

Bachelor Thesis

Friendly Interchange Heuristic
for Vehicle Routing Problems

with Time Windows

Author: SSJ Jaheruddin Supervisor: M.J.P. Peeters
 575600

A Thesis submitted in partial fulfillment of the requirements for the degree of Bachelor in
Econometrics and Operations Research

Faculty of Economics and Business Administration
Tilburg University

August 16, 2010

1

1. Abstract

Vehicle Routing Problems with Time Windows (VRPTW) are hard to solve, and even small
instances resist ways to find the optimal solution. Therefore heuristics are used to get good
solutions. In this paper heuristics that are currently used to find the best known solutions are
briefly described. Also the entirely new Friendly Interchange Heuristic (FIH) is introduced and
its results are compared to the best known solutions for benchmark problems.

2

2. Contents
1. Abstract ... 1

2. Contents .. 2

3. Introduction .. 3

4. Tour Creation .. 4

4.1 Examples sequential method .. 4

4.1.1 Nearest Neighbor ... 4

4.1.2 Probable Nearest Neighbor ... 4

4.2 Examples parallel method .. 5

4.2.1 Savings Heuristic .. 5

4.2.2 Multiple Ant Colony System .. 5

5. Local Search .. 6

5.1 General Pair wise Interchange Neighborhood .. 6

5.2 General k-way Interchange Neighborhood .. 7

5.3 2 Opt Neighborhood ... 8

5.4 k Opt Neighborhood ... 9

5.4.1 Lin Kernighan Helsgaun .. 9

5.5 2 Opt* Neighborhood ... 10

5.6 k Opt* Neighborhood ... 10

5.6.1 LKH for VRPTW ... 10

5.7 Cross Exchange Neighborhood ... 11

5.8 k Cross Exchange Neighborhood .. 11

6. Friendly Interchange Heuristic .. 12

6.1 Initial solution ... 12

6.2 Quick method.. 13

6.3 Improvement Algorithm ... 14

7. Results ... 16

8. Conclusion ... 17

References .. 18

Appendix ... 19

A1 Source code ... 19

A2 Starting Solutions ... 23

A3 Tours .. 25

A4 Computation times .. 27

3

3. Introduction

A Vehicle Routing Problem with Time Windows (VRPTW) is a problem where several cities
have deterministic demand. Each city has to be visited exactly once, and within a specific
time interval. There is one depot from which trucks with a certain loading capacity depart
simultaneously. There are several possible objective functions that minimize combinations of
the amount of trucks, the amount of kilometers, or even the amount of time required. In this
paper the main goal is to minimize the number of vehicles, and as a tie breaker the number of
kilometers is minimized. To test heuristics for VRPTW a set of benchmark problems has been
created, the so called Solomon instances (Solomon 2005). Each problem consists of exactly
100 cities that can be either randomly distributed, clustered or both. Also the time constraints
for the problem can be loose, or tight. The distances are Euclid, and one kilometer takes one
unit of time. VRP is NP hard, as VRPTW can be reduced to VRP with some restrictions
VRPTW is also NP hard (Solomon 1987). Considering this, solving for optimality is not an
option for problems of some size, and therefore heuristics must be designed to find good
solutions. In this paper we will construct a heuristic for VRPTW by using several elements from
existing heuristics as a basis. After implementing and combining these, a new neighborhood
will be added. The latter is called the Friendly Interchange Neighborhood, an extension of the
general k-way Interchange Neighborhood that we shall describe in this paper.

4

4. Tour Creation

When creating tours one can choose between a sequential and a parallel method (Solomon
1987). With a sequential method, in each step one truck is selected and customers are added
to the route of that truck. When required a new truck is added, this goes on until all customers
are served. With a parallel method a number of truck routes are being altered within one step.
This means that there is some freedom in the number of trucks that is used in the beginning.
Both the sequential and the parallel method can be applied deterministically, or generically.
The main idea behind generic algorithms is that the sum of all best sub decisions, does not
generally add up to the best total combination of decisions. But of course, the probability that a
good sub decision is part of the best total solution is relatively high. Therefore generic
algorithms often give sub decisions that seem favorable a higher probability. Now the
decisions just need to be made many times, and hopefully one of all the solutions that are
found is good. After all, when solving a problem the average solution that you find is not
interesting, only the best one is.

4.1 Examples sequential method

4.1.1 Nearest Neighbor

There are many deterministic sequential tour creation algorithms like Nearest Neighbor and
Insertion. To give simple deterministic example of a sequential tour creation we define the
Nearest Neighbor algorithm NN1 as follows:

1) Start driving with 1 truck.
2) Add the available city with the lowest penalty cost Cij.
3) Repeat this until no city can be added.
4) Start driving with the next truck.
5) If not all customers are served go to 2).

This is the Nearest Neighbor algorithm for which Solomon proposed a
cost function. However, when the right parameters are set it is generally outperformed by
Insertion (Solomon 1987). The mentioned cost function is defined as follows:
Cij= δ1Dij+ δ2Tij+ δ3Vij
s.t. δ1+ δ2+ δ3=1, δ1≥0, δ2≥0, δ3≥0

i is in the partial solution, j is not in the partial solution.
with:
Dij:= Euclid distance from i to j.
Tij:= Time difference between completing i and starting j.
Vij:= Time remaining until last possible start of j following i.

4.1.2 Probable Nearest Neighbor

Though generic sequential algorithms are not often used in practice, we can easily create an
example by adapting step two of the Nearest Neighbor algorithm. Assuming positive costs,
the second step could become:
2) Add an available city with probability SC/Cij.
Where SC is defined as the sum of costs over all available cities j from current point i.

5

4.2 Examples parallel method

4.2.1 Savings Heuristic

An example of a deterministic parallel method is given by Solomon (1987):

1) Begin with n trucks that each serve 1 customer each.

2) Try to connect all end points of a truck to the starting point of all new trucks and calculate

costs.

