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ABSTRACT 

In this thesis a model will be developed to forecast the number of calls in a call centre. Given the 

importance of these forecasts to get a high service rate with minimal costs it is vital that the forecasting 

method yields good results. By first analysing and correcting missing data the quality of the data will 

be improved. A method to detect and correct anomalies also improves the quality of the data. These 

missing values and anomalies are generally caused by system failures and can therefore be corrected 

without losing vital information. The hypothesis that holidays have a significant influence on the call 

volume is also tested in this thesis and it is shown that no significant influence is present. With this 

data we then continue with forecasting the call volume for the weeks to come. This forecasting is done 

with a new adaptation to the standard Holt-Winters model. For this adaptation we will introduce a 

new method to generate initial values. The model now incorporates the current level, trend and two 

seasonality factors. Most call centre projects have a seasonality effect in every week, i.e. on Mondays 

the call volume is higher and on Fridays the volume is smaller. In addition to that there can also be a 

monthly pattern, e.g. when invoices are being sent, which will be estimated by the second seasonality 

factor. For the optimisation of the parameters used in the extended Holt-Winters model a new method 

for optimisation is introduced and used. This method of optimisation uses Latin Hypercube Designs 

to find initial values for the parameters and then improves these values. The results of this entire 

forecasting procedure are compared to more computational intensive ARIMA models to see whether 

the performance of our new models is better or worse than the performance of the ARIMA models.  
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1 INTRODUCTION 

Call centres form an important part of service based companies. Estimates from 2005 indicate that 

over $300 billion is spent on call centres worldwide (Gilson & Khandelwal, 2005). It is also estimated 

that there are 4 million call centre agents in the US, 800 thousand in the UK, 500 thousand in Canada 

and 500 thousand in India (Holman, Batt, & Holtgrewe, 2007). Since call centres are such an important 

part of service, a lot of effort is put into the efficient management of the call centre. What you try to 

achieve is getting a high rate of service against minimum costs. Typically call centres use a service rate 

(e.g. 95%) and they set the goal that at least this percentage of calls is answered within a certain 

amount of time, or before the caller hangs up his telephone.  

To achieve this goal it is needed to make a good planning of customer service representatives (CSR’s) 

or call centre agents. These agents answer the calls that come in to the system. Usually there are 

several different types of agent. It can be that a service number first guides you through a multiple 

choice menu to get you to the right agent with the right knowledge. It is also possible that the agent 

you speak to first directs you to a higher placed agent with more knowledge or influence. To help all 

people that call the service number, there need to be enough agents at every station and at every level. 

Determining how many agents are needed depends on several factors. First you need to determine 

how many calls you are expecting at every moment in time. This is done by forecasting the number of 

calls based on historical data. Next you need to know how long it takes for an agent to answer the call 

and help the customer (both on the phone, and after the call). This determines how many callers an 

agent can help per time period. You also need to determine how impatient callers are, i.e. how quickly 

will they hang up the phone. All these factors make it hard to estimate the amount of work there is at 

a call centre, but getting a good estimate yields high service rates with low costs. Given the amount of 

money that is spent on call centres it is really beneficial to make advanced estimates of all the 

processes concerned in the call centre.  

In this thesis we will look at the problem of forecasting the number of incoming calls in a call centre. 

Though the model developed here can also be used in other applications, we will limit our research to 

call centre forecasting.   

Forecasting is used in many applications in business. Making good forecasts is important in many 

different industries. It can e.g. be used to forecast demand for a certain product, such that the 

production level can be determined. Also for repair centres for consumer electronics there should be a 

forecast for the expected number of faulty units, such that spare parts can be ordered and personnel 

can be hired. In the call centre world, forecasting is basically the same, i.e. it uses the same tools to 

derive the forecasts. From historical data we derive a forecast for future periods. Call centre 

forecasting is not only limited to forecasting the number of calls for the next period. First the data 

should be examined. A well know saying in any statistical analysis is: ‚garbage in, garbage out‛, so 

having a good dataset is essential to the rest of the process. 

The internship connected to this thesis is accommodated by Anago Software B.V. Anago is a small 

software company, with their own software package. This software package consists of several 

‘building blocks’ of which a custom application can be made for their customers. For one of their 

customers, Unamic/HCN, they made a call centre application. Unamic/HCN is one of the largest call 

centre firms in the Netherlands with several offices in the Netherlands and offices in Belgium, 

Suriname and Turkey. The software Anago installed keeps track of several processes within the 
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company. It monitors all the incoming calls, makes forecasts based on the historical data and based on 

that forecast makes a planning for the CSR’s. Staffing officers can indicate the availability of call centre 

agents and the software makes the planning on all constraints. Making a good forecast is essential for 

making a good planning, and therefore the forecasting module should be accurate. Currently 

forecasting is done on the historical data using three different methods (chosen by the call centre 

planner). These methods are: Trend forecasting, exponential smoothing and Holt-Winters forecasting. 

The first two methods are basic methods, which cannot deal with seasonal variation, and therefore 

might lead to unwanted results. The latter method can generate good results when data has a seasonal 

pattern. However, the seasonal pattern cannot be determined automatically and therefore most 

planners don’t know how to use this seasonal parameter. Forecasting is done on week level. After a 

forecast is done, a week pattern is applied to the forecast. This week pattern is a pre determined 

distribution over the days of the week. After applying the week pattern a day pattern is applied as 

well, which completes the forecasting process.  

The data we use in this thesis is data from Sanoma. Sanoma is a Finnish company, which publishes 

magazines all over Europe. In the Netherlands Sanoma is the biggest publisher of weekly magazines. 

They publish over eighty magazines, which include: Donald Duck, Libelle, Panorama, Story and 

Autoweek, some of the biggest weekly magazines in the Netherlands. For Sanoma the call centre is 

regulated by Unamic/HCN. Call centre data is handled by the Sanoma workgroup. This workgroup is 

divided into several sub projects, see 0. In the appendix you can find the availability of data per 

project and a short description of the project. We will mainly focus on the currently running projects. 

The data is available per quarter of an hour from 9.00 hours until 20.00 hours (the opening times of the 

call centre). In the data, it could be that there is data missing for a certain time period (usually because 

of system failures), or the data could be missing for the entire day (usually because of holidays). It is 

the goal of this thesis to make good forecasts based on the available data. 

1.1 Problem Description 

 

Currently the forecasting module is really basic. All data is available on quarter of an hour level, but 

forecasts are only made on week level. If we then have the forecast on week level, we determine the 

number of calls per quarter of an hour by applying subsequently a week filter and a day filter. The 

week filter divides the total number of calls over the five days, and the day filter divides the calls over 

the quarters. This method, though simple, has a big disadvantage. Some projects have a monthly 

pattern. This can be the case with a project for invoice questions. The invoices for the magazines are 

sent on a specific day each month and following those invoices the amount of calls will rise for that 

specific project. However when we use weekly forecasting, this effect cannot be modelled by our 

forecasting model. This is because, e.g. the first of every month is not every four weeks, but it could 

also be after five weeks. We therefore need to change the forecasting to a daily pattern, or even quarter 

of an hour forecasts. 

Changing the forecasting time period also brings up another problem. Typically the call volume on 

Mondays is higher than in the rest of the week. On Fridays the call volume is again lower than on the 

other three days. To deal with this seasonality we need to incorporate the effects of the different days 

into the model. 

Furthermore, no data analysis is done on the data before it is used in the forecast. Occasionally the 

system has a failure and then the number of calls isn’t recorded. Calls keep coming into the system, 
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but in our data the number of calls for that specific period (or periods) is zero. If we then would use 

this value in our forecast it would influence the results. Therefore we will investigate the data before it 

is used for forecasting. This investigation consists of two parts. First we will look at the problem of 

missing data. And after that we will look at the problem of outliers in the data. 

To summarise the problem description is as follows: 

 

How can we forecast the incoming call volume of a call centre? 

 

With points of focus: 

-Quality check on the data 

-Influence of holiday on the remainder of the week 

-Automatic detection of seasonal patterns 

-Incorporate seasonal effects into the forecast 

-Determine the quality of the forecast compared to other methods 

 

With these points of focus we will give a comprehensive framework for forecasting call centre volume. 

We also introduce a new method to estimate the parameters of the Holt-Winters double seasonal 

model. 

1.2 Overview 

 

In this thesis we will start with a literature overview in chapter 2. Here we will elaborate on the 

research papers that have been written on the call centre world in general and on call centre 

forecasting in particular. We will also compare this literature to the investigation that is done in this 

thesis.  

Chapter 3 deals with the problem of missing data. Because there can be data missing in our dataset, 

we need to investigate whether this data is really missing. In the dataset a missing data point can 

mean two things. First it can be that the number of calls for that time period is actually zero, or it can 

mean that there was a system failure and therefore the system didn’t record the number of calls. The 

research indicated that the missing data can be imputed by a random draw from the Poisson 

distribution with the average value of the ‘neighbourhood’ as the input value. This neighbourhood is 

determined to consist of at most twelve observations in the same day, and at most sixteen 

observations of the same time period on other days. In this chapter we will determine the size of this 

neighbourhood and show that the distribution of calls is Poisson. Subsequently we will determine 

whether a zero value can be considered a missing value. In that case a random draw from the Poisson 

distribution will be imputed into the dataset. 

 

Chapter 4 deals with the problem of extreme value detection. Because of a problem in the system, 

extremely high or extremely low values can occur. In this chapter we will determine if these extreme 

values can be considered faults in the system and should therefore be corrected. This correction is 

done in the same way as the missing data correction. The anomalies will be corrected by a random 

draw from the Poisson distribution.  

 

Chapter 5 examines the influence of holidays. If e.g. on Monday it is Easter and therefore the call 

centre is closed, how does this influence the call volume for the remainder of the week. It can be that 



 

 

 8 

people call more because they have one day less in that week to call the number. It can also be that 

they call less because they are on holiday, or are busy with other (more important) things. However, 

these two effects cancel out each other and therefore there is no indication of holiday influence in the 

data.  

 

Chapter 6 is the chapter where we will develop the forecasting model. First a background is given 

about the forecasts used in practice and found in literature. Then we will develop our extension to the 

Holt-Winters model and our method to determine the initial values of this model. Next we will 

introduce a new method to optimise the parameters to the Holt-Winters model. This method uses 

Latin Hypercube designs (LHD’s) to calculate the outcomes given different parameter settings. With 

the LHD’s we determine initial parameter settings which yield good forecast results. These initial 

parameter settings will then be optimised by adapting the parameters slightly. This process of 

optimising the parameters stops when no forecast can be obtained by changing parameter values. 

 

Chapter 7 is where we will investigate and determine the call volume per time period. The forecasts 

are made on day level to reduce the complexity of the forecast. However, we need forecasts on time 

period level. Therefore a distribution of the call volume over the day is determined such that we can 

find the forecasts on quarter of an hour level. 

 

The final chapter 8 shows the results and the performance of the developed model. A comparison is 

made between the extended Holt-Winters model and the ARIMA models.  
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2 LITERATURE REVIEW 

Since call centre processes are interesting to model, a lot of literature has been written about call 

centres. For an elaborate literature review see (Mandelbaum, 2004). The most important goal for 

call centres is to have enough call centre agents (or Customer Service Representatives, CSR’s) 

available for the incoming call volume. For this goal, a lot of work has to be done. First it is 

important that the historical data is reliable by missing data analysis and outlier detection. The 

concept of missing data and some methods to deal with missing data are described in (Schafer 

& Graham, 2002) and (Jamshidian, 2004). Also the book (Little & Rubin, 2002) gives insights into 

the missing data problem in statistics. After handling with missing data we should further 

improve the quality of the data by detecting extreme values, see e.g. (Hardy & Bryman, 2004). 

Both these methods of improving the quality of the data depend on the assumption that call 

arrivals follow a Poisson distribution. This is generally the case when arrivals are independent 

of each other. Several articles have been written about the Poisson distribution of call arrivals. 

Brown and Zhao (Brown & Zhao, 2001) discuss several methods to test whether the arrival rate 

follows a Poisson distribution, as well as introduce a new test. In (Soyer & Tarimcilar, 2008) a 

modulated Poisson process model is presented to describe and analyse arrival data. This model 

takes time effects and covariate effects into account and makes it possible to assess the 

effectiveness of different advertising strategies. Shen and Huang (Shen & Huang, 2008) 

developed a forecasting method to model the underlying inhomogeneous Poisson processes. 

First the arrival data is reduced using Singular Value Decomposition (as introduced in (Shen & 

Huang, 2005)). Next a factor model is derived to forecast the arrival rates. In (Antipov & Meade, 

2002) several forecasting methods are applied to a financial call centre. They developed a model 

with a dynamic level, multiplicative calendar effects and a multiplicative advertising response. 

Taylor (Taylor, 2008) compared several methods to forecast intraday arrivals. Intraday series 

most notable feature is the presence of both an intraweek and an intraday seasonal cycle. The 

methods considered include (amongst others) seasonal autoregressive integrated moving 

average (ARIMA) modelling; periodic autoregressive modelling and an extension of Holt- 

Winters exponential smoothing for the case of two seasonal cycles. This thesis will focus on the 

data cleaning and forecasting of calls in a call centre. The double seasonality model introduced 

by Taylor is improved with a method to easily determine initial values. Furthermore a new 

method is introduced to optimise the parameter settings of the Holt-Winters model. We also 

introduce a method to determine the length of the seasons in a dataset. 

After this step of forecasting the arrival rate, a good forecast should be made of the workload. 

The workload of a call centre depends on the service time of calls and possibly the time needed 

to solve the costumer’s problems. Forecasting of this workload is done in (Aldor-Noiman, 

Feigin, & Mandelbaum, To Be Published). Another interesting paper on the topic is (Brown, et 

al., 2002), which handles several types of queuing problems concerning call centres, i.e. service 

time, queuing time, waiting time for service or abandoning and prediction of the load. With 

forecasting the workload, also the problem of queuing customers arises. Designing your call 

centre in such a way that customers do not have to wait long at each station and hang up the 

phone is important for your service level.  The paper (Koole & Mandelbaum, 2002) contains a 

survey of queuing theory used in telephone call centres.  
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The final part of call centre research deals with planning. For a call centre the volume of calls 

can differ a lot between days, but also between the periods in a day. Making sure that there are 

enough agents at each period calls for good planning. Call centres typically employ a lot of 

students or other people that are flexible in their own planning. Furthermore there are 

constraints to the problem, because people have restrictions in work hours, knowledge, they 

need breaks and cannot work more hours than what they are contracted for. This optimisation 

problem is featured in a lot of literature, see e.g. (Atlason, Epelman, & Henderson, 2004) 

In this thesis the different fields of research will be combined. First we will clean up the data 

with missing data analysis and outlier detection. The methods used in those chapters are not 

new compared to the literature. The suggested forecasting method is an extension to the know 

Holt-Winters method. This method has been mentioned in literature before, but it was not 

elaborated. Therefore we define the model for the multiplicative Holt-Winters as well as the 

additive Holt-Winters version. Furthermore a new method of finding initial values has been 

developed.  

The Holt-Winters forecasting method typically has the problem of over-parameterisation. 

