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1. Abstract  
 
Vehicle Routing Problems with Time Windows (VRPTW) are hard to solve, and even small  
instances resist ways to find the optimal solution. Therefore heuristics are used to get good  
solutions. In this paper heuristics that are currently used to find the best known solutions are  
briefly described. Also the entirely new Friendly Interchange Heuristic (FIH) is introduced and 
its results are compared to the best known solutions for benchmark problems.  
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3. Introduction  
 
A Vehicle Routing Problem with Time Windows (VRPTW) is a problem where several cities  
have deterministic demand. Each city has to be visited exactly once, and within a specific  
time interval. There is one depot from which trucks with a certain loading capacity depart  
simultaneously. There are several possible objective functions that minimize combinations of 
the amount of trucks, the amount of kilometers, or even the amount of time required. In this 
paper the main goal is to minimize the number of vehicles, and as a tie breaker the number of 
kilometers is minimized. To test heuristics for VRPTW a set of benchmark problems has been 
created, the so called Solomon instances (Solomon 2005). Each problem consists of exactly 
100 cities that can be either randomly distributed, clustered or both. Also the time constraints 
for the problem can be loose, or tight. The distances are Euclid, and one kilometer takes one 
unit of time. VRP is NP hard, as VRPTW can be reduced to VRP with some restrictions 
VRPTW is also NP hard (Solomon 1987). Considering this, solving for optimality is not an 
option for problems of some size, and therefore heuristics must be designed to find good 
solutions. In this paper we will construct a heuristic for VRPTW by using several elements from 
existing heuristics as a basis. After implementing and combining these, a new neighborhood 
will be added. The latter is called the Friendly Interchange Neighborhood, an extension of the 
general k-way Interchange Neighborhood that we shall describe in this paper. 
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4. Tour Creation  
 
When creating tours one can choose between a sequential and a parallel method (Solomon 
1987). With a sequential method, in each step one truck is selected and customers are added 
to the route of that truck. When required a new truck is added, this goes on until all customers 
are served. With a parallel method a number of truck routes are being altered within one step. 
This means that there is some freedom in the number of trucks that is used in the beginning. 
Both the sequential and the parallel method can be applied deterministically, or generically. 
The main idea behind generic algorithms is that the sum of all best sub decisions, does not 
generally add up to the best total combination of decisions. But of course, the probability that a 
good sub decision is part of the best total solution is relatively high. Therefore generic 
algorithms often give sub decisions that seem favorable a higher probability. Now the 
decisions just need to be made many times, and hopefully one of all the solutions that are 
found is good. After all, when solving a problem the average solution that you find is not 
interesting, only the best one is.  
 

4.1 Examples sequential method  

4.1.1 Nearest Neighbor 

There are many deterministic sequential tour creation algorithms like Nearest Neighbor and 
Insertion. To give simple deterministic example of a sequential tour creation we define the 
Nearest Neighbor algorithm NN1 as follows:  
 
1) Start driving with 1 truck.  
2) Add the available city with the lowest penalty cost Cij.  
3) Repeat this until no city can be added.  
4) Start driving with the next truck.  
5) If not all customers are served go to 2).  
 
This is the Nearest Neighbor algorithm for which Solomon proposed a  
cost function. However, when the right parameters are set it is generally outperformed by  
Insertion (Solomon 1987). The mentioned cost function is defined as follows: 
Cij= δ1Dij+ δ2Tij+ δ3Vij 
s.t.  δ1+ δ2+ δ3=1, δ1≥0, δ2≥0, δ3≥0 

i is in the partial solution, j is not in the partial solution. 
with: 
Dij:= Euclid distance from i to j. 
Tij:= Time difference between completing i and starting j. 
Vij:= Time remaining until last possible start of j following i. 
 

4.1.2 Probable Nearest Neighbor 

Though generic sequential algorithms are not often used in practice, we can easily create an 
example by adapting step two of the Nearest Neighbor algorithm. Assuming positive costs,  
the second step could become: 
2) Add an available city with probability SC/Cij. 
Where SC is defined as the sum of costs over all available cities j from current point i.  
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4.2 Examples parallel method  

 

4.2.1 Savings Heuristic 

An example of a deterministic parallel method is given by Solomon (1987): 

1) Begin with n trucks that each serve 1 customer each. 

2) Try to connect all end points of a truck to the starting point of all new trucks and calculate 

costs. 

3) Pick the single satisfactory connection with the lowest total Euclid distance. 

4) If another satisfactory connection can be made go to 2).  

Where a satisfactory connection is defined as feasible and with an increase in waiting time 

lower than a constant upper bound. This upper bound should be set in advance. 

 

4.2.2 Multiple Ant Colony System  

To conclude this section we give a more interesting example of how important tour creation 
can be in a heuristic. Perhaps the best generic building method that exists today is the Multiple 
Ant Colony System (Gambardella 2000). This heuristic was based on the behavior of food 
searching ants in nature, and has one ant colony per objective. First of all a number of ants 
finds a feasible solution to the VRPTW problem by randomly choosing a feasible city to visit 
each time, while using a uniform distribution to choose between possible cities. When an ant 
visits the depot to drop its load, it counts as adding a truck. After the ants have completed their 
task their pheromone trace is left behind to attract ants from the next wave to the edges visited 
by the past ant wave. Every colony leaves a specific trace behind that is only picked up by 
other ants in the same colony. The strength of the pheromone trace of a single ant is 
correlated with the quality of the solution. For example, an ant that comes from a colony that 
has as objective to minimize the number of kilometers, will leave a trail with strength one over 
the number of kilometers it travelled before finding a feasible solution. After this first run, a 
second wave of ants sets out to search food. Again they randomly choose cities each time, but 
they do not use a uniform random distribution, but one that is affected by the pheromones. A 
stronger pheromone trail is more likely to attract an ant. Therefore they are more likely to take 
good routes than they would have been without the existing pheromone traces. Note that the 
ant leaves the same trace behind on all roads between cities it visited, so if an ant goes from 
the depot to A to B to C to D and another ant goes from the depot directly to C, then it can still 
pick up the pheromone trail which tells it that the other ant went to D afterwards, with good or 
bad result. Several groups of ants go out on a hunt for food after another and each group has 
better information than the previous one, resulting in better solutions. Initially the algorithm was 
designed in such a way that ants were attracted by the pheromones of all predecessors. 
However, the most recent version only uses information from the best solution to influence 
ants.  
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5. Local Search  
 

