expected inflation in the

return equation is positive (but not significant) and the aforementioned correlation is slightly pos-

itive (and insignificant). For all subsamples we find the same sign for the coefficient of expected

inflation and the correlation between innovations in stock returns and shocks in expected inflation,

resulting in mean aversion.

7.3 Portfolio implications

The optimal stock allocations for both the simple and the extended VAR model are reported in

Table 8. The initial level of expected inflation and the dividend yield are set to their values at the

end date of our sample period. The initial levels of the dividend yield and expected inflation are

always below average. As in Section 6, we face horizon effects due to the (1) term structure of real
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yields, (2) the initial level of the predictor variables (expected inflation and/or dividend yields) and

(3) parameter uncertainty.

We start with the simple VAR model of Equation (17). With a flat term structure of real yields,

no parameter uncertainty and the initial dividend yield equal to the sample average, the optimal

allocation to stocks would increase with the investment horizon because of the mean reversion

in stock returns (caused by the predictability of stock returns from the dividend yield). With the

aforementioned factors causing horizon effects, we only observe increasing stock holdings for the

samples ending in 2006 and 2007. Notice that in these years the term structure of real yields was

relatively flat. For the other sample periods, the influence of the term structure of real yields and

parameter uncertainty results in optimal weights that decrease with the investment horizon. Al-

though the parameters featuring the simple VAR model are relatively stable over time, we observe

substantial differences in its optimal stock holdings across sample periods. These differences are

due to changes in the term structure of real yields over time and the use of different initial levels

of the dividend yield.

The optimal stock holdings based on the simple VAR model, which ignores the role of ex-

pected and unexpected inflation, are substantially higher than the weights obtained from the ex-

tended VAR model of Equation (16). In the latter model expected inflation has a negative impact

on stock returns (ˇ2 < 0) and the correlation between stock return innovations and shocks in

expected inflation is negative as well (�12 < 0), partly offsetting the mean-reversion induced by

the dividend yield. Consequently, the simple VAR model of Equation (17) understates real return

volatility in comparison to the extended VAR model. Moreover, with ˇ2 < 0 and the initial level

of expected inflation below average, stocks become less attractive at longer investment horizons

in the extended VAR model. The simple VAR model ignores this horizon effect. The overall effect

is that the latter model allocates too much wealth to stocks.

8 Conclusions

This paper has focused on the exposure of common stocks to inflation risk and has assessed the im-

pact of this risk exposure on portfolio choice. We have shown that the relation between real stock
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returns and inflation rates, as well as the parameter uncertainty involved with this relation, has sub-

stantial influence on optimal asset allocations. We have found little statistical evidence against the

Fisher hypothesis, postulating that stocks are a complete hedge against expected and unexpected

inflation. Nevertheless, the stock allocations of a benchmark investor, who believes that real stock

returns are unrelated to inflation, differ substantially from those of a more agnostic investor, who

allows for feedback between real stock returns and expected and unexpected inflation. During the

1985 – 2010 period, inflation risk induces a typical long-term investor to allocate up to 40 percent-

age points less of his wealth to the S&P 500 Total Return Index, relative to a benchmark investor

who believes that real returns are independent of expected and unexpected inflation. Our conclu-

sions remain qualitatively unchanged if we add the dividend yield as an additional predictive factor

to the agnostic investor’s VAR model.

In a world free of inflation risk the benchmark and agnostic investors would have the same

portfolio weights. Hence, another way to look at the substantial difference in optimal stock allo-

cations between the two investors is to interpret this difference as a measure of the inflation risk

exposure of stocks.

Our results have important implications for short-term and long-term investors. Accurate mod-

eling of the relation between stock returns and inflation is crucial to make optimal portfolio

choices. Furthermore, instead of simply ignoring parameter uncertainty, this uncertainty can be

used as an additional source of information, which strongly affects optimal asset allocations.

Possible extensions of our analysis include a comparison across several assets, countries, and

sample periods. We leave this as a topic for future research.
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Table 1: Sample statistics for stock returns, inflation and dividend yields

returns exp. infl. unexp. infl. total infl. div. yield
mean 1.72 0.73 0.00 0.73 2.44
median 2.38 0.70 0.00 0.76 2.20
std. dev. 7.79 0.24 0.48 0.57 0.90
skewness -1.94 0.19 -2.58 -2.40 0.40
excess kurtosis 7.48 0.52 14.79 14.16 -0.93
5% quantile -7.88 0.38 -0.68 -0.22 1.22
10% quantile -6.11 0.49 -0.37 0.29 1.34
90% quantile 9.06 1.08 0.50 1.28 3.60
95% quantile 10.90 1.21 0.71 1.52 3.75
99.5% quantile 15.03 1.30 0.89 1.93 3.96

This table displays sample statistics for quarterly stock returns, expected inflation, unexpected inflation and total inflation (all
measured in %), as well as one-year rolling-window dividend yields in % (see Section 7) during the period 1985 – 2010.
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Table 2: Means and standard deviations of the posterior parameter distributions

benchmark Fisher VAR benchmark Fisher VAR

mean std.dev. mean std.dev. mean std.dev. mean std.dev. mean std.dev. mean std.dev.