3) Pick the single satisfactory connection with the lowest total Euclid distance.

4) If another satisfactory connection can be made go to 2).

Where a satisfactory connection is defined as feasible and with an increase in waiting time

lower than a constant upper bound. This upper bound should be set in advance.

4.2.2 Multiple Ant Colony System

To conclude this section we give a more interesting example of how important tour creation
can be in a heuristic. Perhaps the best generic building method that exists today is the Multiple
Ant Colony System (Gambardella 2000). This heuristic was based on the behavior of food
searching ants in nature, and has one ant colony per objective. First of all a number of ants
finds a feasible solution to the VRPTW problem by randomly choosing a feasible city to visit
each time, while using a uniform distribution to choose between possible cities. When an ant
visits the depot to drop its load, it counts as adding a truck. After the ants have completed their
task their pheromone trace is left behind to attract ants from the next wave to the edges visited
by the past ant wave. Every colony leaves a specific trace behind that is only picked up by
other ants in the same colony. The strength of the pheromone trace of a single ant is
correlated with the quality of the solution. For example, an ant that comes from a colony that
has as objective to minimize the number of kilometers, will leave a trail with strength one over
the number of kilometers it travelled before finding a feasible solution. After this first run, a
second wave of ants sets out to search food. Again they randomly choose cities each time, but
they do not use a uniform random distribution, but one that is affected by the pheromones. A
stronger pheromone trail is more likely to attract an ant. Therefore they are more likely to take
good routes than they would have been without the existing pheromone traces. Note that the
ant leaves the same trace behind on all roads between cities it visited, so if an ant goes from
the depot to A to B to C to D and another ant goes from the depot directly to C, then it can still
pick up the pheromone trail which tells it that the other ant went to D afterwards, with good or
bad result. Several groups of ants go out on a hunt for food after another and each group has
better information than the previous one, resulting in better solutions. Initially the algorithm was
designed in such a way that ants were attracted by the pheromones of all predecessors.
However, the most recent version only uses information from the best solution to influence
ants.

6

5. Local Search

A local search algorithm finds better solutions by browsing the neighborhood of an existing
solution. It is customary to go by all neighbors 1 by 1 until a certain target is reached. This
target can be the improvement of the current solution or finding the best neighbor. When using
the first improvement the steps are faster as not all neighbors need to be checked. When using
the best solution instead the number of required steps is generally lower and the result does
not depend on the order in which you compare the neighbors. A more sophisticated target
would be dependent on your objective function. For example, pick the first neighbor that
requires less trucks, and otherwise the one with the least amount of kilometers. This is the
criterion that is used in this paper. In this chapter several neighborhoods will be described,
most of which form the foundation of the Friendly Interchange Heuristic.

5.1 General Pair wise Interchange Neighborhood

This is perhaps the most simple neighborhood. It selects two cities in the solution, not
necessarily from one truck tour, and switches their places like shown in figure 1.

Figure 1: Pair wise Interchange move

This neighborhood is frequently used in job shop problems (Morton, T. E. & Pentico, D.W.,
1993) but not in VRP heuristics as it cannot reduce the number of vehicles and cannot change
sections of a tour. However, this algorithm is rather quick, and might be useful to improve the
starting point.

7

5.2 General k-way Interchange Neighborhood

An extension of the GPIN is the Gk-IN as described by Morton, T. E. & Pentico, D.W. (1993).
Now not only pairs are selected, but every combination of k points, not necessarily from 1 tour.
And after selecting these k points try all possible ways of swapping and look for the best
improvement. As searching the entire neighborhood is of O(Nk) this neighborhood is not
frequently used for k>3. Despite the fact that this algorithm is very costly for large k, the
required computational time can be managed by using it on problems with a small N. This
could mean that it is used for VRPTW instances with not many cities, or that it is used for parts
of an instance. For example it can be used to improve the efficiency of 1 truck. Or even to
consider many interchanges of cities that are visited within a limited time interval. This can be
particularly effective for instances with tight time constraints.

Another way to search the Gk-IN is by means of a trick we have invented to significantly
reduce the number of solutions in the neighborhood. When observing a Gk-IN we noticed that
many of the solutions are in fact in the G(k-1)-IN. For example the permutations of 1 2 3 and 4
can be divided in a group that is in the 3 Interchange Neighborhood, and a group that is not in
the 3 Interchange Neighborhood. Note that solutions are not symmetric due to time windows,
3214 is not the same as 4123 as it might be possible to add a fifth city to 3214 while it may not
be possible to add the same city to 4123. Here is an example of what the 4-way Interchange
Neighborhood of a small tour looks like and how it is split up:

In 3-way Interchange Neighborhood Not in 3-way Interchange Neighborhood

1234 2143

1243 2341

1324 2413

1342 3142

1423 3412

1432 3421

2134 4123

2314 4312

2431 4321

3124

3214

3241

4132

4213

4231
Table 1: 4-way Interchange Neighborhood

This can be exploited by first performing 3-way Interchange, and after that only searching the
solutions that are not in the 3-way Interchange Neighborhood. Of course after improving it in
this way the other moves need to be checked again to make sure that it is not possible to
improve further with 3-way Interchange moves, but as most solutions that are checked do not
lead to improvements this can save much time. When no improvement is found this method
takes less than half the time that normal k-way Interchange would take. In the worst case this
way of doing k-way Interchange has the same complexity as normal k-way Interchange, the
only drawback is that you can no longer compare all k-Interchange improvements if you First
make a solution by executing all (k-1)-way Interchanges that lead to improvement, which
probably leads to a loss in quality of the end result. Therefore this way of browsing the k-IN,
Opt or Opt* Neighborhood has not been implemented in the final version of the Friendly
Interchange Heuristic.