A local search algorithm finds better solutions by browsing the neighborhood of an existing 
solution. It is customary to go by all neighbors 1 by 1 until a certain target is reached. This 
target can be the improvement of the current solution or finding the best neighbor. When using 
the first improvement the steps are faster as not all neighbors need to be checked. When using 
the best solution instead the number of required steps is generally lower and the result does 
not depend on the order in which you compare the neighbors. A more sophisticated target 
would be dependent on your objective function. For example, pick the first neighbor that 
requires less trucks, and otherwise the one with the least amount of kilometers. This is the 
criterion that is used in this paper. In this chapter several neighborhoods will be described, 
most of which form the foundation of the Friendly Interchange Heuristic.  
 

5.1 General Pair wise Interchange Neighborhood  

 
This is perhaps the most simple neighborhood. It selects two cities in the solution, not 
necessarily from one truck tour, and switches their places like shown in figure 1. 
 

  
Figure 1: Pair wise Interchange move 

 
This neighborhood is frequently used in job shop problems (Morton, T. E. & Pentico, D.W., 
1993) but not in VRP heuristics as it cannot reduce the number of vehicles and cannot change 
sections of a tour. However, this algorithm is rather quick, and might be useful to improve the 
starting point.  
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5.2 General k-way Interchange Neighborhood  

An extension of the GPIN is the Gk-IN as described by Morton, T. E. & Pentico, D.W. (1993). 
Now not only pairs are selected, but every combination of k points, not necessarily from 1 tour. 
And after selecting these k points try all possible ways of swapping and look for the best 
improvement. As searching the entire neighborhood is of O(Nk) this neighborhood is not 
frequently used for k>3. Despite the fact that this algorithm is very costly for large k, the 
required computational time can be managed by using it on problems with a small N. This 
could mean that it is used for VRPTW instances with not many cities, or that it is used for parts 
of an instance. For example it can be used to improve the efficiency of 1 truck. Or even to 
consider many interchanges of cities that are visited within a limited time interval. This can be 
particularly effective for instances with tight time constraints.  
 

Another way to search the Gk-IN is by means of a trick we have invented to significantly  
reduce the number of solutions in the neighborhood. When observing a Gk-IN we noticed that  
many of the solutions are in fact in the G(k-1)-IN. For example the permutations of 1 2 3 and 4 
can be divided in a group that is in the 3 Interchange Neighborhood, and a group that is not in 
the 3 Interchange Neighborhood. Note that solutions are not symmetric due to time windows, 
3214 is not the same as 4123 as it might be possible to add a fifth city to 3214 while it may not 
be possible to add the same city to 4123. Here is an example of what the 4-way Interchange 
Neighborhood of a small tour looks like and how it is split up: 

In 3-way Interchange Neighborhood Not in 3-way Interchange Neighborhood 

1234 2143 

1243 2341 

1324 2413 

1342 3142 

1423 3412 

1432 3421 

2134 4123 

2314 4312 

2431 4321 

3124   

3214   

3241   

4132   

4213   

4231   
Table 1: 4-way Interchange Neighborhood 
 

This can be exploited by first performing 3-way Interchange, and after that only searching the 
solutions that are not in the 3-way Interchange Neighborhood. Of course after improving it in 
this way the other moves need to be checked again to make sure that it is not possible to 
improve further with 3-way Interchange moves, but as most solutions that are checked do not 
lead to improvements this can save much time. When no improvement is found this method 
takes less than half the time that normal k-way Interchange would take. In the worst case this 
way of doing k-way Interchange has the same complexity as normal k-way Interchange, the 
only drawback is that you can no longer compare all k-Interchange improvements if you First 
make a solution by executing all (k-1)-way Interchanges that lead to improvement, which 
probably leads to a loss in quality of the end result. Therefore this way of browsing the k-IN, 
Opt or Opt* Neighborhood has not been implemented in the final version of the Friendly 
Interchange Heuristic. 
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5.3 2 Opt Neighborhood  

 
Most algorithms for Travelling Salesmen Problems and Vehicle Routing Problems are  
improvements on 2 Opt. The 2 Opt Neighborhood consist of all feasible solutions that can be 
obtained by removing 2 connections between cities, and connecting them in another way 
(Helsgaun 2006). These cities can be in two different truck tours or within the same truck tour. 
When this happens within the tour of one single truck this is in fact a reversion of a section in 
the tour.  
Here is an example where two connections are cut from different tours. The corresponding 
neighbor can be found by cutting the 2 connections, and then reconnecting the cities like 
shown in figure 2. 