2003 2007
�1 0.0199 0.0084 0.0181 0.0082 -0.0162 0.0322 0.0222 0.0073 0.0220 0.0071 0.0084 0.0258
ˇ1 4.2262 3.8395 1.7645 3.2368
�2 0.0005 0.0004 0.0006 0.0004 0.0004 0.0003 0.0005 0.0003
ˇ2 0.9334 0.0423 0.9250 0.0432 0.9409 0.0388 0.9361 0.0400
�12 -0.2701 0.1104 -0.2731 0.1102 -0.2925 0.0982 -0.2934 0.0983
�13 -0.2277 0.1130 -0.2242 0.1131 -0.2277 0.1019 -0.2170 0.1026
�23 0.5618 0.0817 0.5618 0.0820 0.4338 0.0871 0.4335 0.0872
�2

1
0.0051 0.0009 0.0052 0.0009 0.0051 0.0009 0.0047 0.0007 0.0047 0.0007 0.0047 0.0007

�2
2

0.0009 0.0002 0.0009 0.0002 0.0008 0.0001 0.0008 0.0001
�2

3
0.0106 0.0019 0.0106 0.0019 0.0131 0.0020 0.0131 0.0020

2004 2008
�1 0.0230 0.0082 0.0212 0.0079 0.0085 0.0297 0.0201 0.0071 0.0208 0.0069 0.0066 0.0254
ˇ1 1.6204 3.6023 1.8449 3.2022
�2 0.0004 0.0004 0.0005 0.0004 0.0004 0.0003 0.0004 0.0003
ˇ2 0.9433 0.0425 0.9394 0.0436 0.9381 0.0406 0.9350 0.0413
�12 -0.2858 0.1064 -0.2860 0.1065 -0.2251 0.0995 -0.2263 0.0993
�13 -0.2353 0.1089 -0.2325 0.1093 -0.2315 0.0997 -0.2173 0.1001
�23 0.4931 0.0875 0.4926 0.0877 0.4178 0.0864 0.4177 0.0870
�2

1
0.0051 0.0008 0.0051 0.0009 0.0051 0.0009 0.0047 0.0007 0.0047 0.0007 0.0047 0.0007

�2
2

0.0009 0.0002 0.0009 0.0002 0.0009 0.0001 0.0009 0.0001
�2

3
0.0110 0.0019 0.0110 0.0019 0.0137 0.0021 0.0137 0.0021

2005 2009
�1 0.0224 0.0079 0.0214 0.0077 0.0073 0.0279 0.0145 0.0081 0.0147 0.0079 -0.0149 0.0281
ˇ1 1.8116 3.4386 3.9422 3.5832
�2 0.0004 0.0003 0.0005 0.0003 0.0005 0.0003 0.0005 0.0003
ˇ2 0.9410 0.0401 0.9363 0.0414 0.9279 0.0404 0.9283 0.0406
�12 -0.2967 0.1030 -0.2986 0.1027 0.1070 0.1013 0.1074 0.1015
�13 -0.2226 0.1074 -0.2151 0.1075 0.1663 0.1000 0.1741 0.0996
�23 0.4947 0.0854 0.4947 0.0853 0.5916 0.0670 0.5917 0.0672
�2

1
0.0050 0.0008 0.0050 0.0008 0.0050 0.0008 0.0062 0.0009 0.0063 0.0009 0.0063 0.0009

�2
2

0.0009 0.0002 0.0009 0.0002 0.0012 0.0002 0.0012 0.0002
�2

3
0.0110 0.0018 0.0110 0.0018 0.0248 0.0037 0.0248 0.0037

2006 2010
�1 0.0218 0.0076 0.0217 0.0074 0.0071 0.0269 0.0165 0.0079 0.0165 0.0077 -0.0003 0.0259
ˇ1 1.8806 3.3405 2.2814 3.3453
�2 0.0004 0.0003 0.0004 0.0003 0.0003 0.0003 0.0003 0.0003
ˇ2 0.9456 0.0391 0.9408 0.0404 0.9523 0.0416 0.9524 0.0418
�12 -0.2920 0.1006 -0.2937 0.1005 0.1122 0.0992 0.1120 0.0994
�13 -0.2017 0.1054 -0.1904 0.1058 0.1861 0.0971 0.1912 0.0969
�23 0.4716 0.0858 0.4714 0.0857 0.5475 0.0707 0.5475 0.0707
�2