Finding appropriate parameters is hard and time consuming. Therefore a method is developed 

to speed up the determining of parameter values. The concept of Latin Hypercube Designs is 

used to find initial estimates and then a local search optimisation is used. This method makes 

finding parameter values really quick and therefore the entire forecasting method can be 

quickly conducted for various datasets. Furthermore as input to the Holt-Winters forecasting 

method we need to determine the seasonality of the data. A method is introduced to determine 

the length of the seasonal patterns.  
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3 MISSING DATA 

The first aspect of the problem is to handle with missing data. In the call centre application, 

missing data can occur for various reasons. If there is a holiday, some projects might be closed, 

while other projects (e.g. an incident number for an electricity company) remain open. On the 

other hand, data can also be missing because of a failure in the system. This can be a complete 

system failure, i.e. the entire call centre does not receive any calls and therefore the number of 

calls in this period is zero. These first two causes of missing data can not formally be considered 

as missing data, since the observation for that time period should really be zero. In this thesis 

we will estimate the effect of holidays and complete system failures in the next chapter. For 

forecasting purposes we will exclude this data from the dataset and correct for this influence 

later on. Furthermore, a complete system failure (i.e. no incoming calls at all) had not occurred 

in the Sanoma project (and is generally extremely rare) according to Unamic/HCN  

The final cause of missing data is a data recording system. In this case the call centre is working 

as scheduled, but the number of incoming calls is not recorded. This final case is the most pure 

form of missing data, since the only reason of missing data is the system failure. To deal with 

this missing data, we will first establish a general theory about missing data and the causes of 

missing data. Then we will introduce several methods of handling missing data and we will 

pick the best option for our situation. Theory for this chapter is based on (Schafer & Graham, 

2002), (Jamshidian, 2004) and (Little & Rubin, 2002) 

3.1 The Missing Data Problem 

 

The paper by (Efron, 1994) defines missing data as a class of problems made difficult by the 

absence of some part of a familiar data structure. Missing data can occur in all data 

experiments. The first step is to determine if the data is really missing, i.e. the underlying value 

exists. In the call centre data, this can be illustrated by the different system failures. When a 

complete system failure occurs, the call centre cannot handle any calls and therefore the data for 

that time period is missing. In that case the underlying value doesn’t exist either. For a 

recording system failure, the underlying data does exist, because the only problem was 

recording the number of incoming calls.  

In survey data the cause of missing data might not be that straightforward. It could happen that 

the researcher forgot to ask a certain question, or the respondent decided not to answer a typical 

question. Respondents can also decide not to answer a question because they are too sensitive 

(e.g. age, income, drug use) or because they don’t know. In longitudinal studies the problem of 

missing data is even more complicated. If respondents die during the study, you would 

consider the values of subsequent observations missing if the death is just coincidence. But for 

health surveys, the occurrence of a death might be of importance to the survey.  

The problem with missing data is that statistical analysis and subsequent operations like 

forecasting are influenced by missing data. If the missing data remains in the dataset with value 

zero, the forecasts are less reliable. Leaving out the missing values can yield significant loss of 

data and therefore information. Furthermore it can influence the structure of the dataset. 
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Another method of handling with missing data is imputation. With this technique, the missing 

values are estimated and filled in into the dataset. In paragraph 3.4 we will discuss several 

methods of handling with missing data.  

3.2 Missing Data Patterns 

 

Data can be missing in several patterns. In this paragraph we will discuss the different patterns 

of missing data and give examples for the missing data. It is useful to determine the pattern 

because some methods of handling with missing data are intended for particular patterns. 

Other methods are suitable for any pattern, but are more time consuming.  

Let Y=(yij) denote an (n x K) rectangular data set without missing values, with the ith row yi  =  

(yi1,...,yiK) where yij is the value of variable Yj for subject i. With missing data, define the missing 

data indicator matrix M = (mij), such that mij = 1 if yij is missing and mij = 0 if yij is present. The 

matrix defines the pattern of missing data. Figures 1-5 show some examples of missing data 

patterns. With several examples we will illustrate the different patterns. 

Y1 Y2 Y3 Y4 Y5

 
Figure 1: Single Univariate Missing Data 

Y1 Y2 Y3 Y4 Y5

 
Figure 2: Call Centre Missing Data 

The first pattern (Figure 1) is the pattern of univariate missing data. This occurs when 

observations for only one variable are missing. This is usually the case in designed experiments. 

All other variables are set by the researchers and only the fifth variable is observed to see the 

influence of the other variables. E.g. if there is a survey where you first ask whether someone 

has a job and later on you ask the income, the first question determines whether the second 

question will be asked. Interest is in the dependent variable YK on the set of factors Y1,......,YK-1. 

In our application, we know the variables: year, week number, day of the week, project and time 

period (in this case quarter of an hour time periods) and try to estimate the number of calls. But the 

call centre dataset is not as straightforward as we might think. Because our data is a time series, 

the order of the observations matters as well. So the real pattern is better described by Figure 2.  
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Y1 Y2 Y3 Y4 Y5

 
Figure 3: Multiple Univariate Missing Data 

Y1 Y2 Y3 Y4 Y5

 
Figure 4: General Missing Data 

Univariate missing data can also occur for multiple cases as illustrated in Figure 3. This could 

for example happen in a survey, where respondents don’t have to answer parts of the survey. 

E.g. when there is the question: ‚Have you ever used drug?‛ and after a positive response some 

follow up questions are asked. If the respondent replied negatively, these follow up questions 

are never asked. Survey practitioners call missing values on particular items in the 

questionnaire item nonresponse. These missing values typically have a haphazard pattern, such 

as that in Figure 2 or Figure 4. These patterns can arise when people refuse to answer a 

question, or don’t know the answer, or when a question is a follow up of a previous question. 

All these factors can lead to ‘gaps’ in our dataset. 

 

Y1 Y2 Y3 Y4 Y5

 
Figure 5: Monotone Missing Data 

Y1 Y2 Y3

 
Figure 6: File Matching Missing Data 

In longitudinal studies data is collected on a set of cases repeatedly over time. Respondents are 

asked to fill in a similar survey every time period. Researchers then examine this panel data to 

see if e.g. habits and views of the respondents have changed. During this study it could happen 

that respondents drop out of the survey, e.g. because they move, or, in a medical survey, they 

are cured. This phenomenon is called attrition. The pattern of attrition is an example of monotone 

missing data, where variables can be sorted so that for Yj+1,...,YK the value Yj is missing, for all 

         (see Figure 5).  
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The final pattern we will discuss here is the File Matching problem. This problem occurs when 

two (or more) variables are never observed at the same time. This can happen when there is a 

large amount of data missing. It can also occur that a typical question (e.g. have you ever used 

drugs?) results in two different sets of questions (how often do you use drugs? Why haven’t 

you tried it? Etc.). While working with this data, you should be aware of the fact that the 

relationship between these variables is not in the data. Making estimates based on relations to 

other variables may yield misleading results. Figure 6 illustrates such a problem. Problems like 

this could also arise because of the experimental design. If e.g. a medical experiment is 

conducted with two types of medicine, some variables might not be measured for all 

participants. Temperature might be relevant for the first group, because an increase in 

temperature is one of the side effects. For the other group it could be irrelevant and tests for 

other side effects will be conducted.  

3.3 Missing Data Mechanisms 

 

After discussing the patterns of missing data, we will look at the mechanisms that lead to 

missing data. It is especially of importance if the value of the underlying (missing) variable is 

related to the fact that the value is missing. By determining the missing data pattern and 

mechanism, we can choose the appropriate method of handling with missing data. Different 

missing data mechanisms require different methods. The different mechanisms are formalized 

in the theory of Rubin (Rubin, 1976). In this chapter we will describe the use of this theorem in 

modern statistical literature on missing data. 

Define the complete data Y = (yij) and the missing data indicator matrix M = (mij) as defined in 

the previous paragraph. The missing data mechanism is characterized by the conditional 

distribution of M given Y, say f (M|Y,φ), where φ denotes the unknown parameters. The easiest 

case is when missingness does not depend on any other data. This is defined as: 

 

  ( |   )    ( |  )            φ (3.1) 

Data satisfying this equation are called Missing Completely at Random (MCAR) or Completely 

Missing at Random (CMAR). This doesn’t mean that the pattern of missingness is random, but 

only that the fact that a value is missing doesn’t depend on the data values. This is e.g. the case 

if the interviewer forgot to ask a question, or a thermometer fails to record the temperature 

because it is broken.  

Let Yobs denote the observed values of Y, and Ymis the missing entries of the data set. Please note 

that for Yobs we only know that the observation exists, the underlying value is not known (if it 

were known Yobs would not be a random variable anymore). We define the next missing data 

mechanism: 

 

  ( |   )    ( |       )               φ (3.2) 
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This second definition is less restrictive than MCAR. Now the missingness only depends on the 

values of the observed variables and not on the values of the missing variables. This mechanism 

is called Missing at Random (MAR). In a survey with conditional questions (early questions that 

rule out some future questions) MAR often applies. A third missing data mechanism is Missing 

Not at Random (MNAR) or Not Missing at Random (NMAR). When a dataset is neither MCAR nor 

MAR, we consider the dataset NMAR. In that case, the missingness depends on the underlying 

value of the missing variable as well. This can e.g. happen when a participant refuses to answer 

a sensitive question about drug use. If the participant has never used drugs, he/she will answer 

the question, but frequent users might refuse to answer.  

To illustrate these mechanisms of missing data we will use the following example. Consider the 

call centre with incomings calls for various projects. Missingness in the data can occur for 

various reasons. If e.g. the recording system failed to record the number of incoming calls at a 

certain period, while the call centre functions as normal, we call this MCAR. The cause of 

missingness is assumed to be an external factor and doesn’t depend on the other data. 

Missingness can also originate from other causes. Because of unavailability of call centre agents 

due to high demand on other projects, a certain project might temporarily be shut down.  There 

will still be incoming calls, but they will not enter the system and are therefore not recorded. In 

this case, the cause of missingness is the high number of incoming calls for other projects and is 

thus MAR. The mechanism of missingness MNAR can be illustrated as follows. If there is an 

extremely high demand for the observed project, the recording device might fail and therefore 

we have missing data. In this case the high number of calls causes the missing data and 

therefore the mechanism is MNAR.  

In our application, missing values are MCAR. The reason data can be missing is because of a 

system failure, but these failures are not dependent on underlying data. This assumption is 

based on the experience of call centre agents. There haven’t been other reasons for missing data 

in the past. So it is assumed to be impossible that there are so many calls at a certain moment 

that the system will shut down. Furthermore the hardware bounds of the system (i.e. maximum 

number of calls that can be handled by the hardware) are far larger than the typical peak 

volumes. Failures have (mostly unknown) software causes, which are external factors to the 

system.  

3.4 Methods of Handling with Missing Data  

 

For dealing with missing data several methods are available, ranging from less efficient to more 

efficient methods. In the following subchapters I will first describe ad hoc methods and then 

introduce Likelihood-based methods. 

3.4.1 Case deletion 

 

Case deletion methods are generally easy to use and require almost no effort. In this subchapter 

I will discuss the different methods and their advantages and disadvantages.  
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One of the oldest methods is list wise deletion (LD) or complete-case (CC) analysis. This method is 

still used in many statistical programmes by default. For further analysis only observations 

without missing values in any variable are observed, so if one of the observations is missing, the 

entire case will not be taken into account. If the data is MCAR, the complete cases are a random 

sample of the entire dataset. Estimates based on this subset are still consistent estimates of the 

entire set. In the case of sparse data, you will have to delete a lot of cases and therefore lose a lot 

of information. Because this subset is just a small part of the entire dataset the estimates might 

not be consistent. Available-case (AC) analysis in contrast to CC uses the largest possible set of 

available cases to estimate parameters. For example, we can use every observed value of Xj to 

estimate the expectation of  Xj, and all observed combinations of (Xj , Xk) to estimate the 

covariance of Xj and Xk. Because AC uses more data for the estimation of the parameters, you 

would expect that, even in sparse datasets, the estimators are (close to) consistent. (Kim & 

Curry, 1977) Showed that for MCAR data with modest correlation between the variables, AC 

outperforms CC in parameter estimation. Other studies however show that, when correlation is 

large, CC yields more efficient estimates. See for example (Azen & Van Guilder, 1981).  

Both case deletion methods (AC and CC) are generally valid under MCAR. For MAR or NMAR 

missing data, the parameter estimates may be inconsistent. Consider e.g. a study where 

education level and income are measured, but for some highly educated people the interviewer 

didn’t dare to ask, or they refused to tell, how much they earned. For these observations the 

income data is missing, but because there is possibly a positive correlation with education level, 

we lose information. If we now estimate the average income based on the variables we have, it 

will yield a lower income than the real population income. So parameters can be biased if case 

deletion is used. The main reason why case deletion is still used is simplicity. When the number 

of missing values is low, this method will yield acceptable results, however when there is a 

large amount of data missing, the biased estimation will become a problem.   

3.4.2 Imputation Methods 

 

A second method for handling with missing values is imputation. This means that for the 

missing values an estimation will be made of the value of the missing data point. This 

estimation will then be used in the data. In this subchapter the different imputation methods 

will be described with their advantages and disadvantages. 

Unconditional Mean Imputation (UMI) is one of the simplest imputation methods. The missing 

value is replaced by the mean of the known values for the specific variable (for categorical 

variables you could impute the mode). This method yields biased estimates of parameters. For 

time series this method however does not work, since there could be e.g. a trend in the data. If 

we estimate the variance, UMI underestimates the true variance. Since all missing values are 

imputed with a mean value, the variance of the dataset is reduced. Furthermore it can be that 

imputing the mean is not the best option if the cases in the survey differ a lot. If you for example 

want to impute the income of a certain person, you can impute the mean of the entire 

population, or you can impute the mean of the same group of people. This group can e.g. 

consist of people with the same age or gender. This greatly increases the performance of UMI if 

the population consists of several sub groups. 
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Conditional Mean Imputation (CMI) methods are developed to cope with the disadvantages of 

UMI methods. One of the most popular is Buck’s method (Buck, 1960). First the mean and the 

covariance matrix are calculated using CC. The missing values are then predicted by regression 

models based on these parameters. This method usually outperforms the UMI method, since it 

is able to deal with e.g. a trend in the data. The estimated mean of the imputed values is a 

consistent estimate of the mean for MCAR data (Buck, 1960). In MAR data the CMI method 

underestimates the variance and covariance when the data is multivariate normal, but this 

underestimation is often less than when UMI is used.  

Both methods mentioned in this subchapter underestimate the variance of the dataset. This is 

because we impute a best guess for that data point, instead of incorporating variability in the 

imputed variable. If the amount of missing values in the dataset is low, the effect of UMI or CMI 

on the variance is not significant. However, if the amount of missing data is high, the 

underestimation of the variance is more severe. Hot Deck imputation is one of the methods 

developed to deal with this problem. In this method the missing value is imputed by a random 

draw from the observed variables. So we take a random draw from all non missing 

observations of variable X to replace the missing values of variable X. The problem of 

underestimating variance is therefore partially covered, but still problems exist because 

correlation between variables is distorted. Again you can restrict the random draw set to 

observations from the same group (i.e. same age or gender) to make the imputations more 

reliable. Another method is: imputing from a conditional distribution, which can help deal with 

distorted covariances. We impute the missing variable by a random draw from the conditional 

distribution of Y given X. In a standard linear regression model, we add a residual error to  ̂. 

This residual is a draw from a normal distribution with mean zero and variance equal to the 

residual variance of the regression model on de complete cases. More formally: 

 

 
 ̂    ̃  ∑  ̃    

   

   

     (3.3) 

 

Where ( ̃0,...., ̃K-1) are the parameter estimates of the regression model, with YK unknown. ZiK is 

the normal variable with mean zero and variance equal to the residual variance mentioned 

above. This method can also be generalized for other distributions. Suppose we have data Y = 

(Yobs,Ymis) from the distribution P(Yobs,Ymis;θ). Here note again that Yobs is still a random variable. 

Imputing from the conditional distribution means simulation from: 

 

 
 (    |      )  

 (           )

 (      )
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Where the denominator is given by: 

  (      )  ∫ (   )      (3.5) 
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The parameters (θ) for this distribution are unknown in practice and therefore have to be 

estimate from Yobs. Imputation using this method yields good results, even if the missing data 

mechanism is MAR. However, the pattern of the data is really important here. If there is a 

univariate missing data pattern, the conditional distribution can easily be formulated, but for a 

general missing data pattern, it can be quite complicated. Drawing from such a complicated 

distribution can require just as much effort as more advanced (and better performing) methods 

discussed later. Figure 7 was taken from (Schafer & Graham, 2002) to illustrate the different 

imputation methods. These figures are based on a measurement of blood pressure on two 

occasions. The used missing data pattern was MAR and the amount of missing data was large. 