 
Figure 2: Opt move 

 
Any solution in the Pair wise Interchange Neighborhood can also be reached by making two  
 2 Opt moves, though these opt moves might not be legal separately. The great advantage of 2 
Opt over k-way interchange is that it allows more cities to change position. Especially a city 
which is visited halfway the tour of a truck, that has a predecessor and a follower with very 
strict time constraints, benefits a lot. No city would fit between its predecessor and its follower. 
But either the predecessor or the follower can be changed now. Another advantage is that this 
neighborhood generates solutions where  the number of jobs on a truck is different from the 
number of trucks in the original solution.  
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5.4 k Opt Neighborhood  

 
In general k Opt moves can be made by removing k connections and connecting them in all  
feasible ways (Helsgaun 2006). However, due to the strongly increasing computation time 2 
Opt and 3 Opt are most popular, and k>5 is rarely used. This neighborhood seems to give very 
good results for VRP problems. Especially when combined with an algorithm that selects how 
large k is at each step, this is called the Lin-Kernighan heuristic.  
 

5.4.1 Lin Kernighan Helsgaun  

 
One of the best heuristics that uses local search was described in a paper by Lin, S.&  
Kernighan, B.W. (1973). It is called the Lin Kernighan heuristic and searches the k Opt 
Neighborhood for various k. The most popular implementation is Helsgaun’s. A Lin Kernighan 
heuristic with Helsgaun’s (2006) implementation is abbreviated to LKH.  
The LKH is used in the following way:  
First do a lot of trials and find many random feasible solutions. Note that LKH is not called a 
generic heuristic because creation of initial solutions is not considered to be part of the actual 
improvement algorithm.  
Then merge parts of good solutions by fixing edges that occur in many good solutions to get 
even better solutions. After this let a function determines which k Opt Neighborhood to search. 
For calculation purposes the Lin Kernighan Helsgaun implementation first tries to shift several 
sequential cities within a single truck route and check if the result is an improvement. The 
length of these segments of truck routes is at most k. When no more improvements are found 
a possible next step is again to fix the edges that appear in many good tours and then optimize 
the rest with larger k.  
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5.5 2 Opt* Neighborhood  

 
This is a neighborhood that specifically has been designed for VRPTW problems (Thangiah, 
S.R., Sun, T. & Potvin, J., 1996). The neighborhood is a restricted version of the 2 Opt 
Neighborhood. Only Tails from two different tours are cut. As a result, when swapping tour  
sections, the order of cities within a tour section will not change.  
 

5.6 k Opt* Neighborhood  

 
As Thangiah, S.R., Sun, T. & Potvin, J. (1996) only defined 2 Opt*, we will define k Opt*  
here as k Opt with the restriction that the tails of k different truck tours are cut. This ensures  
that the order of cities within a tour section will not change.  
 

5.6.1 LKH for VRPTW  

 
An adaptation of the normal LKH has been made by Holden, N. & Hasle, G. (2009).  
Unfortunately the results did not turn out to be great. This might be caused by the fact that the  
merging of tours by fixing edges that occur in multiple good solutions has completely been 
removed to keep it simple, but it could also mean that LKH is not suitable for VRPTW. 
However, from this implementation we took the concept of not always making the same large 
move. When deciding on which problems to investigate first many Quick moves were made as 
will be described later.  
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5.6 Cross Exchange Neighborhood 

 
A neighborhood that is particularly effective for solving VRPTW problems is the Cross 
Exchange Neighborhood as stated by Bai, R. Burke, E.K., Grendeau, M. &Kendall, G. (2007). 
This neighborhood is found by picking all possible sections from two different truck tours, and 
interchanging them. This has as an advantage that the order of cities within the segment is 
unchanged, and therefore time windows within the section are unlikely to cause problems.  
Figure 3 is an example of two tour sections with one two and one cities respectively that are 
exchanged. 

 
Figure 3: Cross Exchange move 
 

Note that the Cross Exchange Neighborhood also contains solutions which require fewer 
trucks then the initial solution. Cross exchange can move cities from a first truck to a second 
truck without moving any cities from the second truck to the first. And thus a truck can end up 
visiting zero cities and then the number of trucks will be decreased. 

5.7 k Cross Exchange Neighborhood 

 
The Cross Exchange Neighborhood has only been defined as interchanging two sections from 
two different tours. However, k Cross Exchange has not been defined yet. In this paper we 
define the k Cross Exchange Neighborhood as a generalization of the Cross Exchange 
Neighborhood. In the k Cross Exchange Neighborhood not only  segments from two tours are 
exchanged. But all possible sections from k different truck tours are exchanged, while again 
the order of cities within a section remains the same. Like with Cross Exchange the length of 
these sections can be anything from zero to the size of the truck tour. 
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6. Friendly Interchange Heuristic  
In this paper we propose a new heuristic for Vehicle Routing Problems with Time Windows. 
The so called Friendly Interchange Heuristic (FIH) first creates a starting solution and then tries 
to improve it until a good solution is found. For creating an initial solution we created a cost 
function for the Nearest Neighbor heuristic that uses only two parameters and performs quite 
well compared to other tour creation heuristics. After this initial solution has been created, a 
Quick method is used to improve the initial solution to a decent solution. This Quick method 
searches a small part of the entire neighborhood that is searched for tour improvement. 
Though this is not a necessary in between step in the algorithm as it is possible to use all 
improvement methods on the initial solution. This Quick method is used to improve the starting 
solution with many quick steps in order to reduce calculation time. Once the Quick method can 
no longer find any improvements, the algorithm enters the final tour improvement stage. Here 
a large neighborhood is searched to look for improvements, this is a time consuming process 
but due to the Quick method only a few steps are required to reach the best possible solution.    