1
0.0048 0.0008 0.0049 0.0008 0.0048 0.0008 0.0062 0.0009 0.0063 0.0009 0.0063 0.0009

�2
2

0.0009 0.0001 0.0009 0.0001 0.0013 0.0002 0.0013 0.0002
�2

3
0.0119 0.0019 0.0118 0.0019 0.0242 0.0035 0.0242 0.0035

This table displays the means and standard deviations of the posterior distributions for the parameters of the models in Equations (6)
and (4). The parameters �2

2
and �2

3
have been multiplied by a factor 1,000. The models in this table correspond to three investors: (1)

a benchmark investor who believes that stocks are a complete hedge against expected and unexpected inflation (see the column
captioned ‘benchmark’), (2) a Fisherian investor who believes that stocks are only a complete hedge against expected inflation
(‘Fisher’), and (3) an agnostic investor who allows real stocks returns to depend on both expected and unexpected inflation (‘VAR’).
Estimation results are provided for quarterly samples starting in 1985 and ending in the first quarter of the years 2003 up to 2010, as
indicated in the first column.
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Table 3: Term structure of real interest rates (in % per quarter)

maturity (years)
start 5 7 10
2003 0.32 0.44 0.50
2004 0.21 0.32 0.43
2005 0.26 0.32 0.40
2006 0.52 0.52 0.53
2007 0.59 0.60 0.59
2008 0.17 0.29 0.37
2009 0.30 0.35 0.42
2010 0.10 0.22 0.36

This table displays the real yield as provided by the U.S. Department of the Treasury. The starting date of the real yield is the 15th of
February of the year given in the first column.
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Table 4: Optimal allocation to stocks (in %) for different investors and various investment horizons

benchmark benchmark Fisher Fisher VAR VAR
(no PU) (with PU) (no PU) (with PU) (no PU) (with PU)

2003
5 75.5 61.1 68.0 55.3 70.5 51.8
7 71.0 53.7 63.0 48.8 63.0 42.5
10 68.8 47.2 60.5 42.8 59.0 33.9

2004
5 92.4 75.1 85.5 70.0 94.0 63.8
7 88.4 67.2 81.0 62.3 90.0 52.5
10 84.3 58.3 77.5 54.3 87.0 40.4

2005
5 89.2 73.2 85.5 71.2 92.5 65.4
7 87.0 66.8 83.0 64.4 90.5 56.0
10 84.3 59.1 81.0 56.7 89.5 44.6

2006
5 78.9 65.3 79.0 65.1 76.0 56.5
7 78.8 61.2 78.0 61.6 75.5 49.7
10 78.8 56.1 79.0 56.5 76.5 41.1

2007
5 79.7 66.4 79.0 65.8 85.5 62.6
7 79.6 62.3 78.5 62.4 85.5 55.9
10 80.1 57.5 80.0 57.9 88.0 46.7

2008
5 89.0 74.5 92.5 77.2 84.0 62.4
7 84.2 66.6 87.0 68.9 78.0 50.6
10 80.9 59.0 85.0 61.7 75.0 40.8

2009
5 46.2 39.8 47.0 40.7 35.0 26.5
7 44.6 36.5 45.0 37.4 31.0 22.4
10 42.4 32.2 42.5 33.0 28.0 18.2

2010
5 59.9 51.4 60.0 51.2 47.5 32.7
7 56.0 45.6 55.5 45.8 41.5 25.7
10 51.3 38.9 50.5 39.1 35.5 19.0