You can see that respondents with a high blood pressure in the first survey (X), also returned 

for the second measurement (Y). Using mean substitution or conditional mean substitution 

yields a dataset with far less variance than the original data. Hot Deck has better performance 

when it comes to variance, but the positive correlation between the variables cannot be seen in 

the data. Using a conditional distribution yields the best results for this dataset, considering the 

alternative methods.  

 

 
Figure 7: The four imputation methods 
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3.4.3 Likelihood based models 

 

The next class of methods for handling with missing data is based on the likelihood function. 

The likelihood function is a function that gives a value to the likelihood that the parameters 

have a certain value given the data. The likelihood function can be defined as follows: 

 

  ( | )   ( | )              (3.6) 

With    the possible values of θ. By definition  ( | )    for any     . In most problems we 

work with the loglikelihood function  ( | ), which is the natural logarithm (ln) of the likelihood 

function. The maximum likelihood (ML) estimate  ̂, is the value for which the loglikelihood is 

maximised (so it is most likely that the parameters have that true value). In large samples, this 

parameter estimation tends to be approximately consistent and efficient given that the 

distribution is correct. The expressions for ML estimates however, cannot be written down in 

most cases. Computing the ML estimates often requires an iterative process. One of the most 

widely used methods is the EM algorithm introduced by (Dempster, Laird, & Rubin, 1977). 

Each iteration of the EM algorithm consists of an E-step (estimation) and an M-step 

(maximisation). At each iteration step the loglikelihood  ( |    ) increases (under general 

conditions). Also if the loglikelihood is bounded, the sequence  ( ( )|    ) converges to a fixed 

point  ( |    ). A disadvantage is that the rate of convergence can be rather slow if there is a 

large fraction of missing data.     

In most literature call centre arrival data is generally assumed to follow a Poisson distribution. 

The Poisson process expresses the probability of a number of arrivals occurring a fixed period 

of time. The arrival rate is known and subsequent arrivals are independent of each other. The 

probability density function of the Poisson process is given by: 

 

 
 (   )  

     

  
 

(3.7) 

 

Here   is the arrival rate and  (   ) will give the probability of k arrivals during one period. 

The inter arrival times between two consecutive arrivals follow an exponential distribution (by 

definition). The cumulative density function can be defined as follows. 

 

 
 (   )  

 (⌊   ⌋  )

⌊ ⌋ 
               ∑

   

  

 

   

 
(3.8)  

 

Where ⌊ ⌋ is the floor function and  (   ) is the upper Incomplete Gamma function, which is 

defined by: 
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 (   )  ∫         

  

 

 (3.9) 

This Incomplete Gamma function is almost the same as the normal Gamma function, except 

that the integral runs from   to   instead of from 0 to  . Another interesting feature of the 

Poisson process is that the mean and variance are equal, namely  . In call centre data, we also 

see that the variance and mean are equal for short intervals. 

Next we need a Maximum Likelihood estimation of  . Given a sample of n observations   , the 

log likelihood function is defined as follows: 
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 (3.10) 

 

After rewriting the log likelihood function we obtained equation (3.10). To solve this MLE we 

take the derivative of L with respect to   and equate it to zero. This yields: 

 

  

  
 ( )       (∑  

 

   

)
 

 
     

(3.11) 

 

 

Solving for   yields the estimated mean. Obviously the second derivative is negative, since we 

assume that the arrival rate   and the arrivals    are positive. The maximum likelihood 

estimator of   then becomes: 

 
 ̂    

 

 
∑  

 

   

 (3.12) 

 

Which is the average of the observed arrivals. Every observation has expectation   and the 

mean of this process is   as well. Because the mean of the Poisson process is known to be   this 

estimator is unbiased.  

With this unbiased ML estimator, we can easily impute the missing values in our data.  

3.5 Missing Data Analysis in call centre data. 

 

In our data, we also have missing data. This can be for the entire day in case of a holiday (see 

Chapter 5) or system failure, but it can also be for certain time periods. In the data we have, 

there is no difference between a zero observation and missing data. It is thus important to find a 
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way to indicate if a value is missing, or just zero. Especially in the evening, the call volume is a 

lot lower and can actually be zero. Most projects have a call volume between 200 and 400 a day, 

which leads to call volumes ranging from 0 to 20 (or even more) per time period. Because the 

call centre is open from 9.00 to 20.00 for the Sanoma projects, there are 44 (15 minute) time 

periods.   

In our dataset (we use project 192 for the analysis in this chapter, see 0 and project 188 and 242 

for verification), there is not much missing data. About 10% of the periods have a 0-value. The 

missing data analysis shown below only indicated 1% of total data as really missing and the 

other 9% as 0-values.  

 

 
 

To detect the difference between a missing value and a 0-observation, we will first estimate the 

probability of a certain occurrence. To calculate the probability, we first have to make some 

assumptions on the call arrivals. In most literature, call arrivals are modelled as a Poisson 

arrival process. To see if this is also the case in our data, we plotted a histogram. You can see the 

call volume for the entire Sanoma workgroup (so all sub projects together) for the different time 

periods. This histogram follows the typical distribution of a Poisson arrival process. To prove 

this, we need the Likelihood Ratio Statistic test. We want to test    vs   , where    states that: 
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So we test whether the arrival rate            for a set of   . To determine the set of    we first 

have to make some assumptions. Because the call centre data changes rapidly across periods (in 

the evening call volume is significantly lower) and across days (call volume can differ per 
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month or week) we have to define the set of   . For each data point in our matrix, we determine 

its neighbourhood. For that neighbourhood we test if    holds. We assume the neighbourhood 

of the observations is at most 6 time periods before and 6 time periods after the observation, 

and at most 8 days before and 8 days after the observation. The way we determined these 

numbers will not be discussed right now, but will be explained later in this chapter. Once we 

determined the neighbourhood, we can test whether de observations are from a Poisson 

distribution. The Likelihood Ratio Test (Brown & Zhao, 2001) is defined as follows: 

 

 
     ∑      (

  

  ̅
)

 

   

 (3.13) 

 

Under the null hypothesis this statistic is asymptotically distributed as a Chi-Squared variable 

with     degrees of freedom. Hence, this test reject    when             
  

For our project (192) we construct the different neighbourhoods. So for every value in the 

project we construct the corresponding neighbourhood. For these neighbourhoods we 

calculated the Likelihood ratio and compared it to the Chi-Squared distribution with       . 

The result was that out of 5588 neighbourhoods, only 282 neighbourhoods reject   . This is only 

5% of the number of neighbourhoods, which falls within the accuracy set in advance. We can 

therefore assume the arrival rate follows a Poisson distribution on the neighbourhood of the 

observation. 

Now we can say that the arrival process follows a Poisson distribution on the neighbourhood of 

the observation, we can start by finding missing values. Missing values can arise when the 

recording module fails to record the number of incoming calls correctly. This means that for a 

certain time interval, the number of calls is recorded as a 0 value. It might also be possible that 

the incoming calls are no longer recorded within an interval (e.g. halfway they don’t record 

anymore), but that cannot be seen from the data. If that is the case, we might find those 

anomalies in chapter 4. For now we assume that missing data only consists of 0-observations. 

We also observed that missing data usually spans more than one period. System failures to 

record the data generally takes longer than fifteen minutes to solve. We therefore make a subset 

of the data, where we observe all 0-sequences (note that a 0-sequence can also consist of just one 

observation). For this sequence we need to know the neighbouring observations, and the 

number of 0-values. With this subset of sequences, we can determine if a sequence of 0-values is 

just coincidence or really a missing value. First we determine the arrival rate of the Poisson 

process for that missing data point. This is done by calculating the average of the neighbouring 

observations. Neighbouring observations are: 

-up to 6 time periods before the 0-sequence (if possible) 

-up to 6 time periods after the 0-sequence (if possible) 

-up to 8 observations of the same time period the days before (if possible) 
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-up to 8 observations of the same time period the days after (if possible) 

These numbers are obtained in the following way. For each entry in a sample dataset of project 

192, we made an estimation based on the number of neighbouring observations. E.g. with a 

scope of 3 on the same day and 5 in the same period we calculated the average over at most 16 

observations. This was calculated for 1 to 10 time periods on the same day and 1 to 10 

observations of the same time period. So we then have 100 matrices which estimate the initial 

dataset. With all these matrices, we should determine which choice for neighbouring 

observations yield the best result. Therefore we will introduce several measures to determine 

the difference between the real observation and the estimation. The first we will introduce is the 

Mean Squared Error, which is defined as: 
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Where  ̂  is the estimation of    and n is the total number of observations in the dataset (in our 

sample database this was 5588). Because the differences in observations are squared, large 

deviations from the real value are punished more severely. Please note that this definition only 

holds when all observations have the same probability of occurrence. If that is not the case an 

adaptation should be made to weigh the observations and their errors. Another measure is the 

Mean Absolute Error, which is defined as: 
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In contrary to the MSE, this measure first takes the absolute difference before taking the mean. 

This causes large differences between the estimation and the real value to be measured less 

strict. The third measure is defined as follows: 
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  (3.16)  

 

This is the Mean Percentage Error. Here we not only look at the difference between estimation 

and real value, but we take the relative difference into account. An error in forecasting of 5 calls 

is not so severe if the call volume is 100, but it is severe if the call volume is just 10. Especially 

when the call volume is changing a lot, this measure gives a better view on how large the errors 

are. The outcome is also more relevant. When you look at the outcome of the MSE or MAE, the 

number will not directly tell you something about the effect of errors. They can be used for 

comparing different models, but the number does not yield any information. An MPE of 0.15 

means that the mean error is approximately 15%. 
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With these three measures we have to 

determine which choice for the 

neighbouring observations is most 

suitable for our problem. Since it is 

not directly clear which measure is 

most suitable for our data, we 

therefore want to incorporate all 

measures in the decision process. First 

we rank all options based on their 

performance. E.g. if a certain choice 

has the lowest value for the MSE, then 

it gets ranking 1. This is done for all 

three measures and all choices for the 

neighbouring observations. Finally, 

we add all these rankings, to obtain a 

number which indicates the 

performance. In Appendix B you can 

find the table with the total ranking 

results. On the right you can see a 3D 

plot of the resulting rankings. Darker 

colours mean lower ranking scores. The lowest part of the graph is on the coordinates (8,6), 

which corresponds to looking at 8 observations of the same time period, but a different day, and 

6 observations of the same day, but a different time period. This parameter setting ‘scores’ 24 

points, which consists of 3rd place in MSE results, 2nd in MAE results and 19th in MPE results. 

Because this setting has a bad score for the MPE measure we looked at the other settings which 

do score well for the MPE measure. However, on the settings where MPE scores well, both the 

other measures score badly. Furthermore the difference in MPE between the best setting and the 

introduced (8,6) setting is small (~1,5%). 

As shown in the previous paragraph, the average of the observations from the same 

distribution is a MLE for the arrival rate of the Poisson process. It can be argued that these 

neighbouring observations are not from the same distribution, since the arrival rate of the 

process changes over time. However within the neighbourhoods the change in arrival rate is 

small and we therefore can assume that they follow the same Poisson distribution. For this size 

of the neighbourhood we also showed that the data follows a Poisson distribution. 

With this estimated arrival rate, we estimate the likelihood of the 0-sequences. With the 

cumulative density function of the Poisson process, the probability of a 0 observation will be 

calculated. If a sequence consists of more than two 0-values, the probability of two 0-values 

occurring after each other will be calculated. With this probability we determine if a sequence is 

indeed a missing value. If the probability is below 0.0001, we mark the sequence as a missing 

value.  

After we have determined which values are missing and which values are just 0-observations, 

we can impute the missing values. With the arrival rate determined before, we will impute the 
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missing values with a random draw from the Poisson process. Because we use a random draw, 

the variance in the dataset will not get lost. Now we have a complete dataset and therefore we 

can continue our analysis.  
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4 ANOMALY DETECTION 

In this chapter we will investigate extreme values found in the data. An extreme value is an 

observation which is strange or unusual compared to the rest of the data. In statistics anomalies 

are all observations that do not conform to the established normal behaviour of the process. 

This can e.g. be a different pattern or an extreme value. In this chapter we will use the term 

anomaly detection to indicate the search for extreme values. Extreme values can be an 

extremely high or low call volume for some time period. Before we continue with the anomaly 

detection, we will first have to deal with the missing data of chapter 3.  

Anomalies can have several causes. Because of system failure, it could happen that for a certain 

time period the number of calls are no longer recorded. Since the missing data detection and 

correction only works for time periods where the number of calls was actually 0, we were not 

able to detect these anomalies. High values can also arise in several software errors, e.g. when 

the volume recording fails to identify the sub project and incorrectly assigns calls to a certain 

project. It can also be the case that for some strange occurrence (e.g. 9-11) the number of calls is 

significantly higher or lower for some time period.   

With our anomaly detection we follow a similar approach as in the missing data chapter. For 

each observation in the dataset, we will look at the neighbouring observations (6 time periods 

before and after the observation on the same day, and 8 days before and after the observation of 

the same time period). For this neighbourhood we have proven that the data follows a Poisson 

distribution. Then we estimate the arrival rate for each point in the dataset by the average 

number of observations of their neighbourhood (which again is the MLE of the arrival rate of a 

Poisson process). The next thing we should do is compare the true number of arrivals with the 

expected number of arrivals. This is done by calculating the probability of the true number of 

calls, under the assumptions that arrivals are Poisson distributed with arrival rate   equal to the 

average number of observations in the neighbourhood. We indicate an observation to be an 

anomaly if the probability of that occurrence is smaller than 0.0001. The final thing we do is 

impute the anomalies with a random draw from the Poisson distribution. This deletes the 

anomaly from the data and increases the predictive power of the forecasting model. In our 

analysis, the number of anomalies was usually less than      and therefore the impact of 

changing these values is small as well. If there would have been a large amount of anomalies, 

this is a feature of the data and cannot be omitted that easily. With this corrected dataset, we 

can continue our analysis. 

In the data we only found anomalies of extremely high call volume. There were no anomalies of 

low values, so a system failure during a period has not caused extremely low values. A likely 

explanation is that the impact of system failure is small compared to the call volume, and 

therefore doesn’t yield significantly different values. It can also be that when a system error 

occurs during a time period it will forget the number of calls up until then and generate a 

missing value (similarly than when the process is working again it begins recording the volume 

for every complete period) 
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Anomalies can also be detected on a day level. It is more likely that a certain event or system 

failure has a larger impact than only for some time periods. Especially when there is some 

strange occurrence, like 9/11, it can change the call volume for the entire day. Therefore, we also 

look at the difference between days. To determine the average calls for a certain period, we first 

have to estimate the size of the neighbourhood. First we will look at the observations directly 

before and after the particular arrival rate we want to forecast. We will not make a distinction 

between days, so to estimate e.g. the arrival rate for a Monday; we will use data from the other 

days as well. Next, we will again estimate the neighbourhood, but now we will only look at the 

same day. So forecasts for Monday will only be done with data from other Mondays. 