6.1 Initial solution  

 
It has been recommended to use Insertion for VRPTW problems as it outperforms Nearest  
Neighbor (Solomon 1987). The suggested insertion criterion I1 uses two insertion criteria: 
‘Farthest unrouted customer’ or ‘Unrouted customer with earliest deadline’.  
This indeed outperforms the Nearest Neighbor algorithm NN1 when it uses a linear cost 
function that is both dependant on time and Euclid distance as described in Tour Creation:  
Cij= δ1Dij+ δ2Tij+ δ3Vij 
s.t. δ1+ δ2+ δ3=1, δ1≥0, δ2≥0, δ3≥0 
i is in the partial solution, j is not in the partial solution. 
with: 
Dij:= Euclid distance from i to j. 
Tij:= Time difference between completing i and starting j. 
Vij:= Time remaining until last possible start of j following i. 
 
However, in this paper we provide a completely new Nearest Neighbor implementation,  
called NN2, a sequential algorithm that can compete with the suggested Insertion algorithm, 
and that outperforms Nearest Neighbor on almost every problem set while using one 
parameter less: 
Cij= δ1Dij Dij + δ2Tij Tij 
s.t. δ1+ δ2=1, δ1≥0, δ2≥0 
i is in the partial solution, j is not in the partial solution. 
with: 
Dij:= Euclid distance from i to j. 
Tij:= Time difference between completing i and starting j. 

Creation 
method R1 C1 RC1 R2 C2 RC2 

I1 1436.7 951.9 1596.5 1402.4 692.7 1682.1 

I2 1638.7 1049.8 1874.4 1470.7 921.5 1797.6 

I3 1651.7 1103.3 1849.7 1474.6 1072.7 1816.4 

NN 1600.1 1171.2 1800 1472.3 963.1 1754.7 

NN2 1614.8 1132.3 1783.9 1178.8 813.1 1735.5 

Sweep 1499.7 940.8 1804.5 1448.6 711.9 1735.5 
Table 2: Absolute results  
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Creation 
method R1 C1 RC1 R2 C2 RC2 

I1 0.89 0.84 0.89 1.19 0.85 0.97 

I2 1.01 0.93 1.05 1.25 1.13 1.04 

I3 1.02 0.97 1.04 1.25 1.32 1.05 

NN 0.99 1.03 1.01 1.25 1.18 1.01 

NN2 1.00 1.00 1.00 1.00 1.00 1.00 

Sweep 0.93 0.83 1.01 1.23 0.88 1.00 
Table 3: Relative results  

 
The methods are used on all benchmark problems and table 2 and table 3 display average 
results based on kilometers. I2, I3 and Sweep are Insertion based heuristics that are also 
discussed by Solomon. A more detailed description can be found in the paper of Solomon 
(1987).  
 
As shown in Table 3 the NN2 heuristic is never the worst choice and no other heuristic 
dominates it. Especially in the R2 set this new method gives much better results than any of  
the tested heuristics.  
 
The solution with the least kilometers generally is not the solution with the least trucks.  
Unfortunately, the heuristics can only be compared by Euclid distance as the number of trucks 
is not known for the existing implementations. Also there is just a comparison between 
averages over the different sets of benchmark problems, and not all individual results are 
given. Therefore it is impossible to prove the intuition that NN2 actually is weakly dominant 
over NN1 for the benchmark problems. However, as Solomon chose these averages to 
compare tour creation methods we believe that using average kilometers will give reasonably 
good comparison between starting methods. Though implementing all given creation 
algorithms is possible, it would take a fair amount of time. And as the results show that NN2 
results in fewer kilometers than other solutions for the R2 set we do not think further testing is 
required to confirm that NN2 is a useful tour creation algorithm. 
 

6.2 Quick method 

 
The Quick method searches only part of the neighborhood that is searched in the final 
improvement stage.  This is a tradeoff between the size of the improvements, and the 
expected number of improvements to be made. In order to decrease computation times many 
small improvements are faster than a few large improvements. A general principle that has 
successfully been implemented in other heuristics like the Lin-Kernighan heuristic for 
Travelling Salesman Problems proposed by Lin, S. & Kernighan, B.W. (1973). The 
neighborhoods that are searched when using the Quick method are the 4* Opt Neighborhood, 
the 4-way Interchange Neighborhood and the Cross Exchange Neighborhood with two tours. 
As in the final Improvement stage first all neighbors from different neighborhoods are 
considered and only after this an improvement is chosen. Note that this Quick method includes 
the search for routes with fewer trucks as Cross exchange can move cities from a first truck to 
a second truck without moving any cities from the second truck to the first. And thus a truck 
can end up visiting zero cities and then the number of trucks will be decreased. 
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6.3 Improvement Algorithm  

 
The final stage of the Friendly Interchange Heuristic (FIH) consists of an improvement 
algorithm that searches a large neighborhood. It mainly focuses on decreasing the number of 
total kilometers as most of the minimization regarding the number of trucks has already taken 
place in creating the initial solution and by applying the Quick Method. However in each step it 
quickly checks if the number of trucks can be reduced. After several neighborhoods are 
searched, the best neighbor of all these neighborhoods combined is chosen and this will be 
seen as the new starting point. Three conventional methods have been combined to give this 
final improvement stage of the FIH a firm foundation. Note that these can partially be skipped 
when searching for the first improvement when the Quick method has been used to improve 
the initial solution. 
1) As improvement by Opt* moves has provided good results (Holden, N. & Hasle, G., 2009)  
these Opt* moves are also used in FIH. As most best known solutions either use at most 5 or  
at least 10 trucks, 5 has been chosen as the largest Opt* Neighborhood that is searched. As  
only moves between tours are made 6 Opt* or higher does not add anything for solutions with  
at most 5 trucks. And as searching an Opt neighborhood becomes significantly more work 
when more trucks are used, anything over 5 Opt* is inapplicable to solutions with more than 10  
trucks. For reference, checking the 5 Opt* neighborhood for a solution with 13 tours takes  
roughly 4.5 hours as shown in Appendix A4.  
2) As it is a small step from Opt* to Interchange, the best 5-way Interchange move is also  
considered. Though Interchange itself is not as strong as Opt*, it is a useful combination as 
Interchange covers a major weakness in Opt*. Interchange has the ability to optimize the order  
of cities within a tour, a feature that Opt* lacks .  
3) It is stated by Bai, R., Burke, E.K., Grendeau, M. & Kendall, G. (2007) that Cross  
Exchange is very effective for VRPTW problems. Cross Exchange was applied with segments  
from two tours, and we have improved on this by checking the Cross Exchange Neighborhood 
with segments from two or three tours. The Cross Exchange does not only allow for 
improvements in the number of kilometers, but also in the number of required trucks. 
 