This table displays the optimal stock allocations (in % of initial real-term wealth) for (1) a benchmark investor who believes that
stocks are a complete hedge against expected and unexpected inflation (see the column captioned ‘benchmark’), (2) a Fisherian
investor who believes that stocks are only a complete hedge against expected inflation (‘Fisher’), and (3) an agnostic investor who
allows real stocks returns to depend on both expected and unexpected inflation (‘VAR’). We consider optimal stock allocations that
account for parameter uncertainty (‘with PU’) and allocations that do not (‘no PU’). The investment horizons are five, seven and ten
years, as indicated in the first column of the table. The allocations correspond are based on quarterly samples starting in 1985 and
ending in the first quarter of the years 2003 up to 2010. The initial level of expected inflation is set to its long-term average value.
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Table 5: The agnostic investor’s optimal allocation to stocks (in %) for different investment hori-
zons

no PU with PU no PU with PU

2003 2007
5 46.5 32.9 81.5 59.8
7 44.5 29.0 82.0 53.7
10 45.5 25.4 85.0 45.3

2004 2008
5 81.5 52.1 89.5 68.3
7 79.0 43.4 82.5 55.4
10 78.0 34.4 79.0 44.1

2005 2009
5 83.0 57.3 7.0 6.1
7 82.0 50.0 10.0 7.9
10 82.0 40.6 12.5 8.6

2006 2010
5 72.5 53.1 36.5 22.4
7 72.5 47.0 32.5 18.3
10 74.0 39.2 28.5 14.3

This table displays the optimal stock allocations (in % of initial real-term wealth) for an agnostic investor who assumes that real
stocks returns depend on both expected and unexpected inflation. We consider allocations that account for parameter uncertainty
(‘with PU’) and allocations that do not (‘no PU’). The investment horizons are five, seven and ten years, as indicated in the first
column. The allocations are based on quarterly samples starting in 1985 and ending in the first quarter of the years 2003 up to 2010.
The initial level of expected inflation is set to its value at the end of the sample period.
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Table 6: Optimal stock allocations (in %) for different values of the risk aversion parameter

benchmark VAR benchmark VAR benchmark VAR benchmark VAR
� D 2 � D 2 � D 3 � D 3 � D 4 � D 4 � D 10 � D 10

2003
5 100.0 82.6 100.0 64.5 76.5 41.4 29.9 16.2
7 100.0 73.6 89.3 57.4 67.5 36.5 26.0 14.2
10 100.0 65.9 79.7 49.3 59.7 32.1 22.7 12.3

2004
5 100.0 100.0 100.0 85.8 93.2 65.2 36.9 25.6
7 100.0 97.1 100.0 72.0 83.7 54.4 32.7 21.2
10 100.0 83.4 96.2 58.1 73.2 43.4 28.1 16.7

2005
5 100.0 100.0 100.0 94.6 91.0 71.7 36.1 28.2
7 100.0 100.0 100.0 82.5 83.4 62.7 32.7 24.5
10 100.0 93.5 97.2 67.9 74.3 51.1 28.6 19.7

2006
5 100.0 100.0 100.0 88.2 81.9 66.6 32.2 26.1
7 100.0 100.0 100.0 78.2 76.9 59.0 29.9 23.0
10 100.0 91.4 93.5 65.7 70.7 49.4 27.1 19.1

2007
5 100.0 100.0 100.0 98.7 83.1 74.9 32.8 29.5
7 100.0 100.0 100.0 88.6 78.2 67.2 30.6 26.3
10 100.0 98.0 95.6 75.0 72.5 56.9 28.0 22.1

2008
5 100.0 100.0 100.0 100.0 92.8 85.1 36.8 33.7
7 100.0 100.0 100.0 89.0 83.3 69.0 32.6 27.4
10 100.0 94.8 97.2 72.4 74.2 55.2 28.6 21.6

2009
5 99.9 15.5 67.2 10.2 50.1 7.6 19.5 3.0
7 92.8 20.5 62.1 13.4 46.0 9.9 17.7 3.9
10 84.1 23.3 55.5 14.9 40.9 11.0 15.5 4.2

2010
5 100.0 57.4 85.8 38.0 64.5 28.2 25.1 11.0
7 100.0 48.0 76.9 31.3 57.4 23.1 22.1 8.9
10 98.2 38.9 66.6 24.9 49.3 18.2 18.7 6.9

This table displays the optimal stock allocations (in % of initial real-term wealth) for the benchmark and the agnostic investor, for
different levels of risk aversion �. The optimal stock allocations account for parameter uncertainty. The investment horizons are five,
seven and ten years, as indicated in the first column. The allocations are based on quarterly samples starting in 1985 and ending in the
first quarter of the years 2003 up to 2010, as also indicated in the first column. The initial level of expected inflation is set to its value
at the end of the sample period.
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Table 8: Optimal stock allocations (in %) for agnostic investors with different beliefs and different
investment horizons