Analysis for this is done on project number 192 (see Appendix A) and for verification project 

188 and 242 is used as well. We start off with estimating arrival rates for each day, by looking at 

the neighbourhood without considering the day of the week. To determine the best size of the 

neighbourhood, we calculate the arrival rates for several sizes of the neighbourhood. As before, 

we look at 1 up to 10 days before and after the observation. So if we want to estimate the value 

for, say 5 June 2007, with the size of the neighbourhood set to 4, we look at 4 (working)days 

before 5 June and 4 days after 5 June. The average of these observations is then the estimate for 

the daily arrival rate. To determine the best value for the size of the neighbourhood, we will 

again calculate the MSE (3.14), the MAE (3.15) and the MPE (3.16). The results can be seen 

below: 

Number of observations before and after 

 1 2 3 4 5 6 7 8 9 10 

MSE 943.6 915.3 993.5 998.1 900.3 946.2 996.0 1040.6 1058.5 1041.6 

MAE 22.39 22.42 23.26 22.81 21.22 21.67 22.44 23.03 23.10 22.72 

MPE 0.182 0.186 0.191 0.186 0.171 0.174 0.180 0.185 0.185 0.182 

 
As can be seen, the best size for this neighbourhood is 5. However, when we examine the data more 
carefully, we can improve the way the neighbourhood is defined in order to make the arrival rate 
estimation more accurate. If we calculate the MSE, MAE and MPE separately for each day, we see that 
on Mondays the errors are much larger (see Appendix D). These errors are the main contributors to the 
overall errors. Call volume on Monday is much larger than in the rest of the week, so estimating the 
Monday call volume by other days might not be a good idea (it is no surprise that a neighbourhood of 
size 5 yields the best result, since that will incorporate two Mondays into the average). The second 
method we will examine will estimate call volumes by looking at neighbouring observations of the same 
day. So only Monday data will be used to estimate the Monday arrival rate. The results can be found in 
Appendix D and overall results are in the table below: 
 

Number of observations before and after 

 1 2 3 4 5 6 7 8 9 10 

MSE 1115 1086 1146 1188 1259 1314 1380 1399 1431 1484 

MAE 22.94 22.19 22.82 23.29 24.20 25.09 25.89 26.24 26.78 27.29 

MPE 0.188 0.181 0.183 0.183 0.191 0.199 0.205 0.208 0.212 0.217 
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As you can see the overall value of the different error measures has increased. So this method of 

estimating the arrival rate of data within the dataset yields worse results. However, we can see 

that for Monday data the error measures yield better results (see Appendix D). Because the call 

volume is higher on Monday’s the best estimation is done by looking at the observations of 

other Monday’s. For the other days this doesn’t hold. Since the call arrival pattern changes 

every period, i.e. within day changes and changes over weeks/months, we need to make a 

trade-off. On the one hand, we can use only data of the same day. This will give us good results 

if that day is significantly different from the others. The downside for this approach is that the 

length of the time period you are using for the estimation is longer, and since the rate changes a 

lot, this might give you worse results. On the other hand, we can use data from other days, but 

close to the estimated observation to make the estimation. This makes the time period over 

which the estimation is made smaller and therefore is less sensible to changes in rate over time. 

However, this method can only be done when the days are comparable. For our application, we 

have seen that looking at the same day is beneficial for Monday data and not for the other days. 

Therefore, we introduce a method to where we estimate arrival rates for Mondays by using the 

data of other Mondays and for the other week days, we will use data from all other days (except 

Mondays). The results are again given in Appendix D and the overall results are given below: 

Number of observations before and after 

 1 2 3 4 5 6 7 8 9 10 

MSE 862.9 800.6 849.6 868.7 925.5 950.5 981.1 995.9 1034 1081 

MAE 20.32 19.08 19.53 19.5 20.26 20.71 21.25 21.49 21.92 22.35 

MPE 0.167 0.155 0.157 0.155 0.16 0.164 0.168 0.17 0.173 0.176 

 

As you can see, this decreases the values of all error estimators, and is therefore the best method 

of the methods we have seen. We see that the size of the neighbourhood is still a discussion, 

since the MSE and MAE indicate that the best size of the neighbourhood should be two 

observations before and two after, but the MPE indicates that the size should be four (though 

not very different from two). This can be better investigated by looking at the error measures 

for each day separately (See Appendix D). 

Since Monday’s arrival rate is estimated by other Mondays, this process of estimation is 

sensitive to changes in rate over time. In the data we can see that therefore the neighbourhood 

should be of size two. So we will only look at the two weeks before and the two weeks after the 

observation to make an estimate. Since we will only look at four observations, the estimate 

might be bad, but given that this yields the best results in our data, we will continue to use this. 

For the other weekdays this is different. Since the rate doesn’t change that fast within a week, 

having more observations to base your estimate on seems beneficial. In the appendix you can 

see that having a neighbourhood of size three yields the best result. The results do vary 

depending on day and measure, but the use of a second dataset shows that in general using 

three as the neighbourhood size yields the best results. To estimate the arrival rate, we therefore 

use three observations before the rate we want to estimate (except Mondays) and three 

observations after the rate. 
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Now that we have determined the neighbourhoods of the data, we can continue with the 

anomaly analysis of the data. This is done in a similar way as before when we where detecting 

anomalies in the data on quarter level. First we determine which values can be considered 

anomalies in comparison to the Poisson distribution and the estimated arrival rate. If the 

probability of a value is really low (i.e. 0.0001), than we replace the value with a random draw 

from the Poisson distribution. Note that the chosen value for the probability is very low. This is 

because we don’t want to replace a lot of values. The call volume is really volatile and we do 

not want to smooth out all irregularities. Therefore an anomaly will only be replaced if it is 

highly unlikely to have occurred. Furthermore, after a replacement has been made, the 

neighbourhoods will be recalculated. This is because an extremely high value has had its 

influence on the neighbourhoods of other observations, which can cause that other observations 

are considered outliers as well. If we change an extremely high value and recalculate the 

neighbourhoods of other observations, there is no longer any influence of that outlier. In the 

datasets we tested the occurrence of outliers varied a lot. In the beginning of a new project a lot 

of outliers where detected. This is probably due to the fact that the automated telephone choice 

menus are redesigned and flows of callers therefore change. In the first five weeks about 10% of 

the daily call volume was considered an outlier. Once the project had run for some weeks the 

amount of outliers dropped to about 1%. With this corrected dataset we can continue our 

analysis to forecast the call volume  

If we found an anomaly on day level and have generated a random draw from the Poisson 

distribution to replace the volume for that day, this volume also needs to be distributed of the 

time periods. For a Monday we use the call volume of the Monday the weeks before and the 

weeks after to estimate the average. We then need to distribute the call volume for that day over 

the distinct time periods. This is done by calculating the pattern of the call volume for Mondays, 

see chapter 7 for the method to determine this pattern. With this pattern, we can then distribute 

the call volume over the time periods and can continue our forecasting procedure.  
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5 HOLIDAY INFLUENCE 

After we filtered out the missing data and outliers, we will look at the influence of holidays in 

our data. The call centre we investigate is closed for some days a year, e.g. during Easter and 

Christmas. In this chapter we try to investigate the influence of these holidays on the data. If for 

example Monday is Easter and therefore the call centre is closed. We want to examine whether 

people, who would have normally called on that Monday, will call back and when. Perhaps 

they call on Tuesday or Wednesday, or they might call next Monday, because Mondays are 

most convenient for them.  

We will conduct several analyses on the influence of holidays. These analyses will be done by a 

simple linear regression model to test the influence of holidays on the remainder of the week. 

Results for all testing procedures can be found in Appendix C. The first test we will conduct is 

testing whether all holidays have an influence on the call volume for the other weekdays. The 

following regression model was used: 

                          

 
(5.1) 

With Calls the vector of call volume for each day and Holiday a dummy variable which indicates 

whether there is a holiday in that certain week. Furthermore i indicates the position in the 

vectors. In this first model, all holidays are included. For this dataset (project 188) that means 

we include: Ascension 07, Pentecost 07, Christmas 07, New year 08, Easter 08, Queens day 08, 

Ascension 08, Pentecost 08, Christmas 08, New year 09, Easter 09, Queens day 09 and Ascension 

09. In Appendix C you can see the results of this regression. Here the influence of Holiday yields 

a significant result. However, we are not completely convinced about the influence of holidays, 

since our model is still very basic. This can also be seen by the low value of R2. Therefore we 

elaborate our model to the following: 

                                      (5.2) 

In this new model we added a lag variable to include autocorrelation into the model. Results of 

this regression can again be found in Appendix C. Here we see that Holiday does not have a 

significant impact. The effect of the lag variable covers most of the variability. Also the R2 has 

risen quite a lot.  

Since there is also a difference between weekdays (Monday e.g. has a higher volume than a 

Friday) we elaborate our model to cope with these influences as well. This yields the following 

model: 

 

                                               

                                 
    

(5.3) 



Call Centre Forecasting 

A comprehensive analysis of missing data, holiday influence and different forecasting methods 

 

1 April 2010 Mathijs Jansen 31 

This model includes dummy variables for the days. The dummy variables (Monday, Tuesday, 

Wednesday and Thursday) are 1 when it is that day and 0 otherwise. We do not include a dummy 

for Friday, since that would cause multicollinearity. Multicollinearity can arise in regression 

models when two or more variables are highly correlated. Again the result of this regression 

can be found in the appendix. 

 

Here we can again see that Holiday does not have a significant influence on the number of calls 

in a certain period. For other projects in the dataset this was also tested and no significant 

results were found. Furthermore we also tested whether call from one Monday (e.g. Easter 

Monday) are transferred to the next Monday. Here again we could not find any significant 

results. An explanation to this could be that the effects of a holiday cancel out. On one hand, 

people could call less because they are away during the holidays. On the other hand, they could 

call more because they have a day off. In the remainder of this thesis we will therefore not take 

the influence of holidays into account. 

We do however need to correct for the holidays. Because there is no call volume on the 

holidays, these days can be seen as missing values for each time period during that day. In the 

remainder of the thesis we will use a model which needs data in a specific format. Every 

working day (Monday till Friday) should be represented, even if it is a holiday. That way we 

can have a season of length five representing the influence of weekdays on call volume. To 

make the data complete again, we therefore impute values for the holidays the call centre was 

closed. This is done in the same way as was done with the anomaly detection. For Easter 

Monday we use the call volume of the Monday the two weeks before and the two weeks after to 

estimate the average. For the other weekdays, we estimate the average call volume by the three 

working days before and after that specific day (excluding Mondays). We then need to 

distribute the call volume for that day over the distinct time periods. This is done by calculating 

the pattern of the call volume for that day, see chapter 7 for the method to determine this 

pattern. With this pattern, we can distribute the call volume over the time periods and continue 

our forecasting procedure.  
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6 FORECASTING 

After all the data cleaning processes we will continue with forecasting future call volumes. 

Forecasting is done in almost every industry. Whether it is a forecast for the sales in a shop or 

factory, the failure rate of a machine in a production process or the number of calls in a call 

centre, forecasting is useful in many ways. In this chapter we will investigate the forecasting 

method most suited for call centre forecasting. This method should be able to work with 

seasonal data and increasing or decreasing call volumes. First we will introduce several 

forecasting methods that are used in practice. 

6.1 Forecasting methods: Moving averages and Smoothing methods 

 

In this sub chapter several forecasting methods will be discussed, including their advantages 

and disadvantages. We start with the most basic forecasting methods. For more reference about 

these forecasting methods see (Hanke & Wichern, 2009) or (Brockwell & Davis, 1996) 

6.1.1 Simple Average 

 

Calculating a forecast based on Simple Average is done with the following equation: 

 

 
 ̂    

 

 
∑  

 

   

 

 

(6.1) 

This equation is rather straightforward. The forecast for the next observation (   ) is the 

average over all previous observations. This makes it an easy forecasting method, but doesn’t 

incorporate seasonal effects or trend effects. If the volume is increasing this method will 

underestimate the real call volume, since the forecast is merely an average over past (lower) 

volumes. 

6.1.2 Moving Average 

 

A similar forecasting method doesn’t look at all previous observations, but only looks at the last 

  observations. This yields the following equation: 

 
 ̂    

                

 
 (6.2) 

This forecasting method is more sensitive to an increase (or decrease) in volumes. It will 

perform better than SA in case of an increasing volume; however it will still underestimate the 

real volume. If the call volume is strictly increasing the Moving Average forecast will always 

underestimate the next volume, since it is the average of past observations, which are all lower. 
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6.1.3 Double Moving Average 

 

To deal with the problem of forecasting errors when the data follows an increasing trend 

(second derivative > 0), the method of Double Moving Averages can be used. As the name 

implies, two sets of moving averages are computed. First we compute the two moving average 

by: 

    ̂    
                

 
 

  

  
  

                

 
 

 

The first moving average estimates the level the same way the normal Moving Average does. 

The second formula then calculates the average forecasts for the previous periods. With these 

two series of moving averages, we can calculate the forecast: 

 

  ̂           (6.3) 

Where 
      (     

 )        
  

   
 

   
(     

 ) 

 

And p denotes the number of periods ahead you want to forecast.    is the level forecast. It 

consists of the normal MA forecast and the difference between the current forecast and the 

average of previous forecasts. That way, if there is an increase in forecasts, the new forecast will 

be corrected. The second component    is the trend correction. It adjusts the new forecasts with 

the difference in the new forecast and the previous forecasts. This also makes that the Double 

MA forecasting method can deal with increasing trend processes. A disadvantage of this 

method is that all previous observations within k have the same weight and there is no 

seasonality in the data.  

 

In the graph below you can see an example of the forecasting methods described above for 

some random dataset. K is chosen to be three is this example. As you can see the Simple 

Average underestimates strongly. Because of the low value of k, the Moving Average forecast 

does underestimate, but not severely. These forecasting methods are used to estimate the 

demand of a certain product X in a number of weeks. Because the demand is increasing more 

than linearly, most of the methods underestimate the demand for the next period. Only the 

double moving average forecast is able to forecast the series quite accurate. 

 



Call Centre Forecasting 

A comprehensive analysis of missing data, holiday influence and different forecasting methods 

 

1 April 2010 Mathijs Jansen 34 

 
 

6.1.4 Exponential Smoothing 

 

Another method to forecast time series is Exponential Smoothing. The equation is as follows: 

 

  ̂        (   ) ̂  (6.4) 

So the next forecast depends on the previous value and the previous forecast. The parameter 

  has a value between 0 and 1. This forecasting method gives a recursive forecast, where the 

initial value    has to be set. If we set   to a large value, most of the weight will be put on the 

observation of the previous (most recent) period. A small   corresponds to a long ‘memory’ i.e. 

the forecasting process puts more weight on the history of the volume. This can be seen if we 

write out the equation: 

 

 ̂         (   )      (   )       (   )        (   )    

 

If   is large (say 0.7) most of the weight is on   , however if   is small (say 0.1) more weight is 

put on observations from the past. In the first case the weights of the formula above are 

respectively (0.7;0.21;0.063;0.019;0.006 etc) and in the second case (0.1;0.09;0.081;0.073;0.066 etc). 

Hence you can see that the weight of past observations diminishes quickly if   is large. Also 

note that when the amount of data is small, a lot of weight can be on     This is because the sum 
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of the weights should be equal to one, and with a large   it takes quite some periods before we 

approach one. In the example below you can see that a large   responds quicker to a change in 

the data and a small   smoothes the forecast more. In a rapidly changing environment the 

forecast using a large   is always a step behind the real volume as can be seen in the graph. In 

this example we choose     ̂ , so the first estimate is equal to the first observation. 

 

 
 

The best suited value for   can be chosen by calculating the MSE, MAE or MPE as described in 

chapter 3.5 and choosing the best performing  . 

6.1.5 Exponential Smoothing adjusted for trend: Holt’s Method 

 

When data shows a clear trend, regular exponential smoothing will constantly underestimate 

the real volume. Therefore Holt (Holt, 1957) developed a method to deal with trend forecasting. 

Holt’s procedure makes an estimate of the slope as well as the current level. Both the level and 

slope are smoothed by exponential smoothing with a different smoothing constant. The 

estimates for level and trend therefore change as more information becomes available. Because 

the smoothing constants for level and trend can be chosen, Holt’s method is really flexible. The 

equations used for Holt’s method are: 

 

The level estimate: 

        (   )(         ) (6.5) 

The trend estimate: 

     (       )  (   )     (6.6) 
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The forecast for p periods ahead: 

 

Where  

    The new smoothed value (level estimate) 

   The smoothing constant for the level (     ) 

    The actual volume in period   

   The smoothing constant for the trend (     ) 

    The trend estimate 

   The number of periods to be forecasted ahead 

      The forecasted volume for   periods ahead 

 

The starting values    and    are set to    and 0 respectively. So the level estimate is set to the 

first observation and the trend is set to 0.  