Even though Cross Exchange with three tours is not mentioned in the description of any record 
holding VRPTW heuristic (Solomon 2005), implementing this does not yet lead to the best 
known results. Therefore we designed a completely new method to improve VRPTW solutions. 
Note that this new neighborhood is also completely searched like the neighborhoods 
corresponding with the three methods above, and only after this the best improvement from all 
these neighborhoods is selected and executed. 
 
For every city Ci a k-friend list is made based on time and location. The friend list is an entirely 
new concept we have developed and it will be described now. The ready time of the 
predecessor of Ci and the due date of the follower of Ci determine which cities are potential 
friends. For the calculations we have chosen to fill the friend list with Ci, the predecessor of Ci, 
the follower of Ci, and the k potential friends with the smallest Euclid distance from Ci. This 
could result in a friend list as displayed in figure 4. 
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Figure 4: Friend list 
 

The large dot is city Ci, and together with the circled dots they make it makes up a friend list of 
size 10. This is the same size that has been used in the implementation as checking all 
interchange moves for the 100 cities roughly takes 20 minutes with 1GHZ available. Checking 
N friend lists of size 12 on the other hand, would take more than one day. After the friend list 
has been made all k! possible interchanges between these k points are considered for all N 
cities. As these points, given each city Ci with i 1 to N, are relatively close to each other in 
distance and time, it is likely that many interchanges are smart and feasible. This method is 
particularly interesting as it using it for all hundred cities in the benchmark problems is roughly 
as fast as normal 4-way Interchange, therefore it can make moves that would be incalculable 
when not only the friend list had to be considered.  
In addition to using this friend list for k-way Interchange, we have also implemented the check 
of all Opt* moves with these k starting points, even if they are not all in different tours. 
However, note that most Opt* moves will be infeasible unless a solution has many trucks that 
visit only a few cities.  
 
This was a brief description of the Friendly Interchange Heuristic, the entire program in pseudo 
code can be found in appendix A1.  
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7. Results  
 
As can be derived from Appendix A4, it would take too much time to apply the improvement 
algorithm to the initial solution of all benchmark problems. Hence the Quick method was used 
to generate advanced starting points. As shown in appendix A2, the best results were found for 
clustered problems. Therefore we have used most of the available time to obtain the results 
provided in Table 4. The actual tours can be found in appendix A3. 
 

Problem Best Improve Best Known RE 

C101 10 828.94 10 828.94 1 

C102 10 828.94 10 828.94 1 

C103 10 828.94 10 828.06 0.999 

C104 10 828.94 10 824.78 0.995 

C105 10 828.94 10 828.94 1 

C106 10 828.94 10 828.94 1 

C107 10 828.94 10 828.94 1 

C108 10 828.94 10 828.94 1 

C109 10 828.94 10 828.94 1 

C201 3 591.56 3 591.56 1 

C202 3 591.56 3 591.56 1 

C203 3 591.17 3 591.17 1 

C204 3 590.6 3 590.6 1 

C205 3 588.88 3 588.88 1 

C206 3 588.49 3 588.49 1 

C207 3 588.29 3 588.29 1 

C208 3 588.32 3 588.32 1 
Table 4: Best Results  

 
For clustered problems the best solution has been found fifteen out of seventeen times, and  
twice a solution has been found that has a relative efficiency RE, which is very close to 1.  
 
Besides the good Quick solutions that were found, a few start solutions were also made  
available by Gambardella, L.M. (2000). The FIH has been able to improve on exactly one  
solution, that of RC202. The required amount of trucks was unchanged but the travelled 
distance improved from 1370.92 to 1368.23. When comparing the solutions, the improvement 
turned out to be a simple 2-way Interchange move.  
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8. Conclusion  
 
 
Though one cannot conclude NN2 is better at finding starting solutions is better than well  
parameterized insertion, it has been shown that in the RC2 set, NN2 can beat the starting  
solutions proposed by Solomon when measured in average kilometers. And relatively harder 
than it gets beaten on any of the other sets. Also, as it performs much better than the linear 
NN1 model while NN2 has fewer parameters, it is recommended to consider nonlinear cost 
functions when building tours.  
 
When observing the results of the FIH, we conclude that the simple improvement of the result  
provided by Gambardella, L.M. (2000) confirms the recommendation of it cannot be denied  
that it gives good results for clustered problems. The friend list makes the algorithm complete,  
because most best solutions had not been found before it got implemented. Amongst others it  
found a 7-way Interchange move that would have been incalculable without a friend list.  
 