8

5.3 2 Opt Neighborhood

Most algorithms for Travelling Salesmen Problems and Vehicle Routing Problems are
improvements on 2 Opt. The 2 Opt Neighborhood consist of all feasible solutions that can be
obtained by removing 2 connections between cities, and connecting them in another way
(Helsgaun 2006). These cities can be in two different truck tours or within the same truck tour.
When this happens within the tour of one single truck this is in fact a reversion of a section in
the tour.
Here is an example where two connections are cut from different tours. The corresponding
neighbor can be found by cutting the 2 connections, and then reconnecting the cities like
shown in figure 2.

Figure 2: Opt move

Any solution in the Pair wise Interchange Neighborhood can also be reached by making two
 2 Opt moves, though these opt moves might not be legal separately. The great advantage of 2
Opt over k-way interchange is that it allows more cities to change position. Especially a city
which is visited halfway the tour of a truck, that has a predecessor and a follower with very
strict time constraints, benefits a lot. No city would fit between its predecessor and its follower.
But either the predecessor or the follower can be changed now. Another advantage is that this
neighborhood generates solutions where the number of jobs on a truck is different from the
number of trucks in the original solution.

9

5.4 k Opt Neighborhood

In general k Opt moves can be made by removing k connections and connecting them in all
feasible ways (Helsgaun 2006). However, due to the strongly increasing computation time 2
Opt and 3 Opt are most popular, and k>5 is rarely used. This neighborhood seems to give very
good results for VRP problems. Especially when combined with an algorithm that selects how
large k is at each step, this is called the Lin-Kernighan heuristic.

5.4.1 Lin Kernighan Helsgaun

One of the best heuristics that uses local search was described in a paper by Lin, S.&
Kernighan, B.W. (1973). It is called the Lin Kernighan heuristic and searches the k Opt
Neighborhood for various k. The most popular implementation is Helsgaun’s. A Lin Kernighan
heuristic with Helsgaun’s (2006) implementation is abbreviated to LKH.
The LKH is used in the following way:
First do a lot of trials and find many random feasible solutions. Note that LKH is not called a
generic heuristic because creation of initial solutions is not considered to be part of the actual
improvement algorithm.
Then merge parts of good solutions by fixing edges that occur in many good solutions to get
even better solutions. After this let a function determines which k Opt Neighborhood to search.
For calculation purposes the Lin Kernighan Helsgaun implementation first tries to shift several
sequential cities within a single truck route and check if the result is an improvement. The
length of these segments of truck routes is at most k. When no more improvements are found
a possible next step is again to fix the edges that appear in many good tours and then optimize
the rest with larger k.

10

5.5 2 Opt* Neighborhood

This is a neighborhood that specifically has been designed for VRPTW problems (Thangiah,
S.R., Sun, T. & Potvin, J., 1996). The neighborhood is a restricted version of the 2 Opt
Neighborhood. Only Tails from two different tours are cut. As a result, when swapping tour
sections, the order of cities within a tour section will not change.

5.6 k Opt* Neighborhood

As Thangiah, S.R., Sun, T. & Potvin, J. (1996) only defined 2 Opt*, we will define k Opt*
here as k Opt with the restriction that the tails of k different truck tours are cut. This ensures
that the order of cities within a tour section will not change.

5.6.1 LKH for VRPTW

An adaptation of the normal LKH has been made by Holden, N. & Hasle, G. (2009).
Unfortunately the results did not turn out to be great. This might be caused by the fact that the
merging of tours by fixing edges that occur in multiple good solutions has completely been
removed to keep it simple, but it could also mean that LKH is not suitable for VRPTW.
However, from this implementation we took the concept of not always making the same large
move. When deciding on which problems to investigate first many Quick moves were made as
will be described later.

11

5.6 Cross Exchange Neighborhood

A neighborhood that is particularly effective for solving VRPTW problems is the Cross
Exchange Neighborhood as stated by Bai, R. Burke, E.K., Grendeau, M. &Kendall, G. (2007).
This neighborhood is found by picking all possible sections from two different truck tours, and
interchanging them. This has as an advantage that the order of cities within the segment is
unchanged, and therefore time windows within the section are unlikely to cause problems.
Figure 3 is an example of two tour sections with one two and one cities respectively that are
exchanged.

Figure 3: Cross Exchange move

Note that the Cross Exchange Neighborhood also contains solutions which require fewer
trucks then the initial solution. Cross exchange can move cities from a first truck to a second
truck without moving any cities from the second truck to the first. And thus a truck can end up
visiting zero cities and then the number of trucks will be decreased.

5.7 k Cross Exchange Neighborhood

The Cross Exchange Neighborhood has only been defined as interchanging two sections from
two different tours. However, k Cross Exchange has not been defined yet. In this paper we
define the k Cross Exchange Neighborhood as a generalization of the Cross Exchange
Neighborhood. In the k Cross Exchange Neighborhood not only segments from two tours are
exchanged. But all possible sections from k different truck tours are exchanged, while again
the order of cities within a section remains the same. Like with Cross Exchange the length of
these sections can be anything from zero to the size of the truck tour.

12

6. Friendly Interchange Heuristic
In this paper we propose a new heuristic for Vehicle Routing Problems with Time Windows.
The so called Friendly Interchange Heuristic (FIH) first creates a starting solution and then tries
to improve it until a good solution is found. For creating an initial solution we created a cost
function for the Nearest Neighbor heuristic that uses only two parameters and performs quite
well compared to other tour creation heuristics. After this initial solution has been created, a
Quick method is used to improve the initial solution to a decent solution. This Quick method
searches a small part of the entire neighborhood that is searched for tour improvement.
Though this is not a necessary in between step in the algorithm as it is possible to use all
improvement methods on the initial solution. This Quick method is used to improve the starting
solution with many quick steps in order to reduce calculation time. Once the Quick method can
no longer find any improvements, the algorithm enters the final tour improvement stage. Here
a large neighborhood is searched to look for improvements, this is a time consuming process
but due to the Quick method only a few steps are required to reach the best possible solution.