6.1.6 Exponential Smoothing adjusted for trend and seasonal variation: Holt-Winters’ 

Method 

 

To deal with data with a seasonal pattern, Winters developed an elaboration to the previously 

introduced Holts method. More details can also be found in (Winters, 1960) and the original 

paper (Holt, 1957). This forecasting method makes an estimate for the level, trend and 

seasonality. These three components are all weighted by their own smoothing constant. The 

four equations that define Holt-Winters’ smoothing are: 

 

The level estimate: 

 
    

  

    

 (   )(         ) (6.8) 

The trend estimate: 

     (       )  (   )     (6.9) 

The seasonality estimate: 

 
    

  

  

 (   )     (6.10) 

The forecast for p periods ahead: 

  ̂    (      )       (6.11) 

 

Where  

    The new smoothed value (level estimate) 

   The smoothing constant for the level (     ) 

    The actual volume in period   

   The smoothing constant for the trend (     ) 

    The trend estimate 

   The smoothing constant for the seasonality estimate (     ) 

  ̂           (6.7) 
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    The seasonality estimate 

   The number of periods to be forecasted ahead 

   The seasonality length 

      The forecasted volume for   periods ahead 

 

The initial conditions for this recursion are as follows: 

 
          

     
       

 
 

   
  

       (   )
         

 

 

Here again the values for     and   should be determined by either minimising one of the error 

measures (MSE, MAE or MPE) or by using an optimisation algorithm. To start generating 

forecasts, we need to set the initial values for the level,   ; the trend,   ; and the seasonal indices, 

  . The formulas for this initial setting can be seen above. The level is set to the current level, the 

trend is set to the increase of the last s seasons and the seasonal indices are set to the ratio of the 

real value    and the forecasted value based on trend and starting value. This method of 

forecasting will result in quite reliable initial values over time. It is possible to improve these 

initial values, but since we have enough historical data, we will not elaborate on this. The level, 

trend and seasonal indices will adapt itself if a cycle passes, and if we have enough cycles the 

influence of the initial values is really small. Therefore we will use this basic method of 

determining the initial values. 

 

The multiplicative method assumes that the seasonal effects are proportional to the current 

volume. However, in some datasets the multiplicative Holt-Winters method might not fit the 

data well. The effect of level, trend and season might be independent of each other and 

therefore an additive model is better suited for the data. In the additive model it is assumed that 

the size of the seasonal effect is independent of the current volume. The four equations for the 

additive model are as follows. 

 

The level estimate: 

     (       )  (   )(         ) (6.12) 

The trend estimate: 

     (       )  (   )     (6.13) 

The seasonality estimate: 

     (     )  (   )     (6.14) 

The forecast for p periods ahead: 

  ̂                  (6.15) 
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Where  

    The new smoothed value (level estimate) 

   The smoothing constant for the level (     ) 

    The actual volume in period   

   The smoothing constant for the trend (     ) 

    The trend estimate 

   The smoothing constant for the seasonality estimate (     ) 

    The seasonality estimate 

   The number of periods to be forecasted ahead 

   The seasonality length 

      The forecasted volume for   periods ahead 

 

The initial conditions for this recursion are as follows: 

 
          

     
       

 
 

      (       (   ))         

 

So the first level estimate after the first complete period is set to the level at that time. The trend 

estimate is set to the increase (or decrease) per period over the last   periods. The initial values 

for the seasonality estimates are set for all observations until one cycle is completed. The 

seasonal estimate is set to the difference between the observed value and the value based on the 

trend estimate. In the additive model, it is easier to estimate the initial values than in the 

multiplicative method. This is because all effects are separate in the additive model. In the 

multiplicative model, the effects can enhance each other. Here again all smoothing estimates 

should be estimated by determining the best possible values.  

6.1.7 Exponential Smoothing adjusted for trend and double seasonal variation. 

 

If we use the method used above, we can only include one seasonal pattern. Several projects in 

our dataset only have one seasonal pattern, namely the week pattern. Call volume on Mondays 

is significantly higher than the rest of the week, and on Fridays the call volume is lower. 

However, there are also projects with multiple seasonal patterns. This is e.g. the case in project 

437, which deals with invoices of unpaid subscription fees. If people don’t pay the subscription 

fee, they get a reminder send by mail. Next to the week pattern, this process also shows a 4-

week pattern, which is the frequency of sending the reminders. Furthermore projects can also 

have a year pattern. E.g. for magazine subscriptions it can be the case that people get a 

subscription for Christmas or Sinterklaas (5 December). To incorporate this, we look at an 

adaptation of the Holt-Winters model to incorporate multiple seasonal variations. This was first 

introduced by Taylor (Taylor, 2003). The multiplicative version of the double seasonal Holt-

Winters exponential smoothing can be described as follows: 
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The level estimate: 

 
    

  

        

 (   )(         ) (6.16) 

The trend estimate: 

     (       )  (   )     (6.17) 

The (weekly) seasonality estimate: 

 
    

  

      

 (   )     (6.18) 

The (monthly) seasonality estimate: 

 
    

  

      

 (   )     (6.19) 

 

The forecast for p periods ahead: 

  ̂    (      )             (6.20) 

 

Where  

    The new smoothed value (level estimate) 

   The smoothing constant for the level (     ) 

    The actual volume in period   

   The smoothing constant for the trend (     ) 

    The trend estimate 

   The smoothing constant for the (weekly) seasonality estimate (     ) 

    The (weekly) seasonality estimate 

   The (weekly) seasonality length 

   The smoothing constant for the (monthly) seasonality estimate (     ) 

    The (monthly) seasonality estimate 

   The number of periods to be forecasted ahead 

   The (monthly) seasonality length 

      The forecasted volume for   periods ahead 

 

The initial conditions for this recursion are done in two steps. This method of determining the 

initial values was not described by (Taylor, 2003) so therefore we developed this method. First 

we define: 

 
          

     
       

 
 

     
    

         (   )
         

                

 

This first initial setting finds the values for the smallest seasonal period. It sets the level to the 

current level and sets the trend as the trend over the last (weekly) period. Then we set the 

seasonal estimates to be the division of the real observed value and the estimated value based 



Call Centre Forecasting 

A comprehensive analysis of missing data, holiday influence and different forecasting methods 

 

1 April 2010 Mathijs Jansen 40 

on level and trend. This can be viewed as the deviation from the line based on level and trend. 

We therefore assume that the bigger seasonal period does not have a large impact on this small 

season and that the short term trend will deal with part of the big seasonal influence. After this 

first step, we continue (re)setting other variables 

 

     
     

 
 

     
    

(         (   ))      

          

 

Now we change the trend variable to the trend over the entire large season and then we 

estimate the large seasonal influence with the found values of W in the first step. 

 

If we compare this model with the previously introduced model, there is not much difference 

between them. The basics of the model remain intact and only the extension for two seasonal 

influences is added. Note also that for clarity we added (weekly) and (monthly). This can 

however also be a different pattern, e.g. 4-weekly. In this model we also need an extra 

smoothing constant; this is a disadvantage since the values for these parameters should be 

determined. Chapter 6.3 deals with the problem of determining the parameter values. 

Since a multiplicative model might not model the behaviour of the time series properly, we can 

also construct an additive version. This version is not described in (Taylor, 2003), but can be 

derived by following similar methods as before. The resulting model can be described as 

follows. 

The level estimate: 

     (            )  (   )(         ) (6.21) 

The trend estimate: 

     (       )  (   )     (6.22) 

The (weekly) seasonality estimate: 

     (          )  (   )     (6.23) 

The (monthly) seasonality estimate: 

     (          )  (   )     (6.24) 

 

The forecast for p periods ahead: 

  ̂                         (6.25) 

 

Where  

    The new smoothed value (level estimate) 

   The smoothing constant for the level (     ) 
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    The actual volume in period   

   The smoothing constant for the trend (     ) 

    The trend estimate 

   The smoothing constant for the (weekly) seasonality estimate (     ) 

    The (weekly) seasonality estimate 

   The (weekly) seasonality length 

   The smoothing constant for the (monthly) seasonality estimate (     ) 

    The (monthly) seasonality estimate 

   The number of periods to be forecasted ahead 

   The (monthly) seasonality length 

      The forecasted volume for   periods ahead 

 

The initial conditions for this recursion are also done in two steps. This again was not 

introduced by Taylor, but follows similar logic as in the multiplicative case. First we define: 

 
          

     
       

 
 

          (         (   ))         
                

 

This first initial setting finds the values for the smallest seasonal period. It sets the level to the 

current level and sets the trend as the trend over the last (weekly) period. Then we set the 

seasonal estimates to be the difference between the real observed value and the estimated value 

based on level and trend. We therefore assume that the bigger seasonal period does not have a 

large impact on this small season and that the short term trend will deal with part of the big 

seasonal influence. After this first step, we continue with setting the other variables 

 

     
     

 
 

          (         (   )      )          

 

Now we change the trend variable to the trend over the entire large season and then we 

estimate the large seasonal influence with the found values of W in the first step.  

 

Both two last models yield good results in real world applications and by setting the initial 

values as described above, we can generate good forecasts after a few periods. You can generate 

forecasts if you only have one large period of data, but it is advised to have at least three 

periods of data to increase the accuracy of the seasonal estimates.  

6.2 Forecasting methods: Regression models 

 

In this sub chapter several forecasting methods will be discussed, including their advantages 

and disadvantages. We start with the most basic forecasting methods. For more reference about 

these forecasting methods see (Hanke & Wichern, 2009) or (Brockwell & Davis, 1996). 
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6.2.1 Autoregressive Models (AR) 

 

Autoregressive models are used when there is autocorrelation in the data. Autocorrelation is 

when observations from a certain time period are dependent on observations from another time 

period. E.g. if you consider the weather forecast: if it is sunny today, it is likely that it will be 

sunny tomorrow (however a lot of other factors play a part). Also in call centre data we see 

autocorrelation. Typically we see that the call volume of today is dependent on the call volume 

of yesterday and on the call volume of a week ago. This second fact can be explained by the fact 

that there is a difference in call volumes per day. On Monday’s the call volume is higher than in 

the rest of the week, therefore the call volume of a Monday depends on the previous Monday as 

well as on the day before (in this case the Friday). To incorporate autocorrelation in our models, 

Autoregressive Models (AR-models) have been developed. AR models are defined by the 

number of lags, so an AR(5) model incorporates 5 lags. The AR model is said to be of order p if 

it incorporates p lags. The AR(p) model is defined as follows:  

 

                                  

 

(6.26) 

Where the error terms    have conditional expectation 0, variance    and are independent and 

identically distributed (iid) random variables.    is the dependent variable,             are the 

explanatory variables and         are the regression parameters (with    the constant term). 

By means of e.g. Ordinary Least Squares (OLS) the model can be fitted to the data, which yields 

the following forecast equation:  

 

  ̂                     

 

(6.27) 

6.2.2 Moving Average Models (MA) 

 

The moving average models in this subchapter are different from the models introduced in the 

previous subchapter. We will first introduce the qth-order moving average model: 

 

                                  

 

(6.28) 

Where the  ’s are the explanatory variables and the  ’s are the parameters to be estimated. 

Again         are iid random variables. This model is quite similar to the previous model, 

except that the forecast now depends on previous errors instead of previous observations. For 

some time series an upward shock (i.e. there is a positive error) will cause a downward shock in 

the next period. In that case the    will be negative.  

 

6.2.3 Autoregressive Moving Average Models (ARMA) 

 

Both methods introduced above can be combined into a new model. This Autoregressive 

Moving Average Model, ARMA, uses the notation ARMA (p,q). Here p defines the order of the 
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autoregressive part and q is the order of the moving average part. This yields the following 

definition: 

 

                                               

        

 

(6.29) 

Where again         are iid random variables. These ARMA models can be used in a wide 

variety of stationary time series. Calculating values for the  ’s is computational difficult if the 

order is high. A standard regression model can easily be solved by applying the method of least 

squares. For the ARMA model that doesn’t work. This is because the error terms are dependent 

on the rest of the model, so when we change the value of any of the  ’s, all error terms change 

as well. Algorithms like the ‘Innovations Algorithm’ (Brockwell & Davis, 1996) can be used to 

determine the parameter estimates. In most statistical packages like Stata, SPSS or SAS there is a 

method incorporated for estimating these models. Stata e.g. has a method which combines the 

BHHH algorithm (named after their inventors (Berndt, Hall, Hall, & Hausman, 1974)) and the 

BFGS algorithm by (Broyden, 1970), (Fletcher, 1970), (Goldfarb, 1970) and (Shanno, 1970). Both 

these algorithms are elaborations of the Newton’s method for optimisation but follow similar 

logic. In Newton’s method you approximate the function f(x) (in this case a function on the 

errors of the regression model) by a quadratic function. Then you take one step towards the 

maximum/minimum of that function (in our case the minimum). This step is repeated until 

convergence. Both these methods are optimisation algorithms and they are alternated such that 

a good solution can be found. Also for other methods discussed here with a moving average 

factor this optimisation method is used. Note that in case     the model can still be estimated 

as an autoregressive model, which can be solved by OLS.  

6.2.4 Autoregressive Integrated Moving Average Models (ARIMA) 

 

The ARMA method is designed for processes which are (weak sense) stationary or (covariance) 

stationary. Strict stationary processes are when the probability distribution does not change 

over time. Weak sense stationarity is a relaxation which holds when the first two moments of 

the distribution remain constant over time. This also means that the covariance only depends on 

the distance between two observations and not on the place of these observations. A non-

stationary process can often be converted to a stationary process by differencing. This can be 

done by replacing the original series by a series of differences and these differences are then 

modelled as an ARMA process. Usually the first difference is enough to construct a covariance 

stationary process, but it is also possible to take the second difference or even higher numbers. 

An ARIMA process is defined by ARIMA (p,d,q), where p and q are respectively the order of the 

autoregressive part and the order of the moving average part. The third variable d is the order 

of the differences. In case of     the model is defined by: 

 

                                                 

          

 

(6.30) 

Where   denotes the first difference. This method is used quite a lot in general forecasting, as 

well as in specific call centre forecasting situation. 
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6.2.5 Seasonal Autoregressive Integrated Moving Average Models (SARIMA) 

 

If the data we would like to forecasts exhibits a seasonal pattern, we need to adapt the ARIMA 

model. If there is e.g. a clear correlation between observations of January this year with the 

observation of January last year, the seasonal period      in case of monthly data. If you 

wanted to incorporate this in the normal ARIMA model, you would have to set     . This 

would increase the number of parameters and hence the calculation time. Furthermore, not all 

lags between 1 and 12 might have a significant effect and therefore should not be in the model. 

An adaptation to the ARIMA model is to add a seasonality factor. This seasonal factor is added 

by adding an extra differencing term. If you for example have a seasonality of 12, then the 

seasonal ARIMA(0,0,0)(0,1,0)12 is can be written as: 

 

     ̂           

 
(6.31) 

Here we have a seasonality of 12 and we incorporate only the difference of this seasonality. The 

first set of inputs for this SARIMA model is similar to the ARIMA inputs. The second set of 

inputs for this seasonal ARIMA model shows which autoregressive, integrated and moving 

average factors should be incorporated in the model. Hence the model can be expanded 

enormously if we incorporate more terms. E.g. the ARIMA(1,1,0)(0,1,1)12 can be written as: 

 

     ̂                     (                     )    

         

 

(6.32) 

Which can be rewritten into: 
                     

Where 
                              

 

So here you can see how the seasonal ARIMA model works. First you apply both differencing 

procedures to obtain    and then you can construct the regression equation on   . If you then 

fill in    in the regression equation, you get the ARIMA model. This model can also be 

calculated in a statistical package like Stata. 

 

Models that have a moving average term are rather hard to estimate. This is because the 

parameter estimates directly influence the error terms and therefore make the model different. 