There is one major downside to the algorithm as we have implemented it, this is the long  
runtime. A five opt move can take up to 4.5 hours. However, this is probably due to limited  
programming skill, and the key element, the best ten friend improvement, only takes a few  
minutes. This means it has potential and can be increased to at least 11 friends while  
remaining manageable computation times with regular computers.  
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Appendix  
 

A1 Source code  

 
Unit PseudoCode; 
 
Procedure Execute(); 
begin 

Load(); 
if NoStartingSolution then 
MakeStartingSolution(1024); //endif 
repeat 

OldDistance:=CurrentDistance; 
BestImprove(); 
RunCount:=RunCount+1; 
Display(); //Shows steps on screen, optional 
NewDistance:=CurrentDistance; 

until (oldbestBestDistance=newbestBestDistance) or (RunCount=RunLimit); 
SavePath(); //saves best solution to textfile 

end; 
 
Procedure Load(); 
begin 

LoadInstance(); //loads the problem data 
CheckforStartingSolution(); //loads best known solution if available 

end; 
 
Procedure MakeStartingSolution(NrOfFractions); 
begin 

ReadData(); //Reads in the loaded problem data 
for Fraction := 1 to NrOfFractions do 
begin 

Alpha:=Fraction/NrOfFractions; 
Build(Alpha); 
CalcTours(); //Calculates starttimes, endtimes and required capacity 
if BetterSolution then 
BestSolution:=Solution;//endif 

end; 
if not SimilarAlphaGivesSameResult then 
if NrOfFractions<limit then 
MakeStartingSolution(NrOfFractions*4); //endif //endifnot 

end; 
 



20 

 

Procedure Build(Alpha); 
begin 

T:=1; 
Repeat 

Current:=Depot; 
BestAddition:=0; 
for I := 1 to NumberOfCitiesAvailable do //Just loop over available cities. 
begin 

DCI:=Distance(Current,I); //Calculates distance between two points. 
TimeTillStart:=Min(DCI,Ready[I]-CompletionTime[current]); 
Criterion:=Alpha*TimeTillStart^2+(1-Alpha)*DCI^2; 
if Criterion<BestCriterion then 
begin 

BestAddition:=I; 
Criterion:=BestCriterion; 

end; 
end; 
if BestAddition<>0 then 
begin 

Tour[T]:=Tour[T]+BestAddition; 
NumberOfCitiesAvailable:=NumberOfCitiesAvailable-1; 

end 
else 
T:=T+1;//endif 

until NumberOfCitiesAvailable=0; 
end; 
 
Procedure BestImprove(); 
begin 

Insert();//Takes a section and tries to insert it in a different tour 
if NoChangeInTrucks then 
begin 

Interchange(5); 
Opt(5); 
Cross(3); 
FriendOptInt(10); 

end; 
end; 
 
Procedure Interchange(K); //Interchanges K points 
begin 
for City1 := 1 to NumberOfCities-k+1 do 

for City2 := City1+1 to NumberOfCities-k+2 do 
{...} 

for CityK := CityKminus1+1 to NumberOfCities do 
begin 

NrOfPermutations:=k!; 
for J := 1 to NrOfPermutatioins - 1 do 
begin 

ToCheck:=PermuteIntK(J,City1,City2{,...},CityK);//1 permutation 
Process(); 

end; 
end; 

end; 
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Procedure Process(); 
begin 
if Feasible(ToCheck) then //Checks feasibility of result 
if BetterSolution then 
BestSolution:=Solution; 
end; 
 
Procedure Opt(K); //Interchanges tails from K different tours 
begin 

for TouR1 := 1 to NumberOfTours-k+1 do 
for TouR2 := TouR1+1 to NumberOfTours-k+2 do 

{...} 
for TourK := TourKminus1+1 to NumberOfTours do 

for City1 := TouR1[1] to TouR1[NrInTour[1]] do 
{...} 

for CityK := Tourk[1] to Tourk[NrInTour[k]] do 
begin 

NrOfPermutations:=k!; 
for J := 1 to NrOfPermutatioins - 1 do 
begin 

ToCheck:=PermuteOptK(J,City1{,...},CityK);//1 permutation 
Process(); 

end; 
end; 

end; 
 
Procedure Cross(K);//Interchanges sections from K different tours 
begin 

for TouR1 := 1 to NumberOfTours-k+1 do 
for TouR2 := TouR1+1 to NumberOfTours-k+2 do 

{...} 
for TourK := TourKminus1+1 to NumberOfTours do 
begin 

NrOfPermutations:=k!; 
for Start1 := 1 to NrInTour[TourSet[1]] do 

for End1 := start1 to NrInTour[TourSet[1]] do 
{...} 
for StartK := 1 to NrInTour[TourSet[K]] do 

for EndK := StartK to NrInTour[TourSet[K]] do 
for J := 1 to NrOfPermutatioins - 1 do 
begin 

ToCheck:=PermuteCrossK(J,Start1,End1{,...},StartK,EndK); 
Process(); 

end; 
end; 

end; 
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Procedure FriendOptInt(NrOfFriends); 
begin 

for Who := 1 to NumberOfCities do 
begin 

MakeFriendList(Who,NrOfFriends); 
InterchangeFriends(NrOfFriends); //Like Interchange(K); 
OptFriendsAreStartOfTails(NrOfFriends); //Like Opt(K),with many infeasible attempts 

end; 
end; 
 
Procedure MakeFriendList(Who,NrOfFriends); 
var 
I: Integer; 
begin 

for I := 1 to NrOfFriends do 
begin 

FriendList[I]:=Who; 
FriendDistance[I]:=Infinite; 

end; 
StartBound:=CompletionTime[Predecessor[Who]]; 
EndBound:=DueDate[Follower[Who]]-ServiceTime[Follower[Who]]; 
for I := 1 to 100 do 
if DueDate[I ]-ServiceTime[I]>StartBound then 
if ReadyTime[I]+ServiceTime[I]<EndBound then 
if not NrOfFriendsAreCloser then 
ReplaceFurthest(); //Kick the furthest point from the friendlist, add I 

end; end. 
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A2 Starting Solutions  

 
This appendix contains the result of the Initial solutions and the result of the Quick Improve. 
Note that the Improvement algorithm is used on the clustered problems after doing these both 
steps. Final results for the clustered section can be found in chapter 7.Results.  