6.1 Initial solution

It has been recommended to use Insertion for VRPTW problems as it outperforms Nearest
Neighbor (Solomon 1987). The suggested insertion criterion I1 uses two insertion criteria:
‘Farthest unrouted customer’ or ‘Unrouted customer with earliest deadline’.
This indeed outperforms the Nearest Neighbor algorithm NN1 when it uses a linear cost
function that is both dependant on time and Euclid distance as described in Tour Creation:
Cij= δ1Dij+ δ2Tij+ δ3Vij
s.t. δ1+ δ2+ δ3=1, δ1≥0, δ2≥0, δ3≥0
i is in the partial solution, j is not in the partial solution.
with:
Dij:= Euclid distance from i to j.
Tij:= Time difference between completing i and starting j.
Vij:= Time remaining until last possible start of j following i.

However, in this paper we provide a completely new Nearest Neighbor implementation,
called NN2, a sequential algorithm that can compete with the suggested Insertion algorithm,
and that outperforms Nearest Neighbor on almost every problem set while using one
parameter less:
Cij= δ1Dij Dij + δ2Tij Tij
s.t. δ1+ δ2=1, δ1≥0, δ2≥0
i is in the partial solution, j is not in the partial solution.
with:
Dij:= Euclid distance from i to j.
Tij:= Time difference between completing i and starting j.

Creation
method R1 C1 RC1 R2 C2 RC2

I1 1436.7 951.9 1596.5 1402.4 692.7 1682.1

I2 1638.7 1049.8 1874.4 1470.7 921.5 1797.6

I3 1651.7 1103.3 1849.7 1474.6 1072.7 1816.4

NN 1600.1 1171.2 1800 1472.3 963.1 1754.7

NN2 1614.8 1132.3 1783.9 1178.8 813.1 1735.5

Sweep 1499.7 940.8 1804.5 1448.6 711.9 1735.5
Table 2: Absolute results

13

Creation
method R1 C1 RC1 R2 C2 RC2

I1 0.89 0.84 0.89 1.19 0.85 0.97

I2 1.01 0.93 1.05 1.25 1.13 1.04

I3 1.02 0.97 1.04 1.25 1.32 1.05

NN 0.99 1.03 1.01 1.25 1.18 1.01

NN2 1.00 1.00 1.00 1.00 1.00 1.00

Sweep 0.93 0.83 1.01 1.23 0.88 1.00
Table 3: Relative results

The methods are used on all benchmark problems and table 2 and table 3 display average
results based on kilometers. I2, I3 and Sweep are Insertion based heuristics that are also
discussed by Solomon. A more detailed description can be found in the paper of Solomon
(1987).

As shown in Table 3 the NN2 heuristic is never the worst choice and no other heuristic
dominates it. Especially in the R2 set this new method gives much better results than any of
the tested heuristics.

The solution with the least kilometers generally is not the solution with the least trucks.
Unfortunately, the heuristics can only be compared by Euclid distance as the number of trucks
is not known for the existing implementations. Also there is just a comparison between
averages over the different sets of benchmark problems, and not all individual results are
given. Therefore it is impossible to prove the intuition that NN2 actually is weakly dominant
over NN1 for the benchmark problems. However, as Solomon chose these averages to
compare tour creation methods we believe that using average kilometers will give reasonably
good comparison between starting methods. Though implementing all given creation
algorithms is possible, it would take a fair amount of time. And as the results show that NN2
results in fewer kilometers than other solutions for the R2 set we do not think further testing is
required to confirm that NN2 is a useful tour creation algorithm.

6.2 Quick method

The Quick method searches only part of the neighborhood that is searched in the final
improvement stage. This is a tradeoff between the size of the improvements, and the
expected number of improvements to be made. In order to decrease computation times many
small improvements are faster than a few large improvements. A general principle that has
successfully been implemented in other heuristics like the Lin-Kernighan heuristic for
Travelling Salesman Problems proposed by Lin, S. & Kernighan, B.W. (1973). The
neighborhoods that are searched when using the Quick method are the 4* Opt Neighborhood,
the 4-way Interchange Neighborhood and the Cross Exchange Neighborhood with two tours.
As in the final Improvement stage first all neighbors from different neighborhoods are
considered and only after this an improvement is chosen. Note that this Quick method includes
the search for routes with fewer trucks as Cross exchange can move cities from a first truck to
a second truck without moving any cities from the second truck to the first. And thus a truck
can end up visiting zero cities and then the number of trucks will be decreased.

14

6.3 Improvement Algorithm

The final stage of the Friendly Interchange Heuristic (FIH) consists of an improvement
algorithm that searches a large neighborhood. It mainly focuses on decreasing the number of
total kilometers as most of the minimization regarding the number of trucks has already taken
place in creating the initial solution and by applying the Quick Method. However in each step it
quickly checks if the number of trucks can be reduced. After several neighborhoods are
searched, the best neighbor of all these neighborhoods combined is chosen and this will be
seen as the new starting point. Three conventional methods have been combined to give this
final improvement stage of the FIH a firm foundation. Note that these can partially be skipped
when searching for the first improvement when the Quick method has been used to improve
the initial solution.
1) As improvement by Opt* moves has provided good results (Holden, N. & Hasle, G., 2009)
these Opt* moves are also used in FIH. As most best known solutions either use at most 5 or
at least 10 trucks, 5 has been chosen as the largest Opt* Neighborhood that is searched. As
only moves between tours are made 6 Opt* or higher does not add anything for solutions with
at most 5 trucks. And as searching an Opt neighborhood becomes significantly more work
when more trucks are used, anything over 5 Opt* is inapplicable to solutions with more than 10
trucks. For reference, checking the 5 Opt* neighborhood for a solution with 13 tours takes
roughly 4.5 hours as shown in Appendix A4.
2) As it is a small step from Opt* to Interchange, the best 5-way Interchange move is also
considered. Though Interchange itself is not as strong as Opt*, it is a useful combination as
Interchange covers a major weakness in Opt*. Interchange has the ability to optimize the order
of cities within a tour, a feature that Opt* lacks .
3) It is stated by Bai, R., Burke, E.K., Grendeau, M. & Kendall, G. (2007) that Cross
Exchange is very effective for VRPTW problems. Cross Exchange was applied with segments
from two tours, and we have improved on this by checking the Cross Exchange Neighborhood
with segments from two or three tours. The Cross Exchange does not only allow for
improvements in the number of kilometers, but also in the number of required trucks.