Finding a good estimate to these models is therefore an optimisation model which takes 

considerable time to calculate. Several software packages like Stata can calculate these 

problems. However programming these models from scratch in the Anago software is rather 

difficult. Therefore, in the remainder of this thesis we will use the moving average models as 

benchmarks to estimate the performance of the Holt-Winters seasonal models. In chapter 8 we 

will compare the Holt-Winters model to the ARIMA models to see which model performs 

better. 
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6.3 Holt-Winters Parameter optimisation 

 

A large problem of the Holt-Winters algorithm is finding the appropriate parameter values for 

the smoothing process. This problem only increases when we add the extra seasonality factor to 

the model. A common criticism is that this extension leads to ‘over-parameterisation’. The big 

advantage of the algorithm is that finding forecasts is really easy once the parameters are found, 

but those parameters are really hard to estimate. 

 

In several software packages there are algorithms implemented to find optimal values. These 

algorithms usually combine a local search optimisation with a global search. The local search 

optimisation will search for improvements in the parameters in the neighbourhood of the 

current parameter values. A problem then can be that this optimisation results in a local optimal 

solution. Therefore the global search method makes sure that more (locally) optimal values are 

found and hopefully it will also find the global optimum. 

 

Getting a good value for the parameters can cost quite some calculation time, especially if you 

have to optimise four parameters. If you would choose to naively calculate every parameter 

setting where parameters can range from zero to one with two decimals, this would result in 

calculating      Holt-Winters forecasts. Therefore we will introduce a method which has a 

really fast calculation time, but yields good results. For this we will first introduce the concept 

of Latin Hypercube Designs. 

6.3.1 Latin Hypercube Designs 

 

Latin Hypercube Designs are mostly used when you want to estimate an unknown function 

with unknown parameters.  E.g. you want to estimate a certain insurance risk for fire. Because 

this risk is complicated and a lot of factors contribute to the probability of fire, simulation is 

often used to calculate these probabilities (e.g. a Monte Carlo simulation). These simulations are 

done for the different values of the input parameters. These input parameters can be seen as the 

different scenarios which could take place. However, these simulations can be really time 

consuming and running the simulation for every possible parameter value can take ages. 

Therefore Latin Hypercube Designs are used to determine useful parameter values. 

 

First we will illustrate the concept of Latin Hypercube Designs in two dimensions. If you take 

chess board (so size 8x8) and put 8 rooks on that board in such a way that they cannot attack 

each other.  That way there is one rook on every row and column. An easy solution to this 

problem is to put all the rooks on the diagonal of the grid. Now we want to set the rooks in such 

a way that the minimum distance between two rooks is as large as possible. Determining the 

distance between two points can be done in several ways, but here we will only use the 

Euclidean distance. This is defined as 
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(6.33) 
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To illustrate the use of this measure it is easiest to show an example of an optimal Latin 

Hypercube Design: 

 

.  

Figure 8: Latin Hypercube Design in two dimensions with 17 points and the Euclidean distance 

measure (taken from www.spacefillingdesigns.nl) 

 

Here you can see that while using this distance measure, solving the LHD in two dimensions is 

basically packing circles into the grid. In three dimensions it can be seen as putting balls in a 

box. LHD are thus a distribution of point in a number of dimensions in such a way that the 

points are evenly spread over the entire area. 

 

In two dimensions an optimal LHD can be found (see e.g. (van Dam, Husslage, den Hertog, & 

Mellissen, 2007)). However in higher dimensions it is hard to find optimal LHD. For some 

designs we know they are optimal, just by calculating all possible options, which is really time-

consuming. For other problems, we can use algorithms to find good solutions. E.g. the 

algorithm proposed by (Jin, Chen, & Sudjianto, 2005) can be used. On the website 

www.spacefillingdesigns.nl the best LHD found so far can be seen. 

 

Back to the example of the insurance risk. We needed parameter values for the simulation, and 

we wanted few simulation runs to decrease the calculation time. However, we also want to 

http://www.spacefillingdesigns.nl/
http://www.spacefillingdesigns.nl/
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calculate scenarios (i.e. parameter settings) which represent the possible occurrences well. 

Because we don’t have any knowledge of the optimal parameter setting, we want the 

parameters to be evenly distributed over their possible values. The LHD’s can therefore be 

used, because in a LHD the points are evenly spread over the area.  

 

For the Holt-Winters parameter search we can also use LHD’s. The parameters             can 

have a value between 0 and 1. To decrease the calculation time, we want the values to be 

optimal for two decimals. When we would calculate all possible outcomes this would result in 

calculating      possible forecasts. Now we take a LHD of 101 points in four dimensions and 

use this as the parameters. Of these 101 simulations, we calculate the values of the error 

measures introduced in equations (3.14), (3.15) and (3.16). These errors are the differences 

between the forecasts for the last ten weeks (so fifty observations ahead) which are done on the 

day before these weeks and the real observed number of calls. With these different error 

measures we have to determine which error measure is the best. This is done by calculating the 

relative performance to the best simulation. The best simulation gets value one and the errors of 

the other simulations are divided by the error of the best simulation. This is done for all three 

error measures. If we then add up these values, we can find the best settings for the parameters 

of these designs. 

6.3.2 Local search optimisation 

 

However, there might be improvements possible. Therefore, we take the five best parameter 

settings and try to decrease their errors. This is done by changing the values of the parameters 

one by one and see whether the errors become smaller. E.g. we decrease   by 0.01 and we see if 

the error measures decrease. It can be that some of the measures decrease and some don’t that is 

why we calculate the following: 

 
    

      
 

    

      
 

    

      
 

 

Where minMSE is the value of the MSE of the current design (before adapting  ). If this sum is 

lower than three, the new design is considered an improvement. We will then look at increasing 

   If it is no improvement we will increase   and recalculate the model. 

 

This is continued until it is no longer possible to improve the parameter settings with these 

small adjustments. Of these five (locally) optimised designs the best one is chosen. Typically 

this process of improving the parameters takes about thirty steps per initial parameter setting in 

the data we tested. However it might take longer in different datasets. So in the entire process of 

optimising, we only need to calculate the forecast about 250 times, which is significantly lower 

than the naive      calculations. 

6.3.3 Seasonal detection 

 

Another important input for the Holt-Winters double seasonality model is the length of the 

season. In our data we typically see a seasonal length of 5 and a larger seasonal length of 20 
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(monthly patters) or 260 (year pattern, 52 weeks of five working days). Since there might also be 

other patterns in the data, which are not known in advance, we want to design an automatic 

seasonal detection. This detection is done by a straightforward regression model. First we 

estimate the following regression model: 

 
                                     

⌊
 
 
⌋
      

  ⌊
 
 
⌋
    

Where ⌊
 

 
⌋ denotes the floor function of  

 

 
 and n is the total number of observations. The 

subscript i indicates the day. This limitation is made because if we look at larger lag values, 

significance cannot be shown. We need at least five times the series to be certain of that seasonal 

influence. Furthermore the Holt-Winters model also needs at least three periods to get good 

seasonal parameters.  

 

Once we calculated the regression model, we can determine which factors are significant and 

which are not. First we calculate the p-value of the parameters and we dispose the lag variable 

if the p-value is larger than 0.01. So with 99% confidence we can say that the remaining 

parameters are significant. However, after removing several lag variables, we need to 

recalculate the model. This is because the removed variables have had influence of the 

parameter values and variances. If we then estimate the new model, we might again find 

insignificant parameters. We can again remove these parameters from the model and repeat this 

process until no insignificant parameters are left in the model. 

 

We now have a model with probably several significant parameters. We now have to determine 

which parameters indicate the seasonality of the process. First you could have really low 

significant values (e.g. a lag of one or two). The fact that the first lag variable is significant is 

that the process is dependent on its direct history. However, in the Holt-Winters forecasting 

model, the current level and trend are incorporated into the model. Therefore, we will not 

incorporate significance within the same week (i.e. with a lag of less than five days). In most 

datasets from the call centre world, we will see a highly significant factor for a lag of five days. 

This is the parameter that indicates a weekly seasonality. However, there might be other lag 

variables that are more significant. Therefore we look at the seasonality with the highest 

significance and set this as one of the seasons.  

 

For the second season, we will look at the next parameter with a high significance. This lag 

parameter should also be at least five. When this is the case that second season will also be 

assigned. 

 

It might be that there is still a significant seasonality factor left after the two seasons are 

appointed. This cannot be avoided and we also do not want to extend the model to more 

seasonality factors, since that will increase the problem of over-parameterisation even more. 

Obviously it is also possible to find zero or one significant seasonal parameter.  
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7 DAY PATTERNS 

The call centre for which we forecast the incoming calls needs forecasts on quarter of an hour 

level. For each of those quarters the workload and the number of needed employees are 

calculated. In the previous chapter we saw that forecasts are done per day, so now we have to 

find a way to distribute the forecasts over the days.  

Typically Monday has a higher call volume then the other days. If we look at the volume per 

quarter, we see that Mondays also have a different pattern then other weekdays. On Monday 

morning the volume is relatively high and lower in the rest of the day (we look at which 

percentage of the total day volume is in a certain period). Friday also exhibits a slightly different 

pattern. The call volume on Friday morning is lower and in the afternoon it makes up for this. 

See the figure below for these patterns. 

 

 
 

For the forecasting process, we need a way to determine the patterns for the separate days. First 

we examine the pattern to see if there is a trend or dependent on previous observations. 

However, once we run a regression on the pattern with two lag variables as exogenous 

variables, no significant results show. Also, when a plot is made of the pattern, no trend can be 

discovered. This has been tested with several call centre datasets.  

 

From the professionals from the call centre there was also the impression that holidays changed 

the patterns. If e.g. the call centre was closed on Monday because of Easter, they claimed it 

changed the pattern of Tuesday. However, after investigating this trait, we have not 

encountered any influence of these holidays.  
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So it seems that there is no significant change in the pattern over time. However, we still need to 

make an estimation of the day pattern. This will be done by calculating the average over 

previous periods and use this average as the forecasted day pattern for the next period(s). We 

will make this forecast for each day separate because of the different patterns for each day. To 

determine how far in the history we should look, we will again use the error measures MSE 

(3.14) and MAE (3.15) defined in chapter 3. The MPE (3.16) will not be used, since the difference 

between forecast and actual value should be divided by the actual value. But since the actual 

value can be zero, this leads to an error. With the remaining two methods we estimate the 

pattern by calculating the average over the past. This past can be of size one (so only one period 

is used to estimate the pattern) up until size thirty. The MSE and MAE are calculated for all 

these sizes of periods for comparison. See Appendix E for the results.  

 

If we look at the results, we see that if we increase the number of periods, the error (generally) 

also becomes smaller. This is another indication that the day patterns are stable over time. The 

best result can be achieved to calculate the average over as many previous patterns as available 

to forecast the next pattern. However, calculation time is also important in the application of the 

forecasting procedure. When we look at the results again, we see that the error decreases 

rapidly if we increase the number of periods from one to two, but for higher numbers, the error 

decreases only slowly. To determine how long the period should be, we look at the difference 

between the lowest error and the highest error (usually when we use the previous pattern to 

estimate the next pattern). We determine the ‘score’ of a certain forecast i by the following 

formula: 

 
        

 
(    )

   
 

(    )     
 

(    )
 

 

So the worst forecast gets score 1 and the best gets score 0. A similar formula was used for the 

MAE measure. We consider the forecasts to be good if they have a score of at most 0.05. Given 

that we want to minimise the calculation time to determine the day patterns we want the length 

of the forecasting region to be as low as possible, while still generating good forecasts. The data 

suggests we need to use a period of length 17 (see Appendix E). So to forecast the pattern of the 

next Monday, we will calculate the average pattern over the last 17 Mondays and take this as 

the estimated pattern. 

 

With these forecasted patterns, we can complete the forecasting process. Now scale down the 

daily forecasts to a quarter of an hour level. In the next chapter we will determine the quality of 

this forecasting method. 
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8 RESULTS 

In this chapter the results will be discussed. This is the comparison between the extension to the 

Holt-Winters model and the ARIMA models developed in chapter 6. First we will start off with 

as short introduction on the projects that we tested. 

 

 

Several projects are tested in this chapter. More explanation on the project can be found in 

Appendix A. The seasons are determined by the method introduced in chapter 6. The projects 

194 and 437 are concerned with sending invoices and reminders, so we would suspect them to 

have a regular pattern. In the table above we can see that they have a 4-week pattern (so 20 

days). Furthermore almost all projects show a week pattern (i.e. a small season of length 5). We 

do not have the same amount of data for all projects, which is due to the fact that projects are 

terminated, renamed or combined. We can also see that the standard deviation of the call 

volume varies a lot. Project 242 is a really stable project, where project 194 and 437 are really 

volatile.  

 

To determine the performance of the model we will forecast the last 50 observations (i.e. 10 

weeks) of the series. We will then compare these forecasts with the actual value and calculate 

the different error measures (MSE (3.14), MAE(3.15) and MPE(3.16)). We will do this process for 

the four different Holt-Winters models to see which model performs best. That way we can also 

see if the second season is really helpful or not.  

 

Before we start forecasting, we first have to adapt the raw data. This is done by detecting 

missing values (chapter 3) and outliers (chapter 4) and correcting them. With this corrected 

datasets we will start the forecasting process. To determine the parameters, we will apply the 

parameter optimisation process introduced in section 6.3. Here the parameters are optimised 

regarding to their performance over the last 50 observations. We thus optimise over observation 

100 to 51 (seen from the end of the dataset) and then test the performance over observation 50 to 

1 (also seen from the end).  

 

First we will start of with a short introduction of the projects by means of showing the patterns.  

 

 

 

Project Length in 
weeks 

Average volume standard deviation small season large season 

192 131 199.15 109.06 5 10 

194 131 244.67 191.09 5 20 

242 116 145.60 39.64 5 15 

437 64 106.00 104.73 20 60 
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Above you see the patterns for the different projects in this chapter. In the charts, there is no 

indication of level, or time frame, since that is not relevant for the current analysis. Project 192 is 

a project which has had a higher level in the past, but the number of calls has reduced and the 

volatility is much lower. We do keep this project, since we are looking for a forecasting method 

which can easily adapt to new situations. In the call centre, projects can be terminated, 

combined or a new impulse can be given to a certain magazine. Therefore volume can change 

and we want the system to be able to adapt to that. Project 194 has the same problem, in the 

start of the project the volatility was really high, and now the project has settled on a constant 

flow of calls. Because the difference in level and volume is really high, we will only look at the 

second part. Project 242 is a project which hints at a seasonal effect of about 350 days (note that 

this is far greater than a year, since it are working days). However there is not enough data to 

support this claim. Finally, project 437 has a strong seasonal pattern of length 20 with a flat 

trend. 

 

These projects will be forecasted in the next subchapters. First we will forecast on basis of the 

Holt-Winters methods introduced before. Then we will forecast based on the ARIMA models 

(and related models). Finally a comparison will be made between the different forecasting 

methods. 

  

Project 192 Project 194 

Project 242 Project 437 
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8.1  Holt-Winters forecasting results. 

 

For the forecasting we first have to optimise the parameters. In the table below are the results: 

 

Project 192 single multi single add double multi double add 

mse 183,76 188,62 208,44 269,26 

mae 10,24 10,66 11,48 12,14 

mpe 0,14876912 0,149623 0,15475798 0,17178285 

     

Project 194 single multi single add double multi double add 

mse 1161,6 1232,16 957,28 997,54 

mae 22,92 24,32 21,36 21,5 

mpe 0,20518941 0,2200554 0,203179325 0,21440845 

     

Project 242 single multi single add double multi double add 

mse 557,72 586,92 579,16 661,94 

mae 17,48 17,52 17,44 20,42 

mpe 0,16955824 0,1637617 0,184346352 0,20933731 

     

Project 437 single multi single add double multi double add 

mse 2685,72 6680,24 3777,42 6369,96 

mae 31,68 54,4 37,3 51,88 

mpe 0,31800078 0,6070767 0,431071304 0,56730962 

 

In this table you can see the results of the parameter optimisation process. The values of the 

parameters can be found in Appendix F. Above table shows the error measures of the 

optimisation process. So for project 192, the single multiplicative model yields the lowest errors 

based on the optimisation (so observation 100 to 51 from the end of the dataset). However, the 

best scoring measure on that data doesn’t have to be the best forecasting method for the next 50 

observations. Therefore we have to look more closely at the forecasts. 