Problem Initial solution Quick Improve  Best Known  Truck Efficiency 

R101 21 2015.21 20 1.648.958 19 1645.79 0.95 

R102 19 1916.94 19 1.544.311 17 1486.12 0.894737 

R103 17 1849.83 16 1344.31 13 1292.68 0.8125 

R104 14 1478.49 13 1.100.794 9 1007.24 0.692308 

R105 16 1701.69 15 1.480.173 14 1377.11 0.933333 

R106 16 1660.22 15 1.337.713 12 1251.98 0.8 

R107 14 1473.31 14 1.235.175 10 1104.66 0.714286 

R108 12 1322.78 10 1.110.848 9 960.88 0.9 

R109 13 1469.52 13 1.315.718 11 1194.73 0.846154 

R110 13 1527.69 13 1265.07 10 1118.59 0.769231 

R111 13 1646.24 13 1238.45 10 1096.72 0.769231 

R112 11 1316.18 11 1.122.563 9 982.14 0.818182 

R201 8 1300.79 7 1254.38 4 1252.37 0.571429 

R202 8 1219 8 1.182.452 3 1191.7 0.375 

R203 8 1102.66 6 9.890.856 3 939.54 0.5 

R204 8 1016.85 5 9.080.734 2 825.52 0.4 

R205 8 1139.41 6 1.073.983 3 994.42 0.5 

R206 8 1107.08 5 1.082.402 3 906.14 0.6 

R207 8 1029.89 5 9.443.356 2 893.33 0.4 

R208 8 953.409 4 7.840.383 2 726.75 0.5 

R209 3 1317.61 3 1.149.425 3 909.16 1 

R210 3 1627.84 3 1.240.747 3 939.34 1 

R211 3 1151.86 3 9.573.961 2 892.71 0.666667 

C101 10 855.065 10 8.289.369 10 828.94 1 

C102 11 1285.44 11 1.060.087 10 828.94 0.909091 

C103 11 1652.56 10 971.529 10 828.06 1 

C104 11 1417.62 11 9.737.623 10 824.78 0.909091 

C105 10 855.065 10 8.289.369 10 828.94 1 

C106 10 975.171 10 8.289.369 10 828.94 1 

C107 10 945.415 10 8.289.369 10 828.94 1 

C108 10 1097.94 10 8.503.788 10 828.94 1 

C109 10 1106.75 10 8.531.678 10 828.94 1 

C201 3 591.557 3 5.915.566 3 591.56 1 

C202 4 927.768 4 7.130.699 3 591.56 0.75 

C203 4 1211.42 4 705.939 3 591.17 0.75 

C204 4 1124.27 4 7.985.746 3 590.6 0.75 
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C205 3 627.918 3 6.270.945 3 588.88 1 

C206 3 631.057 3 6.162.238 3 588.49 1 

C207 4 745.767 3 6.461.871 3 588.29 1 

C208 3 644.95 3 6.171.367 3 588.32 1 

RC101 17 2108.46 17 1.715.033 14 1696.94 0.823529 

RC102 16 1969.24 15 1.546.897 12 1554.75 0.8 

RC103 14 1713.36 14 1.445.949 11 1261.67 0.785714 

RC104 13 1658.36 12 1.286.674 10 1135.48 0.833333 

RC105 18 1994.02 16 1.578.331 13 1629.44 0.8125 

RC106 14 1715.06 13 1.437.741 11 1424.73 0.846154 

RC107 14 1568.62 13 1.326.107 11 1230.48 0.846154 

RC108 12 1543.85 12 1.320.572 10 1139.82 0.833333 

RC201 5 2124.46 5 1.516.372 4 1406.91 0.8 

RC202 4 1931.08 4 1.490.722 3 1367.09 0.75 

RC203 4 1693.87 4 1.169.812 3 1049.62 0.75 

RC204 4 1311.97 3 9.759.373 3 798.41 1 

RC205 5 2007.99 5 1.407.424 4 1297.19 0.8 

RC206 4 1716.24 4 1.381.135 3 1146.32 0.75 

RC207 4 1737.11 4 1.301.147 3 1061.14 0.75 

RC208 3 1361.24 3 1294.98 3 828.14 1 
Table 5: Best found and best known results.  

 
 

Problem Trucks Distance 

R103 13 1292.68 

R112 9 982.14 

R201 4 1.253.234 

R202 3 1.202.529 

R204 2 856.364 

R206 3 906.14 

R207 2 894.889 

R208 2 726.823 

R209 3 921.659 

R210 3 939.373 

RC202 3 1370.92 

RC203 3 1050.64 

RC204 3 798.464 

RC205 4 1297.65 

RC206 3 1146.32 

RC207 3 1.068.855 

RC208 3 828.709 
Table 6: Best found results by MACS.  