Even though Cross Exchange with three tours is not mentioned in the description of any record
holding VRPTW heuristic (Solomon 2005), implementing this does not yet lead to the best
known results. Therefore we designed a completely new method to improve VRPTW solutions.
Note that this new neighborhood is also completely searched like the neighborhoods
corresponding with the three methods above, and only after this the best improvement from all
these neighborhoods is selected and executed.

For every city Ci a k-friend list is made based on time and location. The friend list is an entirely
new concept we have developed and it will be described now. The ready time of the
predecessor of Ci and the due date of the follower of Ci determine which cities are potential
friends. For the calculations we have chosen to fill the friend list with Ci, the predecessor of Ci,
the follower of Ci, and the k potential friends with the smallest Euclid distance from Ci. This
could result in a friend list as displayed in figure 4.

15

Figure 4: Friend list

The large dot is city Ci, and together with the circled dots they make it makes up a friend list of
size 10. This is the same size that has been used in the implementation as checking all
interchange moves for the 100 cities roughly takes 20 minutes with 1GHZ available. Checking
N friend lists of size 12 on the other hand, would take more than one day. After the friend list
has been made all k! possible interchanges between these k points are considered for all N
cities. As these points, given each city Ci with i 1 to N, are relatively close to each other in
distance and time, it is likely that many interchanges are smart and feasible. This method is
particularly interesting as it using it for all hundred cities in the benchmark problems is roughly
as fast as normal 4-way Interchange, therefore it can make moves that would be incalculable
when not only the friend list had to be considered.
In addition to using this friend list for k-way Interchange, we have also implemented the check
of all Opt* moves with these k starting points, even if they are not all in different tours.
However, note that most Opt* moves will be infeasible unless a solution has many trucks that
visit only a few cities.

This was a brief description of the Friendly Interchange Heuristic, the entire program in pseudo
code can be found in appendix A1.

16

7. Results

As can be derived from Appendix A4, it would take too much time to apply the improvement
algorithm to the initial solution of all benchmark problems. Hence the Quick method was used
to generate advanced starting points. As shown in appendix A2, the best results were found for
clustered problems. Therefore we have used most of the available time to obtain the results
provided in Table 4. The actual tours can be found in appendix A3.

Problem Best Improve Best Known RE

C101 10 828.94 10 828.94 1

C102 10 828.94 10 828.94 1

C103 10 828.94 10 828.06 0.999

C104 10 828.94 10 824.78 0.995

C105 10 828.94 10 828.94 1

C106 10 828.94 10 828.94 1

C107 10 828.94 10 828.94 1

C108 10 828.94 10 828.94 1

C109 10 828.94 10 828.94 1

C201 3 591.56 3 591.56 1

C202 3 591.56 3 591.56 1

C203 3 591.17 3 591.17 1

C204 3 590.6 3 590.6 1

C205 3 588.88 3 588.88 1

C206 3 588.49 3 588.49 1

C207 3 588.29 3 588.29 1

C208 3 588.32 3 588.32 1
Table 4: Best Results

For clustered problems the best solution has been found fifteen out of seventeen times, and
twice a solution has been found that has a relative efficiency RE, which is very close to 1.

Besides the good Quick solutions that were found, a few start solutions were also made
available by Gambardella, L.M. (2000). The FIH has been able to improve on exactly one
solution, that of RC202. The required amount of trucks was unchanged but the travelled
distance improved from 1370.92 to 1368.23. When comparing the solutions, the improvement
turned out to be a simple 2-way Interchange move.

17

8. Conclusion

Though one cannot conclude NN2 is better at finding starting solutions is better than well
parameterized insertion, it has been shown that in the RC2 set, NN2 can beat the starting
solutions proposed by Solomon when measured in average kilometers. And relatively harder
than it gets beaten on any of the other sets. Also, as it performs much better than the linear
NN1 model while NN2 has fewer parameters, it is recommended to consider nonlinear cost
functions when building tours.

When observing the results of the FIH, we conclude that the simple improvement of the result
provided by Gambardella, L.M. (2000) confirms the recommendation of it cannot be denied
that it gives good results for clustered problems. The friend list makes the algorithm complete,
because most best solutions had not been found before it got implemented. Amongst others it
found a 7-way Interchange move that would have been incalculable without a friend list.

There is one major downside to the algorithm as we have implemented it, this is the long
runtime. A five opt move can take up to 4.5 hours. However, this is probably due to limited
programming skill, and the key element, the best ten friend improvement, only takes a few
minutes. This means it has potential and can be increased to at least 11 friends while
remaining manageable computation times with regular computers.

18

References

Arbelaitz, O. & Rodriguez, C. (2000) A High Efficiency Parallel Algorithm for the VRPTW
based on Simulated Annealing. Proceedings of the Joint Conference on Information Sciences,
JCIS-2000, 411 -416.

Bai, R., Burke, E.K., Grendeau, M. & Kendall, G. (2007). A Simulated Annealing
Hyperheuristic: Adaptive Heuristic Selection for Different Vehicle Routing Problems. The 3rd
Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA
2007), Paris, France, August 28-31.

Galíc, A., Caric, T., Fosin, J., Cavar, I. & Gold, H. (2006) Distributed Solving of the VRPTW
with Coefficient Weighted Time Distance and Lambda Local Search Heuristics. Proceedings
of the 29th International Convention on Information-Communications Technology, pp. 247252,
Opatija, May 2006, MIPRO, Rijeka, Croatia.