 

First project 192. Based on the forecast the single multiplicative model yields the best results, 

where the double additive model yields the worst results. If we then look at the forecasts of the 

next 50 observations, we get the following table and graph: 

 
Single multi Single add Double multi Double add 

mse 3260,42 25767,79 45857,40 519,44 

mae 53,61 147,52 193,14 16,30 

mpe 0,53 1,54 1,99 0,15 
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In the graph you see that the previously best method (single multiplicative) has a negative 

trend, which causes it to underestimate the real volume. The previously worst method (double 

additive) now yields the best results. In this dataset it becomes clear that it is not 

straightforward that the best method beforehand will also make good estimations afterwards. 

Therefore a good sense of logic is needed. If you would see these forecasts, you would quickly 

rule out the single additive and double multiplicative model. And after seeing the negative 

trend of the single multiplicative model you would also not choose that model, but the double 

additive instead.  

Project 194 yields the following results: 

  single multi single add double multi double add 

mse 96635,53 224900,86 6843,45 1327,05 

mae 266,85 411,23 71,46 28,61 

mpe 3,00 4,73 0,90 0,40 
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In this graph only the double seasonality models are plotted. This is because both the single 

seasonality models yield very bad result and would decrease the usefulness of the graph. From 

the parameter optimisation process it has shown that the double multiplicative model yields the 

best result. In the forecasts this method also yields good results, but the double additive model 

yields better results. Here we see that there is as slight upward trend in the last 30 data points 

before we start forecasting, which causes the double multiplicative model to follow that trend. 

Project 242 yields the following results: 

  single multi single add double multi double add 

mse 7197,005851 83519,70252 594,072115 712,8622859 

mae 72,93580442 251,7509135 21,13537478 22,0158298 

mpe 0,605385995 2,084100904 0,188497705 0,195256468 
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In the optimisation process the single multiplicative model was considered the best model, but 

in the real forecasts this model overestimates the real volume. This is again because of the trend 

in the last weeks. The second best model in the optimisation (double multiplicative) is here the 

best forecasting method.  

The final results are below (project 437) 

 

  single multi single add double multi double add 

mse 5040,90794 4983,063859 65805,81003 4921,077518 

mae 44,8031152 48,38987164 159,1532102 54,80638082 

mpe 0,411101233 0,545094631 1,733908911 0,842416477 
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Similarly as in the parameter optimisation, the single multiplicative Holt-Winters method yields 

the best results. Some other methods however also yield good results, but they forecast volumes 

below zero. Getting a forecast below zero is possible in the Holt-Winters models, since there is 

no probability distribution connected which keeps this from happening. Furthermore, we only 

see this happening in the additive models. In the multiplicative model, both seasonality 

influences cannot be negative and for this project the     from the optimisation process are both 

set to zero. This causes that the initial trend, which is >0, will not change over time. Therefore it 

is not possible for them to become smaller than zero. In the additive model, all influences have 

their own contribution and they do not affect each other. Therefore it can happen that all 

influences result in a negative forecast. There is also no way of keeping the forecasts above zero 

other than changing the forecasts afterwards. We cannot influence the separate factors (level, 

trend and both seasonal factors) such that the sum will remain positive. 

Now that we have seen all the forecasting methods at work, we can conclude the following: 

Methods which are considered the best method in the optimisation procedure do not 

necessarily yield the best results. The best measure can better be achieved by looking at a graph 

of the forecast and choose the most logical graph. There we should carefully look at a strong 

negative or positive trend. If you e.g. look at project 192 we see that some Holt-Winters methods 

result in a negative call volume. These can easily be ruled out. Also the methods in project 242 

can be ruled out because of the strong positive trend. A call centre planner should be able to see 

this quickly. However, we also saw that if we rule out the illogical forecasts, we can rely on the 
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best method from the parameter optimisation process. This might not always yield the best 

result, but gives a good forecast. Furthermore, it is good practise to review the forecasts every 

week. Once new information becomes available, we can make more reliable forecasts.  

In the next section, we will discuss the ARIMA models for all of the projects to compare the 

performance of those methods with the best Holt-Winters model. 

8.2 ARIMA forecasting results 

 

In this chapter the results of the ARIMA models will be discussed. We will also include the best 

Holt-Winters forecast to make the comparison. For the ARIMA modelling we will use Stata to 

determine the best model. This can result in an ARMA, ARIMA or SARIMA model. In this 

chapter we will only discuss the model with the best fit. As you can see, none of the models 

results in a SARIMA model; this is because the optimisation procedure couldn’t find an upward 

slope toward the best fit. First we will start off with project 192. 

Project 192 shows autocorrelation and therefore we apply differencing for this project. To show 

this autocorrelation we use the Augmented Dickey-Fuller test (Said & Dickey, 1984). The test 

statistic before differencing is -2.003. The critical value at 5% is -2.860, hence we cannot reject the 

hypothesis that there is a unit root in the stochastic process, i.e. the process is non-stationary. 

We therefore apply differencing to the series to get a stationary process. After the first 

differencing the value of the ADF-test is -13.495 and hence we can reject the hypothesis that the 

process is non-stationary. The resulting model is an ARIMA (10,1,5). Increasing or decreasing 

any of the parameters results in worse performance. This model is achieved by starting out with 

a big model (i.e. lots of AR and MA parameters) and gradually dropping the insignificant 

parameters. The performance of the resulting ARIMA is as follows: 

 

  ARIMA HW 

mse 1820,3 519,44 

mae 36,96937 16,30 

mpe 0,400536 0,15 
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As you can see in the plot, the ARIMA forecasts are slightly above the graph, where the HW 

forecasts are below the graph for the first part of forecasting. However the HW forecast 

outperforms the ARIMA model if we look at the error measures. 

For project 194 (the last part) there is no significant autocorrelation (ADF test statistic of -6.842), 

therefore we do not use differencing. Furthermore only the 1st and 20th lag appear to be 

significant factors. In the graph below the results of the forecast can be found. 

  ARIMA HW 

mse 882,9097 519,44 

mae 24,44388 16,30 

mpe 0,273273 0,15 

  

 

0

50

100

150

200

250

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Project 192 forecast comparison  
Call volume ARIMA forecasts HW Forecasts



Call Centre Forecasting 

A comprehensive analysis of missing data, holiday influence and different forecasting methods 

 

1 April 2010 Mathijs Jansen 60 

 

As you can see in the chart the ARIMA forecast is a lot flatter than the real volume. This is 

probably due to the fact that there are just two significant factors. That way the process cannot 

incorporate all fluctuations. The performance is worse than the most of the Holt-Winters 

models, especially for the MAE and MPE measures. The errors from this model are:  

Project 242 is also a project which is not stationary. Before differencing the Augmented Dickey 

Fuller statistic has a value of -2.765 and is hence we cannot reject the hypothesis that the process 

is non-stationary. After differencing the value of the ADF test is -12.646 and hence we reject the 

hypothesis and a differencing of one period. Furthermore, after estimating the model and fine 

tuning, it resulted in an ARIMA model with 1,2,3,4 and 5 as relevant Autoregressive factors and 

1,5 and 6 as relevant Moving Average factors. 

 

0

50

100

150

200

250

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Project 194 forecast comparison 

Call volume ARIMA forecasts HW Forecasts



Call Centre Forecasting 

A comprehensive analysis of missing data, holiday influence and different forecasting methods 

 

1 April 2010 Mathijs Jansen 61 

 
 

With errors: 

  ARIMA HW 

mse 540,56 594,0721 

mae 17,32 21,13537 

mpe 0,128514 0,188498 

 

If you compare these error measures with the best Holt-Winters method (double seasonality 

multiplicative model) you see that the ARIMA model outperforms the HW model slightly. 

Furthermore you see that the ARIMA model underestimates the true volume, where the HW 

model overestimates the volume.  

For project 437 we see a much simpler model. Here only the 1,2 and 20 of the Autoregressive 

factor yield significant results. The moving average factors all showed to be insignificant. The 

error measures are: 
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  ARIMA HW 

mse 6605 5040,908 

mae 50,68 44,80312 

mpe 0,4439 0,411101 

 

In the graph you can see the comparison between the best Holt-Winters model and the best 

ARIMA model. As you can see, both methods underestimate the peaks in the graph. As seen in 

the projects mentioned above, one of the proposed methods of the Holt-Winters forecasting 

model outperforms the ARIMA forecast, where the ARIMA forecast takes more time to 

calculate. However, it should be noted that not all Holt-Winters methods outperform the 

ARIMA forecast and that it is necessary to have a look at the forecasts to see whether they are 

logical. Another problem with this dataset is that variances can be a lot higher if the volume is 

higher. If a stochastic process has different variance over time, we call that process 

heteroskedastic.   
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9 CONCLUSIONS 

In literature a lot of comparisons have been made between Holt-Winters based models and 

ARIMA models. These models are quite different because the ARIMA models assume an 

underlying distribution, where the Holt-Winters models are just a combination of separate 

effects. In this chapter we will make a comparison between these two methods and give some 

recommendations for future research. 

 

In a large scale comparison of forecasting models (Granger & Newbold, 1973) it is shown that 

Box Jenkins models outperform (comparing MSE of the forecasts) Holt-Winters models in two 

third of the cases. The Box Jenkins procedure requires the user to identify an appropriate model 

in a general class of ARIMA models. This procedure therefore requires the user to make choices 

about the appropriate factors in the ARIMA model. The comparison made in that paper are 

therefore somewhat biased, since it is compared to the fully automatic Holt-Winters model. The 

paper by Chatfield (Chatfield, 1978) shows that the Holt-Winters forecasting procedure can also 

be improved when human interference is used. This paper was based on the same datasets used 

in Granger & Newbold. Simply having a user choose between additive and multiplicative Holt-

Winters increases the performance. Furthermore clearing data from outliers improves the 

performance as well.  

 

In our data we have seen that carefully choosing the right Holt-Winters method is important for 

the performance. In three of four projects the best Holt-Winters model outperforms the ARIMA 

model. However, the other Holt-Winters models are generally worse than the ARIMA model. 

Choosing a good forecasting method is therefore essential to a good performance. The best 

method in the optimisation process of the HW models is not necessarily the best method for the 

forecasting part. To achieve the best result you should look whether the trend in the forecast is 

logical (so not to steep or strongly negative). Holt-Winters models which forecast negative 

volumes can be ruled out immediately. It is harder to determine if a positive slope is too big. 

This resulting slope, after all, resulted from the model and is based on past observations. But 

since the Holt-Winters method constantly adapts itself to new observations, any new data 

should be put into the model to correct the forecasts. As a general rule it is good to look at the 

forecast of the error measure which performed best in the optimisation process (i.e. in forcasting 

the last 50 observations).  

 

For future research several recommendations can be made. The missing data analysis and 

outlier detection relies heavily on the assumption that call arrivals are Poisson distributed. 

However, this assumption only holds on small intervals (i.e. neighbourhoods). More research 

can be done about the distribution of calls over the different days and within the days. With a 

better known distribution, the missing data imputation can be improved.  

The Holt-Winters models developed in this thesis require human interference to get the best 

results. It is not certain that a procedure which yields good results in the optimisation 

procedure also yields good results when forecasting. Future research may be aimed at a method 

of automated choice of the Holt-Winters method.   
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Combining forecasting models might also yield good results. This could e.g. be a combination 

of Holt-Winters and ARIMA where both forecasts get a certain weight. Allan Timmermann has 

written quite come articles about combining forecasting methods, mostly in financial literature. 

See e.g. (Guidolin & Timmermann, 2009) or the book (G. Elliott, 2006) 

The automatic seasonality detection method developed in this thesis is a straightforward 

method. Seasonality influences can only be detected when there is plenty of data. For smaller 

datasets, this method is therefore not suitable. A method can be developed to cope with this 

problem. We could e.g. use a bootstrapping method to generate more datasets and be able to 

draw conclusions about the sensitivity to small samples  

Some datasets show signs of heteroskedasticity (i.e. different variance over time). To deal with 

this heteroskedasticity we can look at ARCH (Autoregressive Conditional Heteroskedasticity) 

models or GARCH (Generalised Autoregressive Conditional Heteroskedasticity) models. For 

these models see (Engle, 1982) and (Bollerslev, 1986) respectively. 

Furthermore, the usefulness of SARIMA models in call centre data could be examined. In this 

thesis the estimation model of Stata could only find a sub-optimal SARIMA estimate in these 

samples, there might be other methods to find a better fit. Furthermore a SARIMA-GARCH 

model might give a good fit. 

Also the Kalman Filter could be used in future research on call centre data. In this thesis the 

missing data detection and the outlier detection where done separately and are based on the 

Poisson distribution. The Kalman filter can work with data which contain random noise and 

produce estimates which are closer to the true mean and therefore might be more useful in 

forecasting volumes. In comparison; the Holt-Winter forecast gives an estimate based on future 

observations, without taking randomness into account.  

Furthermore the forecasting could also be based on other factors than past call volumes. E.g. the 

influence of marketing campaigns or the number of magazine subscriptions sold is also a good 

indicator for call volume. Therefore we need more data and a more extensive model. 

 

Forecasting of call volume will remain a difficult topic in research. It will always be hard to 

predict the behavior of callers and other external factors like the weather. Therefore this field of 

research will remain interesting in the future. It will always be a slippery slope to achieve good 

service while minimizing the costs. I would like to conclude with a quote by Andrew Lang 

about the fact that careful application of statistics is essential for making forecasts: 

 

“An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts, for support rather than 

for illumination.‛ 
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APPENDIX A 

In this appendix all sub projects of the Sanoma workgroup are mentioned for reference. The 

workgroup number is 100090. 

187: Sanoma nw abbo 0800 SAP 

Data from week 7, 2008 until week 21, 2009. Handles questions about subscriptions of callers 

calling the 0800-number. 

188: Sanoma abbo SAP 

Data from week 31, 2008 until week 21, 2009. Handles questions about subscriptions.  

189: Sanoma bezorgklachten SAP 

Data from week 31, 2007 until week 21, 2009. Handles complaints about delivery. A similar 

project (372) started later on and took over the calls for this project. At the end of the data, the 

amount of calls for this project was really low. 

 190: Sanoma opzeggingen SAP 

Data from week 44, 2007 until week 21, 2009. Handles cancellation of the subscriptions.  

191: Sanoma wijzigingen overig SAP 

Data from week 44, 2007 until week 21, 2009. Handles changes to subscription details. E.g. bank 

account number or delivery address. 

192: Sanoma artikelen SAP 

Data from week 31, 2007 until week 21, 2009. Handles with any kind of merchandise and other 

articles sold by Sanoma. 

 193: Sanoma Flex SAP 

Low amount of data and terminated early. Not used in the study. 

194: Sanoma maningen SAP 

Data from week 31, 2007 until week 21, 2009. Handles with unpaid subscription fees. 

195: Sanoma Disneyclub SAP 

This project had reliable data until the end of 2008. After that it was terminated.  
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196: Sanoma geen keuze SAP 

Data from week 31, 2007 until week 21, 2009. Handles with all people who do not make a choice 

in one of the automatic menus. Quite low volumes. 

242: Sanoma betaling SAP 

Data from week 35, 2007 until week 21, 2009. Handles with all questions related to payments.  

244: Sanoma specials SAP 

This project had reliable data until the end of 2008. After that it was terminated.  

322: Sanoma doorverbonden recovery 

This project was terminated 

372: Sanoma uitval bezorgklachten 

Data from week 46, 2007 until 21, 2009. In the first months of the project, the number of calls 

was really low. From week 6, 2008 the volume steadily increased. It took over the calls from 

project 189. This project handles complaints about delivery.  

411: Sanoma acceptgiro SAP 

Data from week 19, 2008 until week 21, 2009. It handles transaction forms for the subscriptions.  

437: Sanoma maningen Disney SAP 

Data from week 33, 2008 until week 21, 2009. It handles with unpaid subscription fees of the 

Disneyclub.  
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APPENDIX B 

 

Scoring matrix for the neighbourhood estimation. The values in the matrix indicate the ‘scores’ 

for the different sizes of the neighbourhood. Lower scores mean better results. 