2003 2004 2005 2006 2007 2008 2009 2010

simple VAR

5 32.2 49.6 57.5 56.7 52.2 87.3 81.5 56.7
7 25.4 44.1 56.9 59.5 54.9 85.4 72.7 54.1
20 19.8 36.0 54.4 62.2 59.0 86.1 63.4 48.8

extended VAR

5 18.6 32.6 36.4 41.8 25.9 62.7 48.1 7.6
7 11.3 22.3 27.9 35.0 22.1 50.8 42.4 5.6
20 6.5 11.8 18.0 26.0 17.7 37.8 35.5 3.8

This table displays the optimal stock allocations (in % of initial real-term wealth) for agnostic investors with different beliefs. We
consider investment horizons equal to five, seven and ten years, as indicated in the first column. The stock allocations in the upper
part of the table correspond to an agnostic investor who makes investment decisions on the basis of a two-dimensional VAR model
for stock returns and dividend yields (thus ignoring expected and unexpected inflation); see Equation (17). The lower part of the table
displays the stock holdings of an agnostic investor who uses a four-dimensional VAR model for stock returns, expected and
unexpected inflation and dividend yields; see Equation (16). The allocations are based on quarterly samples starting in 1985 and
ending in the first quarter of the years 2003 up to 2010. The initial levels of the dividend yield and expected inflation are set to their
values at the end of the sample period.
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Figure 1: Quarterly real returns and expected and unexpected inflation
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Appendix A Optimal stock allocations with power utility

We consider a power utility investor with risk aversion parameter �. At time t , he wants to deter-

mine optimal portfolio wealth shares �t and 1��t to be invested in the stock and an inflation-linked

bond, respectively. Throughout, we assume that the investor follows a k-period buy-and-hold strat-

egy.

We first observe that maximizing IEt

�
u.WtCk/

�
is equivalent to maximizing log IEt

�
u.WtCk/

�
for

� � 1 and to minimizing log
�
�IEt

�
u.WtCk/

��
for � � 1. Without loss of generality we assume

that � < 1. Assuming log-normality of k-period real-term wealth, we have

log IEt

�
u.WtCk/

�
D .1 � �/Et ŒwtCk � C .1=2/.1 � �/2Var t ŒwtCk � � log.1 � �/; (A.1)

where wtCk D log.WtCk/. Observe that wtCk D rp;t .k/ C wt , with rp;t .k/ the k-period contin-

uously compounded real portfolio return. We can rewrite Equation (A.1) as

log IEt

�
u.WtCk/

�
D .1��/IEt Œrp;t .k/�C.1��/wt C.1=2/.1��/2Var t ŒwtCk ��log.1��/: (A.2)

Maximizing the expression in Equation (A.2) is equivalent to maximizing

log IEt

�
u.WtCk/

�
D IEt Œrp;t .k/� C .1=2/.1 � �/Var t Œrp;t .k/�: (A.3)

Since

log IEt

�
exp.rp;t .k//

�
D IEt Œrp;t .k/� C .1=2/Var t Œrp;t .k/�; (A.4)

we can rewrite Equation (A.3) as

log IEt

�
u.WtCk/

�
D IEt Œ1 C Rp;t .k/� � .�=2/Var t Œrp;t .k/�; (A.5)

where Rt .k/ denotes the simple net k-period portfolio return. For � D 1 the investor maximizes
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the expected log real portfolio returns, since in this case Equation (A.5) boils down to

log IEt

�
u.WtCk/

�
D IEt Œrp;t .k/�: (A.6)

For � � 1 the investor opts for a riskier portfolio, since a higher portfolio variance corresponds

to a higher simple gross return (provided that the mean of the continuously compounded returns

remains the same). For � � 1 the investor faces a trade-off between the mean and the variance of

the portfolio return and chooses a less risky portfolio. Hence, the conditional mean and variance

of the portfolio returns are crucial ingredients of the power utility framework with log-normal

terminal wealth. Following Campbell et al. (2003), we approximate the continuously compounded

real portfolio return by

rp;t .k/ � ˛t rt .k/ C .1 � ˛t /rf;t .k/ C .1=2/˛t .1 � ˛t /Var t Œrt .k/�: (A.7)

Here ˛t is the share invested in the stock at time t . The above approximation becomes more

accurate for smaller k and it is exact in continuous time according to Itô’s lemma. Using the above

approximation, the optimal share invested in stocks is given by

˛t D
IEt Œrt .k/� � rf;t .k/ C .1=2/Var t Œrt .k/�

�Var t Œrt .k/�
: (A.8)

With positive expected excess returns and � > 0, the optimal weight is a decreasing function of

the conditional variance and an increasing function of the expected real (excess) return.
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