Gambardella, L.M. (2000). MACS-VRPTW: A Multiple Ant Colony Optimization System for
Vehicle Routing Problems with Time Windows (VRPTW). Retrieved July 3, 2010, from
http://www.idsia.ch/~luca/macs-vrptw/welcome.htm.

Helsgaun, K. (2006) An Effective Implementation of K-opt Moves for the Lin-Kernighan TSP
Heuristic. DATALOGISKE SKRIFTER (Writings on Computer Science) 109.

Holden, N. & Hasle, G. (2009). Extending the Lin-Kernighan algorithm to improve solutions
to VRPs with Time Windows. Sintef Report A13822.

Lin, S. & Kernighan, B.W. (1973) An Effective Heuristic Algorithm for Traveling-Salesman
Problem. Operations Research 21, 498-516.

Thangiah, S.R., Sun, T. & Potvin, J. (1996) Heuristic Approaches to Vehicle Routing with
Backhauls and Time Windows. Computers & Operations Research, 23(11), 1043-1057.

Morton, T. E. & Pentico, D.W. (1993) Heuristic scheduling systems: With applications to
production systems and project management, 82-85.

Solomon, M.M. (1987). Algorithms for the Vehicle Routing and Scheduling Problems with
Time Window Constraints. Operations Research, 35(2), 254-256.

Solomon, M.M. (2005). VRPTW Benchmark Problems. Retrieved July 3, 2010 from

Northeastern University, Boston, Massachusetts Web site:

http://web.cba.neu.edu/~msolomon/problems.htm.

19

Appendix

A1 Source code

Unit PseudoCode;

Procedure Execute();
begin

Load();
if NoStartingSolution then
MakeStartingSolution(1024); //endif
repeat

OldDistance:=CurrentDistance;
BestImprove();
RunCount:=RunCount+1;
Display(); //Shows steps on screen, optional
NewDistance:=CurrentDistance;

until (oldbestBestDistance=newbestBestDistance) or (RunCount=RunLimit);
SavePath(); //saves best solution to textfile

end;

Procedure Load();
begin

LoadInstance(); //loads the problem data
CheckforStartingSolution(); //loads best known solution if available

end;

Procedure MakeStartingSolution(NrOfFractions);
begin

ReadData(); //Reads in the loaded problem data
for Fraction := 1 to NrOfFractions do
begin

Alpha:=Fraction/NrOfFractions;
Build(Alpha);
CalcTours(); //Calculates starttimes, endtimes and required capacity
if BetterSolution then
BestSolution:=Solution;//endif

end;
if not SimilarAlphaGivesSameResult then
if NrOfFractions<limit then
MakeStartingSolution(NrOfFractions*4); //endif //endifnot

end;

20

Procedure Build(Alpha);
begin

T:=1;
Repeat

Current:=Depot;
BestAddition:=0;
for I := 1 to NumberOfCitiesAvailable do //Just loop over available cities.
begin

DCI:=Distance(Current,I); //Calculates distance between two points.
TimeTillStart:=Min(DCI,Ready[I]-CompletionTime[current]);
Criterion:=Alpha*TimeTillStart^2+(1-Alpha)*DCI^2;
if Criterion<BestCriterion then
begin

BestAddition:=I;
Criterion:=BestCriterion;

end;
end;
if BestAddition<>0 then
begin

Tour[T]:=Tour[T]+BestAddition;
NumberOfCitiesAvailable:=NumberOfCitiesAvailable-1;

end
else
T:=T+1;//endif

until NumberOfCitiesAvailable=0;
end;

Procedure BestImprove();
begin

Insert();//Takes a section and tries to insert it in a different tour
if NoChangeInTrucks then
begin

Interchange(5);
Opt(5);
Cross(3);
FriendOptInt(10);

end;
end;

Procedure Interchange(K); //Interchanges K points
begin
for City1 := 1 to NumberOfCities-k+1 do

for City2 := City1+1 to NumberOfCities-k+2 do
{...}

for CityK := CityKminus1+1 to NumberOfCities do
begin

NrOfPermutations:=k!;
for J := 1 to NrOfPermutatioins - 1 do
begin

ToCheck:=PermuteIntK(J,City1,City2{,...},CityK);//1 permutation
Process();

end;
end;

end;

21

Procedure Process();
begin
if Feasible(ToCheck) then //Checks feasibility of result
if BetterSolution then
BestSolution:=Solution;
end;

Procedure Opt(K); //Interchanges tails from K different tours
begin

for TouR1 := 1 to NumberOfTours-k+1 do
for TouR2 := TouR1+1 to NumberOfTours-k+2 do

{...}
for TourK := TourKminus1+1 to NumberOfTours do

for City1 := TouR1[1] to TouR1[NrInTour[1]] do
{...}

for CityK := Tourk[1] to Tourk[NrInTour[k]] do
begin

NrOfPermutations:=k!;
for J := 1 to NrOfPermutatioins - 1 do
begin

ToCheck:=PermuteOptK(J,City1{,...},CityK);//1 permutation
Process();

end;
end;

end;

Procedure Cross(K);//Interchanges sections from K different tours
begin

for TouR1 := 1 to NumberOfTours-k+1 do
for TouR2 := TouR1+1 to NumberOfTours-k+2 do

{...}
for TourK := TourKminus1+1 to NumberOfTours do
begin

NrOfPermutations:=k!;
for Start1 := 1 to NrInTour[TourSet[1]] do

for End1 := start1 to NrInTour[TourSet[1]] do
{...}
for StartK := 1 to NrInTour[TourSet[K]] do

for EndK := StartK to NrInTour[TourSet[K]] do
for J := 1 to NrOfPermutatioins - 1 do
begin

ToCheck:=PermuteCrossK(J,Start1,End1{,...},StartK,EndK);
Process();

end;
end;

end;