 

  

Same time period observations 

 

  1 2 3 4 5 6 7 8 9 10 

S
am

e 
d

ay
 o

b
se
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at
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n
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1 300 289 255 195 176 86 56 63 107 135 

2 297 277 237 180 151 71 48 48 87 124 

3 294 282 241 206 180 120 80 77 109 129 

4 290 276 243 208 183 133 98 84 108 125 

5 283 245 211 150 103 52 39 27 38 64 

6 264 234 205 137 99 50 34 24 26 51 

7 268 245 218 175 147 81 60 44 59 85 

8 277 256 227 196 170 122 99 78 97 105 

9 269 255 225 199 180 137 113 93 108 111 

10 260 235 220 187 157 105 81 62 73 87 
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APPENDIX C 

 

 

 

  

                                                                              
       _cons     30.15822   3.428304     8.80   0.000     23.42639    36.89005
     holiday    -4.661855   4.688783    -0.99   0.320    -13.86877    4.545056
         L1.     .7543603   .0249337    30.25   0.000     .7054004    .8033201
       calls  
                                                                              
       calls        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    1991065.33   655  3039.79439           Root MSE      =  35.419
                                                       Adj R-squared =  0.5873
    Residual    819170.488   653  1254.47242           R-squared     =  0.5886
       Model    1171894.84     2   585947.42           Prob > F      =  0.0000
                                                       F(  2,   653) =  467.09
      Source         SS       df       MS              Number of obs =     656

. regress calls l1.calls holiday

                                                                              
       _cons     124.0659   2.286425    54.26   0.000     119.5763    128.5555
     holiday    -16.43511   7.269138    -2.26   0.024    -30.70873   -2.161486
                                                                              
       calls        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    2042927.88   656  3114.21932           Root MSE      =  55.631
                                                       Adj R-squared =  0.0062
    Residual    2027107.57   655  3094.82072           R-squared     =  0.0077
       Model     15820.306     1   15820.306           Prob > F      =  0.0241
                                                       F(  1,   655) =    5.11
      Source         SS       df       MS              Number of obs =     657

. regress calls holiday

                                                                              
       _cons     37.70506   3.479474    10.84   0.000     30.87268    44.53745
    thursday    -25.11711   3.605836    -6.97   0.000    -32.19762   -18.03659
   wednesday    -15.32798   3.603767    -4.25   0.000    -22.40443   -8.251531
     tuesday     -50.2588   3.718125   -13.52   0.000    -57.55981   -42.95779
      monday     8.510937   3.624127     2.35   0.019     1.394508    15.62737
     holiday    -2.811179   3.861218    -0.73   0.467    -10.39317    4.770809
         L1.     .8259081   .0214104    38.58   0.000      .783866    .8679501
       calls  
                                                                              
       calls        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    1991065.33   655  3039.79439           Root MSE      =  29.152
                                                       Adj R-squared =  0.7204
    Residual    551554.844   649   849.85338           R-squared     =  0.7230
       Model    1439510.48     6  239918.414           Prob > F      =  0.0000
                                                       F(  6,   649) =  282.31
      Source         SS       df       MS              Number of obs =     656

. regress calls l1.calls holiday monday tuesday wednesday thursday
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APPENDIX D 

 

Results of Anomaly Detection. Arrival rates are estimated by the neighbourhood of all days (so 

estimate Monday rate by Tuesdays, Wednesdays etc.) 

 

Total 

MSE 943.6 915.3 993.5 998.1 900.3 946.2 996.0 1040.6 1058.5 1041.6 

MAE 22.39 22.42 23.26 22.81 21.22 21.67 22.44 23.03 23.10 22.72 

MPE 0.182 0.186 0.191 0.186 0.171 0.174 0.180 0.185 0.185 0.182 

Monday 

MSE 1587.5 1821.2 1943.3 2015.0 1632.0 1716.0 1871.2 1966.2 1992.9 1873.8 

MAE 32.73 35.76 36.69 36.27 30.80 31.37 33.07 34.05 34.33 32.63 

MPE 0.283 0.315 0.320 0.310 0.248 0.252 0.268 0.278 0.278 0.258 

Tuesday 

MSE 945.2 582.6 516.0 575.6 514.7 562.4 542.2 529.1 553.8 528.3 

MAE 24.18 18.54 17.44 18.75 18.05 18.84 18.61 18.30 18.56 18.05 

MPE 0.184 0.155 0.149 0.155 0.152 0.157 0.158 0.156 0.157 0.155 

Wednesday 

MSE 687.0 628.2 732.8 655.9 654.7 678.5 725.1 787.7 788.7 809.6 

MAE 17.33 18.95 21.27 19.48 18.86 18.55 19.54 20.56 20.13 20.12 

MPE 0.157 0.152 0.164 0.154 0.151 0.149 0.155 0.161 0.160 0.160 

Thursday 

MSE 702.9 752.9 818.0 758.3 651.9 691.2 739.8 782.6 795.8 779.7 

MAE 19.50 21.11 21.59 20.35 18.58 19.28 20.41 21.21 21.33 20.95 

MPE 0.152 0.164 0.167 0.159 0.151 0.155 0.162 0.167 0.168 0.167 

Friday 

MSE 814.8 821.3 987.1 1017.0 1067.5 1103.8 1126.2 1163.5 1187.5 1238.7 

MAE 18.58 18.23 19.73 19.65 20.07 20.61 20.89 21.40 21.53 22.18 

MPE 0.140 0.149 0.162 0.155 0.156 0.158 0.162 0.168 0.168 0.172 
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Results of Anomaly Detection. Arrival rates are estimated by the neighbourhood of the same 

days (so estimate Monday rates by other Mondays only). 

 

Total 

MSE 1115 1086 1146 1188 1259 1314 1380 1399 1431 1484 

MAE 22.94 22.19 22.82 23.29 24.20 25.09 25.89 26.24 26.78 27.29 

MPE 0.188 0.181 0.183 0.183 0.191 0.199 0.205 0.208 0.212 0.217 

Monday 

MSE 1223 1189 1325 1450 1540 1594 1702 1722 1751 1797 

MAE 24.39 24.00 24.83 25.66 26.93 28.28 29.73 30.22 30.59 30.93 

MPE 0.159 0.156 0.160 0.163 0.172 0.182 0.191 0.195 0.197 0.200 

Tuesday 

MSE 751 625 636 615 652 703 760 793 825 865 

MAE 20.79 19.44 18.95 18.54 18.65 19.76 20.43 20.94 21.58 22.01 

MPE 0.186 0.181 0.175 0.167 0.167 0.179 0.184 0.187 0.192 0.196 

Wednesday 

MSE 1033 1036 1096 1144 1226 1255 1274 1262 1248 1311 

MAE 20.80 20.71 21.96 22.65 23.70 24.35 24.85 24.65 24.74 25.24 

MPE 0.172 0.174 0.181 0.182 0.189 0.197 0.203 0.204 0.205 0.209 

Thursday 

MSE 775 749 852 967 1076 1125 1171 1200 1252 1305 

MAE 20.30 18.87 19.94 21.33 22.73 23.49 24.09 24.41 24.98 25.51 

MPE 0.196 0.175 0.182 0.191 0.205 0.212 0.216 0.218 0.223 0.228 

Friday 

MSE 1954 1829 1821 1763 1803 1891 1994 2016 2081 2142 

MAE 28.42 27.95 28.44 28.27 28.97 29.55 30.36 30.99 31.98 32.77 

MPE 0.227 0.217 0.216 0.212 0.222 0.224 0.231 0.236 0.244 0.251 
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Results of Anomaly Detection. Arrival rates are estimated by the neighbourhood of the same 

day for Mondays, and by the neighbourhood of the other weekdays (except Mondays) for 

Tuesday till Friday. 

 

Total 

MSE 862.9 800.6 849.6 868.7 925.5 950.5 981.1 995.9 1034 1081 

MAE 20.32 19.08 19.53 19.5 20.26 20.71 21.25 21.49 21.92 22.35 

MPE 0.167 0.155 0.157 0.155 0.16 0.164 0.168 0.17 0.173 0.176 

Monday 

MSE 1365 1238 1457 1573 1618 1688 1750 1767 1816 1924 

MAE 24.84 23.79 25.39 26.56 27.45 28.66 29.91 30.37 30.69 31.49 

MPE 0.161 0.155 0.162 0.166 0.172 0.181 0.19 0.195 0.198 0.203 

Tuesday 

MSE 560.6 399.5 431.9 430.4 459.4 452.5 454.3 446 463 479.6 

MAE 17.88 14.85 15.94 16.12 16.69 16.65 16.74 16.66 16.92 17.08 

MPE 0.155 0.139 0.144 0.146 0.149 0.151 0.151 0.151 0.153 0.154 

Wednesday 

MSE 680.4 672 658.3 670.1 719.6 745.9 775.9 808 828.3 877.6 

MAE 17.13 17.95 17.29 17 17.46 17.81 18.22 18.74 19.05 19.73 

MPE 0.155 0.146 0.144 0.142 0.148 0.148 0.153 0.157 0.16 0.163 

Thursday 

MSE 700.8 466.3 495.1 470.6 545.4 547.3 587.9 603.9 655.5 672.8 

MAE 19.44 15.94 15.89 15.71 16.69 17.09 17.71 17.96 18.55 18.68 

MPE 0.151 0.135 0.133 0.133 0.139 0.145 0.148 0.151 0.154 0.156 

Friday 

MSE 1143 1109 1217 1213 1298 1332 1352 1369 1422 1470 

MAE 23.48 21.94 23.22 22.24 23.17 23.56 23.89 23.93 24.59 24.99 

MPE 0.218 0.195 0.202 0.185 0.193 0.195 0.198 0.195 0.201 0.204 
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APPENDIX E 

Results to determining the weekday patterns for project 372 

 

Monday Tuesday Wednesday 

 # periods MSE MAE MSE MAE MSE MAE 

 1 0.000178 0.010452 0.000295 0.013405 0.000376 0.014889 

 2 0.000143 0.009153 0.000233 0.011871 0.000299 0.013553 

 3 0.000127 0.008645 0.000201 0.011079 0.000265 0.012778 

 4 0.000120 0.008388 0.000192 0.010779 0.000243 0.012105 

 5 0.000117 0.008305 0.000189 0.010690 0.000230 0.011832 

 6 0.000111 0.008093 0.000182 0.010520 0.000221 0.011607 

 7 0.000105 0.007896 0.000178 0.010412 0.000216 0.011531 

 8 0.000104 0.007849 0.000178 0.010425 0.000216 0.011525 

 9 0.000104 0.007868 0.000175 0.010391 0.000215 0.011451 

 10 0.000102 0.007755 0.000175 0.010405 0.000213 0.011427 

 11 0.000102 0.007748 0.000175 0.010414 0.000210 0.011399 

 12 0.000103 0.007835 0.000171 0.010306 0.000206 0.011269 

 13 0.000103 0.007800 0.000171 0.010256 0.000207 0.011282 

 14 0.000102 0.007775 0.000168 0.010168 0.000206 0.011238 

 15 0.000099 0.007739 0.000167 0.010134 0.000204 0.011191 

 16 0.000098 0.007674 0.000167 0.010116 0.000203 0.011169 

 17 0.000098 0.007674 0.000166 0.010116 0.000201 0.011107 

 18 0.000099 0.007728 0.000165 0.010110 0.000201 0.011092 

 19 0.000099 0.007721 0.000166 0.010132 0.000199 0.011045 

 20 0.000100 0.007741 0.000165 0.010114 0.000198 0.010992 

 21 0.000100 0.007762 0.000163 0.010067 0.000199 0.011008 

 22 0.000101 0.007799 0.000164 0.010074 0.000199 0.011011 

 23 0.000099 0.007766 0.000164 0.010056 0.000199 0.011007 

 24 0.000099 0.007751 0.000163 0.010019 0.000198 0.010976 

 25 0.000099 0.007725 0.000162 0.009998 0.000198 0.010992 

 26 0.000098 0.007690 0.000161 0.010004 0.000199 0.011032 

 27 0.000098 0.007711 0.000161 0.009976 0.000198 0.011017 

 28 0.000098 0.007700 0.000161 0.009971 0.000198 0.011012 

 29 0.000099 0.007715 0.000160 0.009953 0.000198 0.011003 

 30 0.000098 0.007726 0.000160 0.009966 0.000198 0.010982 
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Results to determining the weekday patterns for project 372 

 
Thursday Friday 

 # periods MSE MAE MSE MAE 
 1 0.000377 0.015065 0.000206 0.011016 
 2 0.000290 0.013022 0.000165 0.009887 
 3 0.000251 0.012210 0.000142 0.009206 
 4 0.000235 0.011757 0.000135 0.009057 
 5 0.000230 0.011630 0.000134 0.009082 
 6 0.000219 0.011374 0.000133 0.009081 
 7 0.000209 0.011120 0.000129 0.008879 
 8 0.000204 0.010983 0.000127 0.008838 
 9 0.000202 0.010959 0.000127 0.008796 
 10 0.000200 0.010913 0.000124 0.008746 
 11 0.000200 0.010904 0.000122 0.008708 
 12 0.000200 0.010897 0.000121 0.008608 
 13 0.000196 0.010841 0.000121 0.008580 
 14 0.000196 0.010805 0.000122 0.008612 
 15 0.000195 0.010806 0.000122 0.008610 
 16 0.000195 0.010802 0.000123 0.008657 
 17 0.000195 0.010776 0.000123 0.008645 
 18 0.000198 0.010800 0.000124 0.008691 
 19 0.000198 0.010770 0.000124 0.008702 
 20 0.000197 0.010754 0.000123 0.008721 
 21 0.000198 0.010783 0.000123 0.008708 
 22 0.000197 0.010784 0.000122 0.008672 
 23 0.000197 0.010778 0.000123 0.008699 
 24 0.000199 0.010847 0.000122 0.008659 
 25 0.000198 0.010761 0.000123 0.008691 
 26 0.000197 0.010765 0.000124 0.008709 
 27 0.000197 0.010773 0.000124 0.008682 
 28 0.000197 0.010785 0.000123 0.008642 
 29 0.000197 0.010751 0.000123 0.008646 
 30 0.000197 0.010724 0.000123 0.008635 
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APPENDIX F 

Results of forecasting optimisation. 

 

192 single multi single add double multi double add 

alpha 0,82 0,77 0,71 0,01 

beta 0,23 0,36 0,41 0,29 

delta 0,18 0,36 0,46 0,27 

gamma 0,16 0,42 0,04 0,03 

mse 183,76 188,62 208,44 269,26 

mae 10,24 10,66 11,48 12,14 

mpe 0,14876912 0,149623 0,15475798 0,17178285 

          

194 single multi single add double multi double add 

alpha 0,91 0,95 0,03 0,68 

beta 0,64 0,57 0,44 0,03 

delta 0,75 0,66 0,68 0 

gamma 0,57 0,95 0,1 0,63 

mse 1161,6 1232,16 957,28 997,54 

mae 22,92 24,32 21,36 21,5 

mpe 0,20518941 0,2200554 0,203179325 0,21440845 

          

242 single multi single add double multi double add 

alpha 0,71 0,71 0,92 0,43 

beta 0,93 0,93 0 0 

delta 0,23 0,23 0,79 0,48 

gamma 0,71 0,71 0,68 0,42 

mse 557,72 586,92 579,16 661,94 

mae 17,48 17,52 17,44 20,42 

mpe 0,16955824 0,1637617 0,184346352 0,20933731 

          

437 single multi single add double multi double add 

alpha 0,05 0,42 0,13 0,29 

beta 0 0 0,05 0,06 

delta 0,24 0,26 0,77 0,05 

gamma 0,32 0,32 0,55 0,27 

mse 2685,72 6680,24 3777,42 6369,96 

mae 31,68 54,4 37,3 51,88 

mpe 0,31800078 0,6070767 0,431071304 0,56730962 

 

 