 
 



25 

 

 

A3 Tours  

 
C1 (all):  
 
1:  5 3 7 8 10 11 9 6 4 2 1 75 
2:  13 17 18 19 15 16 14 12 
3:  20 24 25 27 29 30 28 26 23 22 21 
4:  32 33 31 35 37 38 39 36 34 
5:  43 42 41 40 44 46 45 48 51 50 52 49 47 
6:  57 55 54 53 56 58 60 59 
7:  67 65 63 62 74 72 61 64 68 66 69 
8:  81 78 76 71 70 73 77 79 80 
9:  90 87 86 83 82 84 85 88 89 91 
10:  98 96 95 94 92 93 97 100 99 
 
C201, C202:  
 
1: 20 22 24 27 30 29 6 32 33 31 35 37 38 39 36 34 28 26 23 18 19 16 14 12 15 17 13 25 9 11  
10 8 21  
2: 67 63 62 74 72 61 64 66 69 68 65 49 55 54 53 56 58 60 59 57 40 44 46 45 51 50 52 47 43  
42 41 48  
3: 93 5 75 2 1 99 100 97 92 94 95 98 7 3 4 89 91 88 84 86 83 82 85 76 71 70 73 80 79 81 78  
77 96 87 90  
 
C203:  
 
1: 20 22 24 27 30 29 6 32 33 31 35 37 38 39 36 34 28 26 23 18 19 16 14 12 15 17 13 25 9 11  
10 8 21  
2: 67 63 62 74 72 61 64 66 69 68 65 49 55 54 53 56 58 60 59 57 40 44 46 45 51 50 52 47 42  
41 43 48  
3: 93 5 75 2 1 99 100 97 92 94 95 98 7 3 4 89 91 88 84 86 83 82 85 76 71 70 73 80 79 81 78  
77 96 87 90  
 
C204:  
 
1: 20 22 24 27 30 29 6 32 33 31 35 37 38 39 36 34 28 26 23 18 19 16 14 12 15 17 13 25 9 11  
10 8 21  
2: 67 63 62 74 72 61 64 66 69 68 65 49 55 54 53 56 58 60 59 57 40 44 46 41 42 45 51 50 52 
47 43 48  
3: 93 5 75 2 1 99 100 97 92 94 95 98 7 3 4 89 91 88 84 86 83 82 85 76 71 70 73 80 79 81 78  
77 96 87 90  
 
C205:  
 
1: 20 22 24 27 30 29 6 32 33 31 35 37 38 39 36 34 28 26 23 18 19 16 14 12 15 17 13 25 9 11  
10 8 21  
2: 67 63 62 74 72 61 64 66 69 68 65 49 55 54 53 56 58 60 59 57 40 44 46 45 51 50 52 47 42  
41 43 48  
3: 93 5 75 2 1 99 100 97 92 94 95 98 7 3 4 89 91 88 86 84 83 82 85 76 71 70 73 80 79 81 78  
77 96 87 90  
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C206:  
 
1: 20 22 24 27 30 29 6 32 33 31 35 37 38 39 36 34 28 26 23 18 19 16 14 12 15 17 13 25 9 11  
10 8 21  
2: 67 63 62 74 72 61 64 66 69 68 65 49 55 54 53 56 58 60 59 57 40 44 46 45 51 50 52 47 42  
41 43 48  
3: 93 5 75 2 1 99 100 97 92 94 95 98 7 3 4 89 91 88 86 84 83 82 85 76 71 70 73 80 79 81 78  
77 96 87 90  
 
C207:  
 
1: 20 22 24 27 30 29 6 32 33 31 35 37 38 39 36 34 28 26 23 17 18 19 16 14 12 15 13 25 9 11  
10 8 21  
2: 67 63 62 74 72 61 64 66 69 68 65 49 55 54 53 56 58 60 59 57 40 44 46 45 51 50 52 47 42  
41 43 48  
3: 93 5 75 2 1 99 100 97 92 94 95 98 7 3 4 89 91 88 86 84 83 82 85 76 71 70 73 80 79 81 78  
77 96 87 90  
 
C208:  
 
1: 20 22 24 27 30 29 6 32 33 31 35 37 38 39 36 34 28 26 23 18 17 19 16 14 12 15 13 25 9 11  
10 8 21  
2: 67 63 62 74 72 61 64 66 69 68 65 49 55 54 53 56 58 60 59 57 40 44 46 45 51 50 52 47 42  
41 43 48  
3: 93 5 75 2 1 99 100 97 92 94 95 98 7 3 4 89 91 88 86 84 83 82 85 76 71 70 73 80 79 81 78  
77 96 87 90  
 
RC202:  
1: 45 5 3 1 42 39 36 44 69 88 73 16 99 53 78 79 8 6 46 2 55 68 54 43 35 37 72 96 93 94 80  
2: 65 82 98 12 14 47 15 11 83 64 23 19 51 76 18 22 57 86 87 9 10 97 59 74 13 17 7 4 60 100  
70 
3: 91 92 95 85 63 33 28 26 27 29 31 30 62 67 71 61 41 38 40 81 90 84 49 20 66 56 50 34 32  
89 48 21 24 25 77 75 58 52  
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A4 Computation times 

Running computations for this project has taken between 300 and 500 hours of computer time, 
tests during the programming phase included. All computations have been made on computers 
with a speed of 2 GHZ. When running the implementation the program uses exactly 50% of the 
maximum computer speed. Letting this program run two instances simultaneously drives up 
the CPU usage to 75%, and only when 3 or more instances are ran simultaneously the 
maximum capacity is used. Hence, when calculations are required for multiple problems it is 
recommended to run several instances simultaneously to minimize the total required time. 
Calculation times have not been properly recorded, and therefore we only present rough upper 
bounds. However, these upper bounds can be up to 10 times higher than the expected 
calculation time. The required time heavily depends on the amount of truck tours, and how 
cities are distributed between them. 

Neighborhood search Hours 

5 Opt*  ≤ 4.5 

5-way Interchange ≤ 1 

2+3 Cross Exchange  ≤ 1 

Friend Interchange  ≤ 0.5 

Friend Opt  ≤ 2 

Quick method (all steps) ≤ 1.5 

Initial solution ≤ 0.1 
Table 7: Calculation time indications 
 

Note that Interchange much is faster than Opt*, we expect that this is due to the fact that 
generally more Opt* neighbors are feasible. And it takes more time to check a feasible 
neighbor.  