22

Procedure FriendOptInt(NrOfFriends);
begin

for Who := 1 to NumberOfCities do
begin

MakeFriendList(Who,NrOfFriends);
InterchangeFriends(NrOfFriends); //Like Interchange(K);
OptFriendsAreStartOfTails(NrOfFriends); //Like Opt(K),with many infeasible attempts

end;
end;

Procedure MakeFriendList(Who,NrOfFriends);
var
I: Integer;
begin

for I := 1 to NrOfFriends do
begin

FriendList[I]:=Who;
FriendDistance[I]:=Infinite;

end;
StartBound:=CompletionTime[Predecessor[Who]];
EndBound:=DueDate[Follower[Who]]-ServiceTime[Follower[Who]];
for I := 1 to 100 do
if DueDate[I]-ServiceTime[I]>StartBound then
if ReadyTime[I]+ServiceTime[I]<EndBound then
if not NrOfFriendsAreCloser then
ReplaceFurthest(); //Kick the furthest point from the friendlist, add I

end; end.

23

A2 Starting Solutions

This appendix contains the result of the Initial solutions and the result of the Quick Improve.
Note that the Improvement algorithm is used on the clustered problems after doing these both
steps. Final results for the clustered section can be found in chapter 7.Results.

Problem Initial solution Quick Improve Best Known Truck Efficiency

R101 21 2015.21 20 1.648.958 19 1645.79 0.95

R102 19 1916.94 19 1.544.311 17 1486.12 0.894737

R103 17 1849.83 16 1344.31 13 1292.68 0.8125

R104 14 1478.49 13 1.100.794 9 1007.24 0.692308

R105 16 1701.69 15 1.480.173 14 1377.11 0.933333

R106 16 1660.22 15 1.337.713 12 1251.98 0.8

R107 14 1473.31 14 1.235.175 10 1104.66 0.714286

R108 12 1322.78 10 1.110.848 9 960.88 0.9

R109 13 1469.52 13 1.315.718 11 1194.73 0.846154

R110 13 1527.69 13 1265.07 10 1118.59 0.769231

R111 13 1646.24 13 1238.45 10 1096.72 0.769231

R112 11 1316.18 11 1.122.563 9 982.14 0.818182

R201 8 1300.79 7 1254.38 4 1252.37 0.571429

R202 8 1219 8 1.182.452 3 1191.7 0.375

R203 8 1102.66 6 9.890.856 3 939.54 0.5

R204 8 1016.85 5 9.080.734 2 825.52 0.4

R205 8 1139.41 6 1.073.983 3 994.42 0.5

R206 8 1107.08 5 1.082.402 3 906.14 0.6

R207 8 1029.89 5 9.443.356 2 893.33 0.4

R208 8 953.409 4 7.840.383 2 726.75 0.5

R209 3 1317.61 3 1.149.425 3 909.16 1

R210 3 1627.84 3 1.240.747 3 939.34 1

R211 3 1151.86 3 9.573.961 2 892.71 0.666667

C101 10 855.065 10 8.289.369 10 828.94 1

C102 11 1285.44 11 1.060.087 10 828.94 0.909091

C103 11 1652.56 10 971.529 10 828.06 1

C104 11 1417.62 11 9.737.623 10 824.78 0.909091

C105 10 855.065 10 8.289.369 10 828.94 1

C106 10 975.171 10 8.289.369 10 828.94 1

C107 10 945.415 10 8.289.369 10 828.94 1

C108 10 1097.94 10 8.503.788 10 828.94 1

C109 10 1106.75 10 8.531.678 10 828.94 1

C201 3 591.557 3 5.915.566 3 591.56 1

C202 4 927.768 4 7.130.699 3 591.56 0.75

C203 4 1211.42 4 705.939 3 591.17 0.75

C204 4 1124.27 4 7.985.746 3 590.6 0.75

24

C205 3 627.918 3 6.270.945 3 588.88 1

C206 3 631.057 3 6.162.238 3 588.49 1

C207 4 745.767 3 6.461.871 3 588.29 1

C208 3 644.95 3 6.171.367 3 588.32 1

RC101 17 2108.46 17 1.715.033 14 1696.94 0.823529

RC102 16 1969.24 15 1.546.897 12 1554.75 0.8

RC103 14 1713.36 14 1.445.949 11 1261.67 0.785714

RC104 13 1658.36 12 1.286.674 10 1135.48 0.833333

RC105 18 1994.02 16 1.578.331 13 1629.44 0.8125

RC106 14 1715.06 13 1.437.741 11 1424.73 0.846154

RC107 14 1568.62 13 1.326.107 11 1230.48 0.846154

RC108 12 1543.85 12 1.320.572 10 1139.82 0.833333

RC201 5 2124.46 5 1.516.372 4 1406.91 0.8

RC202 4 1931.08 4 1.490.722 3 1367.09 0.75

RC203 4 1693.87 4 1.169.812 3 1049.62 0.75

RC204 4 1311.97 3 9.759.373 3 798.41 1

RC205 5 2007.99 5 1.407.424 4 1297.19 0.8

RC206 4 1716.24 4 1.381.135 3 1146.32 0.75

RC207 4 1737.11 4 1.301.147 3 1061.14 0.75

RC208 3 1361.24 3 1294.98 3 828.14 1
Table 5: Best found and best known results.

Problem Trucks Distance

R103 13 1292.68

R112 9 982.14

R201 4 1.253.234

R202 3 1.202.529

R204 2 856.364

R206 3 906.14

R207 2 894.889

R208 2 726.823

R209 3 921.659

R210 3 939.373

RC202 3 1370.92

RC203 3 1050.64

RC204 3 798.464

RC205 4 1297.65

RC206 3 1146.32

RC207 3 1.068.855

RC208 3 828.709
Table 6: Best found results by MACS.

25

A3 Tours

C1 (all):

1: 5 3 7 8 10 11 9 6 4 2 1 75
2: 13 17 18 19 15 16 14 12
3: 20 24 25 27 29 30 28 26 23 22 21
4: 32 33 31 35 37 38 39 36 34
5: 43 42 41 40 44 46 45 48 51 50 52 49 47
6: 57 55 54 53 56 58 60 59
7: 67 65 63 62 74 72 61 64 68 66 69
8: 81 78 76 71 70 73 77 79 80
9: 90 87 86 83 82 84 85 88 89 91
10: 98 96 95 94 92 93 97 100 99

C201, C202:

1: 20 22 24 27 30 29 6 32 33 31 35 37 38 39 36 34 28 26 23 18 19 16 14 12 15 17 13 25 9 11
10 8 21
2: 67 63 62 74 72 61 64 66 69 68 65 49 55 54 53 56 58 60 59 57 40 44 46 45 51 50 52 47 43
42 41 48
3: 93 5 75 2 1 99 100 97 92 94 95 98 7 3 4 89 91 88 84 86 83 82 85 76 71 70 73 80 79 81 78
77 96 87 90

C203:

1: 20 22 24 27 30 29 6 32 33 31 35 37 38 39 36 34 28 26 23 18 19 16 14 12 15 17 13 25 9 11
10 8 21
2: 67 63 62 74 72 61 64 66 69 68 65 49 55 54 53 56 58 60 59 57 40 44 46 45 51 50 52 47 42
41 43 48
3: 93 5 75 2 1 99 100 97 92 94 95 98 7 3 4 89 91 88 84 86 83 82 85 76 71 70 73 80 79 81 78
77 96 87 90

C204:

1: 20 22 24 27 30 29 6 32 33 31 35 37 38 39 36 34 28 26 23 18 19 16 14 12 15 17 13 25 9 11
10 8 21
2: 67 63 62 74 72 61 64 66 69 68 65 49 55 54 53 56 58 60 59 57 40 44 46 41 42 45 51 50 52
47 43 48
3: 93 5 75 2 1 99 100 97 92 94 95 98 7 3 4 89 91 88 84 86 83 82 85 76 71 70 73 80 79 81 78
77 96 87 90

C205:

1: 20 22 24 27 30 29 6 32 33 31 35 37 38 39 36 34 28 26 23 18 19 16 14 12 15 17 13 25 9 11
10 8 21
2: 67 63 62 74 72 61 64 66 69 68 65 49 55 54 53 56 58 60 59 57 40 44 46 45 51 50 52 47 42
41 43 48
3: 93 5 75 2 1 99 100 97 92 94 95 98 7 3 4 89 91 88 86 84 83 82 85 76 71 70 73 80 79 81 78
77 96 87 90

26

C206:

1: 20 22 24 27 30 29 6 32 33 31 35 37 38 39 36 34 28 26 23 18 19 16 14 12 15 17 13 25 9 11
10 8 21
2: 67 63 62 74 72 61 64 66 69 68 65 49 55 54 53 56 58 60 59 57 40 44 46 45 51 50 52 47 42
41 43 48
3: 93 5 75 2 1 99 100 97 92 94 95 98 7 3 4 89 91 88 86 84 83 82 85 76 71 70 73 80 79 81 78
77 96 87 90

C207:

1: 20 22 24 27 30 29 6 32 33 31 35 37 38 39 36 34 28 26 23 17 18 19 16 14 12 15 13 25 9 11
10 8 21
2: 67 63 62 74 72 61 64 66 69 68 65 49 55 54 53 56 58 60 59 57 40 44 46 45 51 50 52 47 42
41 43 48
3: 93 5 75 2 1 99 100 97 92 94 95 98 7 3 4 89 91 88 86 84 83 82 85 76 71 70 73 80 79 81 78
77 96 87 90

C208:

1: 20 22 24 27 30 29 6 32 33 31 35 37 38 39 36 34 28 26 23 18 17 19 16 14 12 15 13 25 9 11
10 8 21
2: 67 63 62 74 72 61 64 66 69 68 65 49 55 54 53 56 58 60 59 57 40 44 46 45 51 50 52 47 42
41 43 48
3: 93 5 75 2 1 99 100 97 92 94 95 98 7 3 4 89 91 88 86 84 83 82 85 76 71 70 73 80 79 81 78
77 96 87 90

RC202:
1: 45 5 3 1 42 39 36 44 69 88 73 16 99 53 78 79 8 6 46 2 55 68 54 43 35 37 72 96 93 94 80
2: 65 82 98 12 14 47 15 11 83 64 23 19 51 76 18 22 57 86 87 9 10 97 59 74 13 17 7 4 60 100
70
3: 91 92 95 85 63 33 28 26 27 29 31 30 62 67 71 61 41 38 40 81 90 84 49 20 66 56 50 34 32
89 48 21 24 25 77 75 58 52

27

A4 Computation times

Running computations for this project has taken between 300 and 500 hours of computer time,
tests during the programming phase included. All computations have been made on computers
with a speed of 2 GHZ. When running the implementation the program uses exactly 50% of the
maximum computer speed. Letting this program run two instances simultaneously drives up
the CPU usage to 75%, and only when 3 or more instances are ran simultaneously the
maximum capacity is used. Hence, when calculations are required for multiple problems it is
recommended to run several instances simultaneously to minimize the total required time.
Calculation times have not been properly recorded, and therefore we only present rough upper
bounds. However, these upper bounds can be up to 10 times higher than the expected
calculation time. The required time heavily depends on the amount of truck tours, and how
cities are distributed between them.

Neighborhood search Hours

5 Opt* ≤ 4.5

5-way Interchange ≤ 1

2+3 Cross Exchange ≤ 1

Friend Interchange ≤ 0.5

Friend Opt ≤ 2

Quick method (all steps) ≤ 1.5

Initial solution ≤ 0.1
Table 7: Calculation time indications

Note that Interchange much is faster than Opt*, we expect that this is due to the fact that
generally more Opt* neighbors are feasible. And it takes more time to check a feasible
neighbor.

